

LabJack U3 User’s Guide (-LV & -HV)
(Hardware Revision 1.30)

Revision 1.08

March 9th, 2009

LabJack Corporation
www.labjack.com

support@labjack.com

mailto:support@labjack.com

For the latest version of this and other documents, go to www.labjack.com.

LabJack designs and manufactures measurement and automation peripherals that enable the
connection of a PC to the real-world. Although LabJacks have various redundant protection
mechanisms, it is possible, in the case of improper and/or unreasonable use, to damage the
LabJack and even the PC to which it is connected. LabJack Corporation will not be liable for
any such damage.

Except as specified herein, LabJack Corporation makes no warranties, express or implied,
including but not limited to any implied warranty or merchantability or fitness for a particular
purpose. LabJack Corporation shall not be liable for any special, indirect, incidental or
consequential damages or losses, including loss of data, arising from any cause or theory.

LabJacks and associated products are not designed to be a critical component in life support or
systems where malfunction can reasonably be expected to result in personal injury. Customers
using these products in such applications do so at their own risk and agree to fully indemnify
LabJack Corporation for any damages resulting from such applications.

LabJack assumes no liability for applications assistance or customer product design.
Customers are responsible for their applications using LabJack products. To minimize the risks
associated with customer applications, customers should provide adequate design and
operating safeguards.

Reproduction of products or written or electronic information from LabJack Corporation is
prohibited without permission. Reproduction of any of these with alteration is an unfair and
deceptive business practice.

Copyright © 2009, LabJack Corporation

Declaration of Conformity

Manufacturers Name: LabJack Corporation
Manufacturers Address: 3232 S Vance St STE 100, Lakewood, CO 80227, USA

Declares that the product

Product Name: LabJack U3 (LV/HV)
Model Number: LJU3 (-LV/-HV)

conforms to the following Product Specifications:

EMC Directive: 89/336/EEC

EN 55011 Class A
EN 61326-1: General Requirements

and is marked with CE

 2

http://www.labjack.com/

Warranty:

The LabJack U3 comes with a 1 year limited warranty from LabJack Corporation, covering this
product and parts against defects in material or workmanship. The LabJack can be damaged
by misconnection (such as connecting 120 VAC to any of the screw terminals), and this
warranty does not cover damage obviously caused by the customer. If you have a problem,
contact support@labjack.com for return authorization. In the case of warranty repairs, the
customer is responsible for shipping to LabJack Corporation, and LabJack Corporation will pay
for the return shipping.

LabJack U3 User’s Guide Revision History

V1.05 released March 13th, 2008
First revision covering hardware revision 1.30 (LV & HV)

V1.06 released April 9th, 2008
Updated all references to power-up jumpers to now use FIO4-FIO6.
Section 2.8 – Updated to reflect unavailability of FIO0-FIO3 on U3-HV.
Section 5.2.2 – Updated with new parameters added for hardware rev 1.30.

V1.07 released September 18th, 2008
Section 2.7, 2.13, 5.2.2 – Discussed increased DAC noise with decreased timer clock.
Section 2.8.1.4 – Noted that excessive current sinking can cause AIN shift.
Section 3.1 – Updated Tables for current firmware.
Section 4.3.7 – More detail about stream buffers.
Section 4.3.11 – More information about pin numbers and pull-up resistors.
Section 4.3.12, 5.3.16 – New baud rate formula for hardware 1.30.

V1.08 released March 9th, 2009
Section 2.1 – Corrected endpoint description in last paragraph.
Sections 2.6.2 & 5.2.5.1 – Clarified that binary AIN values are always unsigned.
Section 2.9.1.9 – Corrected description of stop timer value read.
Section 2.12 – Updated J3 table for hardware version 1.30.
Section 4.3.14 – Added wait IOType.
Section 5.2.2 – Added bits 4 & 5 to WriteMask0 in command listing.
Appendix A – Added last missing HV specs.

 3

Table Of Contents

1. Installation on Windows ...7

1.1 Control Panel Application (LJControlPanel) ...8
1.2 Self-Upgrade Application (LJSelfUpgrade)...11

2. Hardware Description...13
2.1 USB ..13
2.2 Status LED ...14
2.3 GND and SGND ...14
2.4 Vs ...14
2.5 Flexible I/O (FIO/EIO)...14
2.6 AIN..16

2.6.1 Channel Numbers ..16
2.6.2 Converting Binary Readings to Voltages ...17
2.6.3 Typical Analog Input Connections ...20
2.6.4 Internal Temperature Sensor ...26

2.7 DAC..26
2.7.1 Typical Analog Output Connections..27

2.8 Digital I/O..28
2.8.1 Typical Digital I/O Connections...29

2.9 Timers/Counters ...33
2.9.1 Timer Mode Descriptions ..35
2.9.2 Timer Operation/Performance Notes ..40

2.10 SPC (… and SCL/SDA/SCA) ...40
2.11 DB15...40

2.11.1 CB15 Terminal Board ...41
2.11.2 RB12 Relay Board ..41

2.12 U3-OEM..42
2.13 Hardware Revision Notes...43

3. Operation ...44
3.1 Command/Response..44
3.2 Stream Mode..46

3.2.1 Streaming Digital Inputs, Timers, and Counters ...47
4. LabJackUD High-Level Driver..49

4.1 Overview...49
4.1.1 Function Flexibility ...51
4.1.2 Multi-Threaded Operation ..52

4.2 Function Reference ..54
4.2.1 ListAll() ...54
4.2.2 OpenLabJack() ..55
4.2.3 eGet() and ePut() ...56
4.2.4 eAddGoGet()..57
4.2.5 AddRequest()...57
4.2.6 Go()..58
4.2.7 GoOne() ...59
4.2.8 GetResult()...59
4.2.9 GetFirstResult() and GetNextResult()..60
4.2.10 DoubleToStringAddress() ..61
4.2.11 StringToDoubleAddress() ..61
4.2.12 StringToConstant()...62
4.2.13 ErrorToString() ...62
4.2.14 GetDriverVersion() ...63
4.2.15 TCVoltsToTemp() ..63
4.2.16 ResetLabJack()..63

 iv

4.2.17 eAIN()...64
4.2.18 eDAC() ...64
4.2.19 eDI() ...65
4.2.20 eDO() ...65
4.2.21 eTCConfig() ...66
4.2.22 eTCValues()...67

4.3 Example Pseudocode...68
4.3.1 Open ...68
4.3.2 Configuration...68
4.3.3 Analog Inputs ..69
4.3.4 Analog Outputs ...71
4.3.5 Digital I/O ..71
4.3.6 Timers & Counters ..72
4.3.7 Stream Mode ..74
4.3.8 Raw Output/Input ..78
4.3.9 Easy Functions ...78
4.3.10 SPI Serial Communication ..80
4.3.11 I2C Serial Communication...81
4.3.12 Asynchronous Serial Communication ...82
4.3.13 Watchdog Timer..83
4.3.14 Miscellaneous ...85

4.4 Errorcodes..86
5. Low-Level Function Reference ..89

5.1 General Protocol...89
5.2 Low-Level Functions...92

5.2.1 BadChecksum..92
5.2.2 ConfigU3..93
5.2.3 ConfigIO...96
5.2.4 ConfigTimerClock ..98
5.2.5 Feedback ...99
5.2.6 ReadMem (ReadCal) ...107
5.2.7 WriteMem (WriteCal) ...108
5.2.8 EraseMem (EraseCal) ...109
5.2.9 Reset..110
5.2.10 StreamConfig ...111
5.2.11 StreamStart..113
5.2.12 StreamData..114
5.2.13 StreamStop..115
5.3.14 Watchdog...116
5.3.15 SPI ...118
5.3.16 AsynchConfig...120
5.3.17 AsynchTX...121
5.3.18 AsynchRX ..122
5.3.19 I2C ...123
5.3.20 SHT1X ...125

5.3 Errorcodes..126
A. Specifications...128
B. Enclosure & PCB Drawings ...131

 v

Table Of Figures

Figure 1-1. LJControlPanel Main Window..8
Figure 1-2. LJControlPanel U3 Configure Defaults Window ..9
Figure 1-3. LJControlPanel U3 Test Window...10
Figure 1-4. LJControlPanel Settings Window ..10
Figure 1-5. Self-Upgrade Application ...11
Figure 2-1. LabJack U3..13
Table 2-1. Analog Input Pin Locations ...15
Table 2-2. ConfigIO Factory Default Values ...15
Table 2-3. ConfigTimerClock Factory Default Values ..15
Table 2-4. Positive Channel Numbers ...17
Table 2-5. Negative Channel Numbers..17
Table 2-6. Nominal Analog Input Voltage Ranges for Low-Voltage Channels...........................17
Table 2-7. Nominal Analog Input Voltage Ranges for High-Voltage Channels..........................18
Table 2-8. Normal Calibration Constant Memory Locations ..19
Table 2-9. Additional High-Voltage Calibration Constant Memory Locations19
Table 2-10. Fixed Point Conversion Examples ..19
Table 2-11. Nominal Analog Input Voltage Ranges (DAC1 Enabled)..20
Figure 2-2. Non-Inverting Op-Amp Configuration ..22
Figure 2-3. Voltage Divider Circuit ...23
Figure 2-4. Buffered Voltage Divider Circuit...24
Figure 2-5. Current Measurement With Arbitrary Load or 2-Wire 4-20 mA Sensor24
Figure 2-6. Current Measurement With 3-Wire 4-20 mA (Sourcing) Sensor25
Figure 2-7. ±10 Volt DAC Output Circuit..28
Figure 2-8. Driven Signal Connection To Digital Input ...30
Figure 2-9. Open-Collector (NPN) Connection To Digital Input ...30
Figure 2-10. Basic Mechanical Switch Connection To Digital Input...31
Figure 2-11. Passive Hardware Debounce ..32
Figure 2-12. Relay Connections (Sinking Control, High-Side Load Switching)..........................32
Table 3-1. Typical Feedback Function Execution Times (QuickSample=0, LongSettling=0)44
Table 3-2. Typical Feedback Function Execution Times (QuickSample=1, LongSettling=0)44
Table 3-3. Typical Feedback Function Execution Times (QuickSample=0, LongSettling=1)44
Table 3-4. Stream Performance...46
Table 3-5. Special Stream Channels ...47
Table 4-1. Request Level Errorcodes (Part 1) ...86
Table 4-2. Request Level Errorcodes (Part 2) ...87
Table 4-3. Group Level Errorcodes..88

 vi

1. Installation on Windows
The LJUD driver requires a PC running Windows 98, ME, 2000, XP, or Vista. For other
operating systems, go to labjack.com for available support. Software will be installed to the
LabJack directory which defaults to c:\Program Files\LabJack\.

Install the software first: Install the software using the CD or by downloading the latest UD
installer from labjack.com. Although all necessary software is available at labjack.com, do not
discard the CD as it includes a fully licensed copy of DAQFactory Express which is not available
by download.

Connect the USB cable: The USB cable provides data and power. After the UD software
installation is complete, connect the hardware and Windows should prompt with “Found New
Hardware” and shortly after the Found New Hardware Wizard will open. When the Wizard
appears allow Windows to install automatically by accepting all defaults.

Run LJControlPanel: From the Windows Start Menu, go to the LabJack group and run
LJControlPanel. Click the “Find Devices” button, and an entry should appear for the connected
U3 showing the serial number. Click on the “USB – 1” entry below the serial number to bring up
the U3 configuration panel. Click on “Test” in the configuration panel to bring up the test panel
where you can view and control the various I/O on the U3.

If LJControlPanel does not find the U3, check Windows Device Manager to see if the U3
installed correctly. One way to get to the Device Manager is:

Start => Control Panel => System => Hardware => Device Manager

The entry for the U3 should appear as in the following figure. If it has a yellow caution symbol
or exclamation point symbol, right-click and select “Uninstall” or “Remove”. Then disconnect
and reconnect the U3 and repeat the Found New Hardware Wizard as described above.

 7

1.1 Control Panel Application (LJControlPanel)
The LabJack Control Panel application (LJCP) handles configuration and testing of the U3.
Click on the “Find Devices” button to search for connected devices.

Figure 1-1. LJControlPanel Main Window

Figure 1-1 shows the results from a typical search. The application found one U3 connected by
USB. The USB connection has been selected in Figure 1-1, bringing up the configuration
window on the right side.

• Refresh: Reload the window using values read from the device.
• Write Values: Write the Local ID from the window to the device.
• Config. IO Defaults: Opens the window shown in Figure 1-2.
• Reset: Click to reset the selected device.
• Test: Opens the window shown in Figure 1-3.

 8

Figure 1-2. LJControlPanel U3 Configure Defaults Window

Figure 1-2 shows the configuration window for U3 defaults. These are the values that will be
loaded by the U3 at power-up or reset. The factory defaults, as shown above, are all lines
configured as digital input.

Figure 1-3 shows the U3 test window. This window continuously (once per second) writes to
and reads from the selected LabJack.

 9

Figure 1-3. LJControlPanel U3 Test Window

Selecting Options=>Settings from the main LJControlPanel menu brings up the window shown
in Figure 1-4. This window allows some features to of the LJControlPanel application to be
customized.

Figure 1-4. LJControlPanel Settings Window

 10

• Search for USB devices: If selected, LJControlPanel will include USB when searching
for devices.

• Search for Ethernet devices using UDP broadcast packet: Does not apply to the U3.
• Search for Ethernet devices using specified IP addresses: Does not apply to the U3.

1.2 Self-Upgrade Application (LJSelfUpgrade)
The processor in the U3 has field upgradeable flash memory. The self-upgrade application
shown in Figure 1-5 programs the latest firmware onto the processor.

USB is the only interface on the U3, and first found is the only option for self-upgrading the U3,
so no changes are needed in the “Connect by:” box. There must only be one U3 connected to
the PC when running LJSelfUpgrade.

Click on “Get Version Numbers”, to find out the current firmware versions on the device. Then
use the provided Internet link to go to labjack.com and check for more recent firmware.
Download firmware files to the …\LabJack\LJSelfUpgrade\upgradefiles\ directory.

Click the Browse button and select the upgrade file to program. Click the Program button to
begin the self-upgrade process.

Figure 1-5. Self-Upgrade Application

If problems are encountered during programming, try the following:

1. Unplug the U3, wait 5 seconds then reconnect the U3. Click OK then press
program again.

 11

2. If step 1 does not fix the problem unplug the U3 and watch the LED while

plugging the U3 back in. Follow the following steps based on the LED's activity.

a. If the LED is blinking continuously, connect a jumper between FIO4
and SPC (FIO0 to SCL on U3 1.20/1.21), then unplug the U3, wait 5
seconds and plug the U3 back in.

b. If the LED blinks several times and stays on, connect a jumper
between FIO5 and SPC (FIO1 to SCL on U3 1.20/1.21), then unplug the
U3, wait 5 seconds and plug the U3 back in.

c. If the LED blinks several times and stays off, the U3 is not
enumerating. Please restart your computer and try to program again.

d. If there is no LED activity, connect a jumper between FIO5 and SPC
(FIO1 to SCL on U3 1.20/1.21), then unplug the U3, wait 5 seconds and
plug the U3 back in. If the LED is blinking continuously click OK and
program again. If the LED does not blink connect a jumper between FIO4
and SPC (FIO0 to SCL on U3 1.20/1.21), then unplug the U3, wait 5
seconds and plug the U3 back in.

3. If there is no activity from the U3's LED after following the above steps, please

contact support.

 12

2. Hardware Description
The U3 has 3 different I/O areas:

• Communication Edge,
• Screw Terminal Edge,
• DB Edge.

The communication edge has a USB type B connector (with black cable connected in Figure 2-
1). All power and communication is handled by the USB interface.

The screw terminal edge has convenient connections for the analog outputs and 8 flexible I/O
(digital I/O, analog inputs, timers, or counters). The screw terminals are arranged in blocks of 4,
with each block consisting of Vs, GND, and two I/O. There is also a status LED located on the
left edge.

The DB Edge has a D-sub type connectors called DB15 which has the 8 EIO lines and 4 CIO
lines. The EIO lines are flexible like the FIO lines, while the CIO are dedicated digital I/O.

Figure 2-1. LabJack U3

2.1 USB
For information about USB installation, see Section 1.

The U3 has a full-speed USB connection compatible with USB version 1.1 or 2.0. This
connection provides communication and power (Vusb). USB ground is connected to the U3
ground (GND), and USB ground is generally the same as the ground of the PC chassis and AC
mains.

 13

The details of the U3 USB interface are handled by the high level drivers (Windows LabJackUD
DLL), so the following information is really only needed when developing low-level drivers.

The LabJack vendor ID is 0x0CD5. The product ID for the U3 is 0x0003.

The USB interface consists of the normal bidirectional control endpoint (0 OUT & IN), 3 used
bulk endpoints (1 OUT, 2 IN, 3 IN), and 1 dummy endpoint (3 OUT). Endpoint 1 consists of a
64 byte OUT endpoint (address = 0x01). Endpoint 2 consists of a 64 byte IN endpoint (address
= 0x82). Endpoint 3 consists of a dummy OUT endpoint (address = 0x03) and a 64 byte IN
endpoint (address = 0x83). Endpoint 3 OUT is not supported by the firmware, and should never
be used.

All commands should always be sent on Endpoint 1, and the responses to commands will
always be on Endpoint 2. Endpoint 3 is only used to send stream data from the U3 to the host.

2.2 Status LED
There is a green status LED on the LabJack U3. This LED blinks on reset, and then remains
steadily lit. Other LED behavior is generally related to flash upgrade modes (Section 1.2).

2.3 GND and SGND
The GND connections available at the screw-terminals and DB connectors provide a common
ground for all LabJack functions. This ground is the same as the ground line on the USB
connection, which is often the same as ground on the PC chassis and therefore AC mains
ground.

SGND is located near the upper-left of the device. This terminal has a self-resetting thermal
fuse in series with GND. This is often a good terminal to use when connecting the ground from
another separately powered system that could unknowingly already share a common ground
with the U3.

See the AIN, DAC, and Digital I/O Sections for more information about grounding.

2.4 Vs
The Vs terminals are designed as outputs for the internal supply voltage (nominally 5 volts).
This will be the voltage provided from the USB cable. The Vs connections are outputs, not
inputs. Do not connect a power source to Vs in normal situations. All Vs terminals are the
same.

2.5 Flexible I/O (FIO/EIO)
The first 16 I/O lines (FIO and EIO ports) on the LabJack U3 can be individually configured as
digital input, digital output, or analog input. In addition, up to 2 of these lines can be configured
as timers, and up to 2 of these lines can be configured as counters. If a line is configured as
analog, it is called AINx according to the following table:

 14

AIN0 FIO0 AIN8 EIO0
AIN1 FIO1 AIN9 EIO1
AIN2 FIO2 AIN10 EIO2
AIN3 FIO3 AIN11 EIO3
AIN4 FIO4 AIN12 EIO4
AIN5 FIO5 AIN13 EIO5
AIN6 FIO6 AIN14 EIO6
AIN7 FIO7 AIN15 EIO7

Table 2-1. Analog Input Pin Locations

On the U3-HV, compared to the -LV, the first four flexible I/O are fixed as analog inputs (AIN0-
AIN3) with a nominal ±10 volt input range. A digital operations, including analog/digital
configuration, are ignored on these 4 fixed analog inputs.

Timers and counters can appear on various pins, but other I/O lines never move. For example,
Timer1 can appear anywhere from FIO4 to EIO1, depending on TimerCounterPinOffset and
whether Timer0 is enabled. On the other hand, FIO5 (for example), is always on the screw
terminal labeled FIO5, and AIN5 (if enabled) is always on that same screw terminal.

The first 8 flexible I/O lines (FIO0-FIO7) appear on built-in screw terminals. The other 8 flexible
I/O lines (EIO0-EIO7) are available on the DB15 connector.

Many software applications will need to initialize the flexible I/O to a known pin configuration.
That requires calls to the low-level functions ConfigIO and ConfigTimerClock. Following are the
values to set the pin configuration to the factory default state:

able 2-2. ConfigIO Factory Default Values

able 2-3. ConfigTimerClock Factory Default Values

hen using the high-level LabJackUD driver, this could be done with the following requests:

;

nored on hardware rev 1.30+.

Byte #
6 WriteMask 15 Write all parameters.
8 TimerCounterConfig 0 No timers/counters. Offset=4.
9 DAC1Enable 0 DAC1 disabled. (Ignored on HW 1.30)
10 FIOAnalog 0 FIO all digital.
11 EIOAnalog 0 EIO all digital.

T

Byte #
8 TimerClockConfig 130 Set clock to 48 MHz.
9 TimerClockDivisor 0 Divisor = 0.

T

W

Put (lngHandle, LJ_ioPUT_CONFIG, LJ_chNUMBER_TIMERS_ENABLED, 0, 0); e
ePut (lngHandle, LJ_ioPUT_CONFIG, LJ_chTIMER_COUNTER_PIN_OFFSET, 4, 0)
ePut (lngHandle, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_BASE, LJ_tc48MHZ, 0);
ePut (lngHandle, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_DIVISOR, 0, 0);
ePut (lngHandle, LJ_ioPUT_COUNTER_ENABLE, 0, 0, 0);
ePut (lngHandle, LJ_ioPUT_COUNTER_ENABLE, 1, 0, 0);
ePut (lngHandle, LJ_ioPUT_DAC_ENABLE, 1, 0, 0); //Ig
ePut (lngHandle, LJ_ioPUT_ANALOG_ENABLE_PORT, 0, 0, 16);

 15

… or with a single request to the following IOType created exactly for this purpose:

Put (lngHandle, LJ_ioPIN_CONFIGURATION_RESET, 0, 0, 0);

k U3 has up to 16 analog inputs available on the flexible I/O lines (FIO0-FIO7 and

nalog input resolution is 12-bits. The range of single-ended analog inputs is normally about 0-

n the U3-HV, compared to the -LV, the first four flexible I/O are fixed as analog inputs (AIN0-
o

 still

ecause the scaling on the high-voltage inputs on the U3-HV (AIN0-AIN3) is inherently single-

he analog inputs have a QuickSample option where each conversion is done faster at the
ial

ing a
s

ote that sinking excessive current into digital outputs can cause substantial errors in analog

ternal analog inputs, plus a few internal channels. The low-

e

2.6 AIN
The LabJac
EIO0-EIO7). Single-ended measurements can be taken of any line compared to ground, or
differential measurements can be taken of any line to any other line.

A
2.44, and there is a “special” 0-3.6 volt range available. The range of differential analog inputs
is typically +/- 2.4 volts, but is pseudobipolar, not true bipolar. The difference (positive channel
minus negative channel) can be -2.4 volts, but neither input can have a voltage less than -0.3
volts to ground. For valid measurements, the voltage on every low-voltage analog input pin,
with respect to ground, must be within -0.3 to +3.6 volts. See Appendix A for voltage limits to
avoid damage.

O
AIN3), and have scaling such that the input range is a true bipolar ±10 volts normally, and -10 t
+20 volts when using the “special” range. The input impedance of these four lines is roughly 1
MΩ, which is good, but less than the normal low voltage analog inputs. Analog/digital
configuration and all other digital operations on these pins are ignored. FIO4-EIO7 are
available as flexible I/O, same as the U3-LV.

B
ended, a factory calibration is not possible for differential readings. If a differential reading is
requested where either channel is a high-voltage channel, the driver will return the raw binary
reading and the user must handle calibration/conversion.

T
expense of increased noise. This is enabled by passing a nonzero value for put_config spec
channel LJ_chAIN_RESOLUTION. There is also a LongSettling option where additional settling
time is added between the internal multiplexer configuration and the analog to digital
conversion. This allows signals with more source impedance, and is enabled by pass
nonzero value for put_config special channel LJ_chAIN_SETTLING_TIME. Both of these option
are disabled by default.

N
input readings. See Section 2.8.1.4 for more info.

2.6.1 Channel Numbers
The LabJack U3 has up to 16 ex
level functions specify a positive and negative channel for each analog input conversion. With
the LabJackUD driver, the IOType LJ_ioGET_AIN is used for single-ended channels only, and
thus the negative channel is internally set to 31. There is an additional IOType called
LJ_ioGET_AIN_DIFF that allows the user to specify the positive and negative channel.

 16

Positive Channel #
0-7 AIN0-AIN7 (FIO0-FIO7)
8-15 AIN8-AIN15 (EIO0-EIO7)
30 Temp Sensor
31 Vreg

Table 2-4. Positive Channel Numbers

Channel 31 puts the internal Vreg (~3.3 volts) on the positive input of the ADC. See Section
2.6.4 for information about the internal temperature sensor.

Negative Channel #
0-7 AIN0-AIN7 (FIO0-FIO7)
8-15 AIN8-AIN15 (EIO0-EIO7)
30 Vref
31 Single-Ended
32 Special 0-3.6 or -10/+20 (UD Only)

Table 2-5. Negative Channel Numbers

If the negative channel is set to anything besides 31, the U3 does a differential conversion and
returns a pseudobipolar value. If the negative channel is set to 31, the U3 does a single-ended
conversion and returns a unipolar value. Channel 30 puts the internal voltage reference Vref
(~2.44 volts) on the negative input of the ADC.

Channel 32 is a special negative channel supported by the LabJack UD driver. When used, the
driver will actually pass 30 as the negative channel to the U3, and when the result is returned
the driver adds Vref to the value. This results in a full span on the positive channel of about 0 to
4.88 volts (versus ground), but since the voltage on any analog input cannot exceed 3.6 volts,
only 75% of the converters range is used and the span is about 0 to 3.6 volts.

For the four high-voltage channels on the U3-HV, the special channel negative channel also
puts Vref on the negative. This results in an overall range of about -10 to +20 volts on the
positive input.

2.6.2 Converting Binary Readings to Voltages
Following are the nominal input voltage ranges for the low-voltage analog inputs. This is all
analog inputs on the U3-LV, and AIN4-AIN15 on the U3-HV.

Max V Min V
Single-Ended 2.44 0.0
Differential 2.44 -2.44
Special 0-3.6 3.6 0.0

Table 2-6. Nominal Analog Input Voltage Ranges for Low-Voltage Channels

 17

Max V Min V
Single-Ended 10.3 -10.3
Differential N/A N/A
Special -10/+20 20.1 -10.3

Table 2-7. Nominal Analog Input Voltage Ranges for High-Voltage Channels

Note that the minimum differential input voltage of -2.44 volts means that the positive channel
can be as much as 2.44 volts less than the negative channel, not that a channel can measure
2.44 volts less than ground. The voltage of any low-voltage analog input pin, compared to
ground, must be in the range -0.3 to +3.6 volts.

The “special” range (0-3.6 on low-voltage channels and -10/+20 volts on high-voltage channels)
is obtained by doing a differential measurement where the negative channel is set to the internal
Vref (2.44 volts). For low-voltage channels, simply do the low-voltage differential conversion as
described below, then add the stored Vref value. For high-voltage channels, do the same thing,
then multiply by the proper high-voltage slope, divide by the single-ended low-voltage slope,
and add the proper high-voltage offset. The UD driver handles these conversions automatically.

Although the binary readings have 12-bit resolution, they are returned justified as 16-bit values,
so the approximate nominal conversion from binary to voltage is:

Volts(uncalibrated) = (Bits/65536)*Span (Single-Ended)

Volts(uncalibrated) = (Bits/65536)*Span – Span/2 (Differential)

Binary readings are always unsigned integers.

Where span is the maximum voltage minus the minimum voltage from the tables above. The
actual nominal conversions are provided in the tables below, and should be used if the actual
calibration constants are not read for some reason. Most applications will use the actual
calibrations constants (Slope and Offset) stored in the internal flash.

Volts = (Slope * Bits) + Offset

Since the U3 uses multiplexed channels connected to a single analog-to-digital converter
(ADC), all low-voltage channels have the same calibration for a given configuration. High-
voltage channels have individual scaling circuitry out front, and thus the calibration is unique for
each channel.

Table 2-7 shows where the various calibration values are stored in the Mem area. Generally
when communication is initiated with the U3, four calls will be made to the ReadMem function to
retrieve the first 4 blocks of memory. This information can then be used to convert all analog
input readings to voltages. The high level Windows DLL (LabJackUD) does this automatically.

 18

Starting

Block # Byte Nominal Value
0 0 LV AIN SE Slope 3.7231E-05 volts/bit
0 8 LV AIN SE Offset 0.0000E+00 volts
0 16 LV AIN Diff Slope 7.4463E-05 volts/bit
0 24 LV AIN Diff Offset -2.4400E+00 volts
1 0 DAC0 Slope 5.1717E+01 bits/volt
1 8 DAC0 Offset 0.0000E+00 bits
1 16 DAC1 Slope 5.1717E+01 bits/volt
1 24 DAC1 Offset 0.0000E+00 bits
2 0 Temp Slope 1.3021E-02 degK/bit
2 8 Vref @Cal 2.4400E+00 volts
2 16 Vref*1.5 @Cal 3.6600E+00 volts
2 24 Vreg @Cal 3.3000E+00 volts

Table 2-8. Normal Calibration Constant Memory Locations

Starting
Block # Byte Nominal Value

3 0 HV AIN0 Slope 0.000314 volts/bit
3 8 HV AIN1 Slope 0.000314 volts/bit
3 16 HV AIN2 Slope 0.000314 volts/bit
3 24 HV AIN3 Slope 0.000314 volts/bit
4 0 HV AIN0 Offset -10.3 volts
4 8 HV AIN1 Offset -10.3 volts
4 16 HV AIN2 Offset -10.3 volts
4 24 HV AIN3 Offset -10.3 volts

Table 2-9. Additional High-Voltage Calibration Constant Memory Locations

Each value in Table 2-7 is stored in 64-bit fixed point format (signed 32.32, little endian, 2’s
complement). Following are some examples of fixed point byte arrays and the associated
floating point double values.

Fixed Point Byte Array
(LSB, …, MSB) Floating Point Double
{0,0,0,0,0,0,0,0} 0.0000000000
{0,0,0,0,1,0,0,0} 1.0000000000

{0,0,0,0,255,255,255,255} -1.0000000000
{51,51,51,51,0,0,0,0} 0.2000000000

{205,204,204,204,255,255,255,255} -0.2000000000
{73,20,5,0,0,0,0,0} 0.0000775030

{225,122,20,110,2,0,0,0} 2.4300000000
{102,102,102,38,42,1,0,0} 298.1500000000

Table 2-10. Fixed Point Conversion Examples

2.6.2.1 Analog Inputs With DAC1 Enabled (Hardware Revisions 1.20 & 1.21 only)
This Section only applies to the older hardware revisions 1.20 and 1.21. Starting with hardware
revision 1.30, DAC1 is always enabled and does not affect the analog inputs.

 19

The previous information assumed that DAC1 is disabled. If DAC1 is enabled, then the internal
reference (Vref = 2.44 volts) is not available for the ADC, and instead the internal regulator
voltage (Vreg = 3.3 volts) is used as the reference for the ADC. Vreg is not as stable as Vref,
but more stable than Vs (5 volt power supply). Following are the nominal input voltage ranges
for the analog inputs, assuming that DAC1 is enabled.

Max V Min V
Single-Ended 3.3 0.0
Differential 3.3 -3.3
Special 0-3.6 N/A N/A

Table 2-11. Nominal Analog Input Voltage Ranges (DAC1 Enabled)

Note that the minimum differential input voltage of -3.3 volts means that the positive channel
can be as much as 3.3 volts less than the negative channel, not that a channel can measure 3.3
volts less than ground. The voltage of any analog input pin, compared to ground, must be in the
range -0.3 to +3.6 volts, for specified performance. See Appendix A for voltage limits to avoid
damage.

Negative channel numbers 30 and 32 are not valid with DAC1 enabled.

When DAC1 is enabled, the slope/offset calibration constants are not used to convert raw
readings to voltages. Rather, the Vreg value is retrieved from the Mem area, and used with the
approximate single-ended or differential conversion equations above, where Span is Vreg
(single-ended) or 2Vreg (differential).

2.6.3 Typical Analog Input Connections
A common question is “can this sensor/signal be measured with the U3”. Unless the signal has
a voltage (referred to U3 ground) beyond the limits in Appendix A, it can be connected without
damaging the U3, but more thought is required to determine what is necessary to make useful
measurements with the U3 or any measurement device.

Voltage (versus ground): The single-ended analog inputs on the U3 measure a voltage with
respect to U3 ground. The differential inputs measure the voltage difference between two
channels, but the voltage on each channel with respect to ground must still be within the
common mode limits specified in Appendix A. When measuring parameters other than voltage,
or voltages too big or too small for the U3, some sort of sensor or transducer is required to
produce the proper voltage signal. Examples are a temperature sensor, amplifier, resistive
voltage divider, or perhaps a combination of such things.

Impedance: When connecting the U3, or any measuring device, to a signal source, it must be
considered what impact the measuring device will have on the signal. The main consideration
is whether the currents going into or out of the U3 analog input will cause noticeable voltage
errors due to the impedance of the source. To maintain consistent 12-bit results, it is
recommended to keep the source impedance within the limits specified in Appendix A.

Resolution (and Accuracy): Based on the measurement type and resolution of the U3, the
resolution can be determined in terms of voltage or engineering units. For example, assume
some temperature sensor provides a 0-10 mV signal, corresponding to 0-100 degrees C.
Samples are then acquired with the U3 using the 0-2.44 volt single-ended input range, resulting
in a voltage resolution of about 2.44/4096 = 596 μV. That means there will be about 17 discrete

 20

steps across the 10 mV span of the signal, and the temperature resolution is about 6 degrees C.
If this experiment required a resolution of 1 degrees C, this configuration would not be sufficient.
Accuracy will also need to be considered. Appendix A places some boundaries on expected
accuracy, but an in-system calibration can generally be done to provide absolute accuracy down
to the linearity (INL) limits of the U3.

Speed: How fast does the signal need to be sampled? For instance, if the signal is a
waveform, what information is needed: peak, average, RMS, shape, frequency, … ? Answers
to these questions will help decide how many points are needed per waveform cycle, and thus
what sampling rate is required. In the case of multiple channels, the scan rate is also
considered. See Sections 3.1 and 3.2.

2.6.3.1 Signal from the LabJack
One example of measuring a signal from the U3 itself, is with an analog output. All I/O on the
U3 share a common ground, so the voltage on an analog output (DAC) can be measured by
simply connecting a single wire from that terminal to an AIN terminal (FIO/EIO). The analog
output must be set to a voltage within the range of the analog input.

2.6.3.2 Unpowered isolated signal
An example of an unpowered isolated signal would be a photocell where the sensor leads are
not shorted to any external voltages. Such a sensor typically has two leads, where the positive
lead connects to an AIN terminal and the negative lead connects to a GND terminal.

2.6.3.3 Signal powered by the LabJack
A typical example of this type of signal is a 3-wire temperature sensor. The sensor has a power
and ground wire that connect to Vs and GND on the LabJack, and then has a signal wire that
simply connects to an AIN terminal.

Another variation is a 4-wire sensor where there are two signal wires (positive and negative)
rather than one. If the negative signal is the same as power ground, or can be shorted ground,
then the positive signal can be connected to AIN and a single-ended measurement can be
made. A typical example where this does not work is a bridge type sensor, such as pressure
sensor, providing the raw bridge output (and no amplifier). In this case the signal voltage is the
difference between the positive and negative signal, and the negative signal cannot be shorted
to ground. Such a signal could be measured using a differential input on the U3.

2.6.3.4 Signal powered externally
An example is a box with a wire coming out that is defined as a 0-2 volt analog signal and a
second wire labeled as ground. The signal is known to have 0-2 volts compared to the ground
wire, but the complication is what is the voltage of the box ground compared to the LabJack
ground.

If the box is known to be electrically isolated from the LabJack, the box ground can simply be
connected to LabJack GND. An example would be if the box was plastic, powered by an
internal battery, and does not have any wires besides the signal and ground which are
connected to AINx and GND on the LabJack.

If the box ground is known to be the same as the LabJack GND, then perhaps only the one
signal wire needs to be connected to the LabJack, but it generally does not hurt to go ahead

 21

and connect the ground wire to LabJack GND with a 100 Ω resistor. You definitely do not want
to connect the grounds without a resistor.

If little is known about the box ground, a DMM can be used to measure the voltage of box
ground compared to LabJack GND. As long as an extreme voltage is not measured, it is
generally OK to connect the box ground to LabJack GND, but it is a good idea to put in a 100 Ω
series resistor to prevent large currents from flowing on the ground. Use a small wattage
resistor (typically 1/8 or 1/4 watt) so that it blows if too much current does flow. The only
current that should flow on the ground is the return of the analog input bias current, which is
only microamps.

The SGND terminals (on the same terminal block as SPC) can be used instead of GND for
externally powered signals. A series resistor is not needed as SGND is fused to prevent
overcurrent, but a resistor will eliminate confusion that can be caused if the fuse is tripping and
resetting.

In general, if there is uncertainty, a good approach is to use a DMM to measure the voltage on
each signal/ground wire without any connections to the U3. If no large voltages are noted,
connect the ground to U3 SGND with a 100 Ω series resistor. Then again use the DMM to
measure the voltage of each signal wire before connecting to the U3.

Another good general rule is to use the minimum number of ground connections. For instance,
if connecting 8 sensors powered by the same external supply, or otherwise referred to the same
external ground, only a single ground connection is needed to the U3. Perhaps the ground
leads from the 8 sensors would be twisted together, and then a single wire would be connected
to a 100 Ω resistor which is connected to U3 ground.

2.6.3.5 Amplifying small signal voltages
The best results are generally obtained when a signal voltage spans the full analog input range
of the LabJack. If the signal is too small it can be amplified before connecting to the LabJack.
One good way to handle low-level signals such as thermocouples is the LJTick-InAmp, which is
a 2-channel instrumentation amplifier module that plugs into the U3 screw-terminals. Go to
labjack.com for more information.

 For a do-it-yourself solution, the following figure shows an operational amplifier (op-amp)
configured as non-inverting:

Figure 2-2. Non-Inverting Op-Amp Configuration

 22

The gain of this configuration is:

Vout = Vin * (1 + (R2/R1))

100 kΩ is a typical value for R2. Note that if R2=0 (short-circuit) and R1=inf (not installed), a
simple buffer with a gain equal to 1 is the result.

There are numerous criteria used to choose an op-amp from the thousands that are available.
One of the main criteria is that the op-amp can handle the input and output signal range. Often,
a single-supply rail-to-rail input and output (RIRO) is used as it can be powered from Vs and
GND and pass signals within the range 0-Vs. The OPA344 from Texas Instruments (ti.com) is
good for many 5 volt applications.

The op-amp is used to amplify (and buffer) a signal that is referred to the same ground as the
LabJack (single-ended). If instead the signal is differential (i.e. there is a positive and negative
signal both of which are different than ground), an instrumentation amplifier (in-amp) should be
used. An in-amp converts a differential signal to single-ended, and generally has a simple
method to set gain.

2.6.3.6 Signal voltages beyond 0-2.44 volts (and resistance measurement)
The normal input range for a low voltage channel on the U3 is about 0-2.44 volts. The easiest
way to handle larger voltages is often by using the LJTick-Divider, which is a two channel
buffered divider module that plugs into the U3 screw-terminals. More information is available at
labjack.com.

The basic way to handle higher unipolar voltages is with a resistive voltage divider. The
following figure shows the resistive voltage divider assuming that the source voltage (Vin) is
referred to the same ground as the U3 (GND).

Figure 2-3. Voltage Divider Circuit

The attenuation of this circuit is determined by the equation:

Vout = Vin * (R2 / (R1+R2))

This divider is easily implemented by putting a resistor (R1) in series with the signal wire, and
placing a second resistor (R2) from the AIN terminal to a GND terminal. To maintain specified
analog input performance, R1 should not exceed the values specified in Appendix A, so R1 can
generally be fixed at the max recommended value and R2 can be adjusted for the desired
attenuation.

 23

The divide by 2 configuration where R1 = R2 = 10 kΩ (max source impedance limit for low-
voltage channels), presents a 20 kΩ load to the source, meaning that a 5 volt signal will have to
be able to source/sink up to +250 µA. Some signal sources might require a load with higher
resistance, in which case a buffer should be used. The following figure shows a resistive
voltage divider followed by an op-amp configured as non-inverting unity-gain (i.e. a buffer).

Figure 2-4. Buffered Voltage Divider Circuit

The op-amp is chosen to have low input bias currents so that large resistors can be used in the
voltage divider. For 0-5 volt applications, where the amp will be powered from Vs and GND, a
good choice would be the OPA344 from Texas Instruments (ti.com). The OPA344 has a very
small bias current that changes little across the entire voltage range. Note that when powering
the amp from Vs and GND, the input and output to the op-amp is limited to that range, so if Vs is
4.8 volts your signal range will be 0-4.8 volts.

The information above also applies to resistance measurement. A common way to measure
resistance is to build a voltage divider as shown in Figure 2-4, where one of the resistors is
known and the other is the unknown. If Vin is known and Vout is measured, the voltage divider
equation can be rearranged to solve for the unknown resistance.

2.6.3.7 Measuring current (including 4-20 mA) with a resistive shunt
The following figure shows a typical method to measure the current through a load, or to
measure the 4-20 mA signal produced by a 2-wire (loop-powered) current loop sensor. The
current shunt shown in the figure is simply a resistor.

Figure 2-5. Current Measurement With Arbitrary Load or 2-Wire 4-20 mA Sensor

When measuring a 4-20 mA signal, a typical value for the shunt would be 120 Ω. This results in
a 0.48 to 2.40 volt signal corresponding to 4-20 mA. The external supply must provide enough
voltage for the sensor and the shunt, so if the sensor requires 5 volts the supply must provide at
least 7.4 volts.

 24

For applications besides 4-20 mA, the shunt is chosen based on the maximum current and how
much voltage drop can be tolerated across the shunt. For instance, if the maximum current is
1.0 amp, and 1.0 volts of drop is the most that can be tolerated without affecting the load, a 1.0
Ω resistor could be used. That equates to 1.0 watts, though, which would require a special high
wattage resistor. A better solution would be to use a 0.1 Ω shunt, and then use an amplifier to
increase the small voltage produced by that shunt. If the maximum current to measure is too
high (e.g. 100 amps), it will be difficult to find a small enough resistor and a hall-effect sensor
should be considered instead of a shunt.

The following figure shows typical connections for a 3-wire 4-20 mA sensor. A typical value for
the shunt would be 120 Ω which results in 0.48 to 2.40 volts.

Figure 2-6. Current Measurement With 3-Wire 4-20 mA (Sourcing) Sensor

The sensor shown in Figure 2-6 is a sourcing type, where the signal sources the 4-20 mA
current which is then sent through the shunt resistor and sunk into ground. Another type of 3-
wire sensor is the sinking type, where the 4-20 mA current is sourced from the positive supply,
sent through the shunt resistor, and then sunk into the signal wire. If sensor ground is
connected to U3 ground, the sinking type of sensor presents a problem, as at least one side of
the resistor has a high common mode voltage (equal to the positive sensor supply). If the
sensor is isolated, a possible solution is to connect the sensor signal or positive sensor supply
to U3 ground (instead of sensor ground). This requires a good understanding of grounding and
isolation in the system. The LJTick-CurrentShunt is often a simple solution.

Both Figure 2-5 and 2-6 show a 0-100 Ω resistor in series with SGND, which is discussed in
general in Section 2.6.3.4. In this case, if SGND is used (rather than GND), a direct connection
(0 Ω) should be good.

The best way to handle 4-20 mA signals is with the LJTick-CurrentShunt, which is a two channel
active current to voltage converter module that plugs into the U3 screw-terminals. More
information is available at labjack.com.

2.6.3.8 Floating/Unconnected Inputs
The reading from a floating (no external connection) analog input channel can be tough to
predict and is likely to vary with sample timing and adjacent sampled channels. Keep in mind
that a floating channel is not at 0 volts, but rather is at an undefined voltage. In order to see 0
volts, a 0 volt signal (such as GND) should be connected to the input.

Some data acquisition devices use a resistor, from the input to ground, to bias an unconnected
input to read 0. This is often just for "cosmetic" reasons so that the input reads close to 0 with
floating inputs, and a reason not to do that is that this resistor can degrade the input impedance
of the analog input.

 25

In a situation where it is desired that a floating channel read a particular voltage, say to detect a
broken wire, a resistor can be placed from the AINx screw terminal to the desired voltage (GND,
VS, DACx, ...). A 100 kΩ resistor should pull the analog input readings to within 50 mV of any
desired voltage, but obviously degrades the input impedance to 100 kΩ. For the specific case
of pulling a floating channel to 0 volts, a 1 MΩ resistor to GND can typically be used to provide
analog input readings of less than 50 mV.

Note that the four high-voltage channels on the U3-HV do sit at a predictable 1.4 volts.

2.6.4 Internal Temperature Sensor
The U3 has an internal temperature sensor. Although this sensor measures the temperature
inside the U3, which is warmer than ambient, it has been calibrated to read actual ambient
temperature. For accurate measurements the temperature of the entire U3 must stabilize
relative to the ambient temperature, which can take on the order of 1 hour. Best results will be
obtained in still air in an environment with slowly changing ambient temperatures.

With the UD driver, the internal temperature sensor is read by acquiring single-ended analog
input channel 30, and returns degrees K.

2.7 DAC
The LabJack U3 has 2 analog outputs (DAC0 and DAC1) that are available on the screw
terminals. Each analog output can be set to a voltage between about 0.04 and 4.95 volts with
10 bits of resolution (8 bits on older hardware revision 1.20/1.21). The maximum output voltage
is limited by the supply voltage to the U3.

Starting with hardware revision 1.30, DAC1 is always enabled and does not affect the analog
inputs, but with older hardware the second analog output is only available in certain
configurations. With hardware revisions <1.30, if the analog inputs are using the internal 2.4 volt
reference (the most accurate option), then DAC1 outputs a fixed voltage of 1.5*Vref. Also with
hardware revisions <1.30, if DAC1 is enabled the analog inputs use Vreg (3.3 volts) as the ADC
reference, which is not as stable as the internal 2.4 volt reference.

The DAC outputs are derived as a percentage of Vreg, and then amplified by 1.5, so any
changes in Vreg will have a proportionate affect on the DAC outputs. Vreg is more stable than
Vs (5 volt supply voltage), as it is the output from a 3.3 volt regulator.

The DACs are derived from PWM signals that are affected by the timer clock frequency (Section
2.9). The default timer clock frequency of the U3 is set to 48 MHz, and this results in the
minimum DAC output noise. If the frequency is lowered, the DACs will have more noise, where
the frequency of the noise is the timer clock frequency divided by 216. This effect is more
exaggerated with the 10-bit DACs on hardware revision 1.30+, compared to the 8-bit DACs on
previous hardware revisions. The noise with a timer clock of 48/12/4/1 MHz is roughly
5/20/100/600 mV. If lower noise performance is needed at lower timer clock frequencies, use
the power-up default setting in LJControlPanel to force the device to use 8-bit DAC mode (uses
the low-level CompatibilityOptions byte documented in Section 5.2.2). A large capacitor (at
least 220 uF) from DACn to GND can also be used to reduce noise.

The analog outputs have filters with a 3 dB cutoff around 16 Hz, limiting the frequency of output
waveforms to less than that.

 26

The analog output commands are sent as raw binary values (low level functions). For a desired
output voltage, the binary value can be approximated as:

Bits(uncalibrated) = (Volts/4.95)*256

For a proper calculation, though, use the calibration values (Slope and Offset) stored in the
internal flash on the processor (Table 2-7):

Bits = (Slope * Volts) + Offset

The previous apply when using the original 8-bit DAC commands supported on all hardware
versions. To take advantage of the 10-bit resolution on hardware revision 1.30, new commands
have been added (Section 5.2.5) where the binary values are aligned to 16-bits. The cal
constants are still aligned to 8-bits, however, so the slope and offset should each be multiplied
by 256 before using in the above formula.

The analog outputs can withstand a continuous short-circuit to ground, even when set at
maximum output.

Voltage should never be applied to the analog outputs, as they are voltage sources themselves.
In the event that a voltage is accidentally applied to either analog output, they do have
protection against transient events such as ESD (electrostatic discharge) and continuous
overvoltage (or undervoltage) of a few volts.

There is an accessory available from LabJack called the LJTick-DAC that provides a pair of 14-
bit analog outputs with a range of ±10 volts. The LJTick-DAC plugs into any digital I/O block,
and thus up to 10 of these can be used per U3 to add 20 analog outputs. The LJTick-DAC
improves on the various shortcomings of the built-in DACs on the U3:

• Range of +10.0 to -10.0 volts.
• Resolution of 14-bits.
• Slew rate of 0.1 V/μs.
• Based on a reference, rather than regulator, so more accurate and stable.
• Does not affect analog inputs in any configuration.

2.7.1 Typical Analog Output Connections

2.7.1.1 High Current Output
The DACs on the U3 can output quite a bit of current, but have 50 Ω of source impedance that
will cause voltage drop. To avoid this voltage drop, an op-amp can be used to buffer the output,
such as the non-inverting configuration shown in Figure 2-2. A simple RC filter can be added
between the DAC output and the amp input for further noise reduction. Note that the ability of
the amp to source/sink current near the power rails must still be considered. A possible op-amp
choice would be the TLV246x family (ti.com).

2.7.1.2 Different Output Ranges
The typical output range of the DACs is about 0.04 to 4.95 volts. For other unipolar ranges, an
op-amp in the non-inverting configuration (Figure 2-2) can be used to provide the desired gain.
For example, to increase the maximum output from 4.95 volts to 10.0 volts, a gain of 2.02 is
required. If R2 (in Figure 2-3) is chosen as 100 kΩ, then an R1 of 97.6 kΩ is the closest 1%

 27

resistor that provides a gain greater than 2.02. The +V supply for the op-amp would have to be
greater than 10 volts.

For bipolar output ranges, such as ±10 volts, a similar op-amp circuit can be used to provide
gain and offset, but of course the op-amp must be powered with supplies greater than the
desired output range (depending on the ability of the op-amp to drive it’s outputs close to the
power rails). If ±10, ±12, or ±15 volt supplies are available, consider using the LT1490A op-
amp (linear.com), which can handle a supply span up to 44 volts.

A reference voltage is also required to provide the offset. In the following circuit, DAC1 is used
to provide a reference voltage. The actual value of DAC1 can be adjusted such that the circuit
output is 0 volts at the DAC0 mid-scale voltage, and the value of R1 can be adjusted to get the
desired gain. A fixed reference (such as 2.5 volts) could also be used instead of DAC1.

Figure 2-7. ±10 Volt DAC Output Circuit

A two-point calibration should be done to determine the exact input/output relationship of this
circuit. Refer to application note SLOA097 from ti.com for further information about gain and
offset design with op-amps.

2.8 Digital I/O
The LabJack U3 has up to 20 digital I/O channels. 16 are available from the flexible I/O lines,
and 4 dedicated digital I/O (CIO0-CIO3) are available on the DB15 connector. The first 4 lines,
FIO0-FIO3, are unavailable on the U3-HV. Each digital line can be individually configured as
input, output-high, or output-low. The digital I/O use 3.3 volt logic and are 5 volt tolerant.

The LabJackUD driver uses the following bit numbers to specify all the digital lines:

0-7 FIO0-FIO7 (0-3 unavailable on U3-HV)
8-15 EIO0-EIO7
16-19 CIO0-CIO3

The 8 FIO lines appear on the built-in screw-terminals, while the 8 EIO and 4 CIO lines appear
only on the DB15 connector. See the DB15 Section of this User’s Guide for more information.

All the digital I/O include an internal series resistor that provides overvoltage/short-circuit
protection. These series resistors also limit the ability of these lines to sink or source current.
Refer to the specifications in Appendix A.

 28

All digital I/O on the U3 have 3 possible states: input, output-high, or output-low. Each bit of I/O
can be configured individually. When configured as an input, a bit has a ~100 kΩ pull-up
resistor to 3.3 volts (all digital I/O are 5 volt tolerant). When configured as output-high, a bit is
connected to the internal 3.3 volt supply (through a series resistor). When configured as output-
low, a bit is connected to GND (through a series resistor).

The power-up condition of the digital I/O can be configured by the user. From the factory, all
digital I/O are configured to power-up as inputs. Note that even if the power-up default for a line
is changed to output-high or output-low, there is a delay of about 5 ms at power-up where all
digital I/O are in the factory default condition.

The low-level Feedback function (Section 5.2.5) writes and reads all digital I/O. For information
about using digital I/O under the Windows LabJackUD driver, see Section 4.3.5. See Section
3.1 for timing information.

Many function parameters contain specific bits within a single integer parameter to write/read
specific information. In particular, most digital I/O parameters contain the information for each
bit of I/O in one integer, where each bit of I/O corresponds to the same bit in the parameter (e.g.
the direction of FIO0 is set in bit 0 of parameter FIODir). For instance, in the low-level function
ConfigU3, the parameter FIODirection is a single byte (8 bits) that writes/reads the power-up
direction of each of the 8 FIO lines:

• if FIODirection is 0, all FIO lines are input,
• if FIODirection is 1 (20), FIO0 is output, FIO1-FIO7 are input,
• if FIODirection is 5 (20 + 22), FIO0 and FIO2 are output, all other FIO lines are input,
• if FIODirection is 255 (20 + … + 27), FIO0-FIO7 are output.

2.8.1 Typical Digital I/O Connections

2.8.1.1 Input: Driven Signals
The most basic connection to a U3 digital input is a driven signal, often called push-pull. With a
push-pull signal the source is typically providing a high voltage for logic high and zero volts for
logic low. This signal is generally connected directly to the U3 digital input, considering the
voltage specifications in Appendix A. If the signal is over 5 volts, it can still be connected with a
series resistor. The digital inputs have protective devices that clamp the voltage at GND and
VS, so the series resistor is used to limit the current through these protective devices. For
instance, if a 24 volt signal is connected through a 22 kΩ series resistor, about 19 volts will be
dropped across the resistor, resulting in a current of 1.1 mA, which is no problem for the U3.
The series resistor should be 22 kΩ or less, to make sure the voltage on the I/O line when low is
pulled below 0.8 volts.

The other possible consideration with the basic push-pull signal is the ground connection. If the
signal is known to already have a common ground with the U3, then no additional ground
connection is used. If the signal is known to not have a common ground with the U3, then the
signal ground can simply be connected to U3 GND. If there is uncertainty about the relationship
between signal ground and U3 ground (e.g. possible common ground through AC mains), then
a ground connection with a ~10 Ω series resistor is generally recommended (see Section
2.7.3.4).

 29

Figure 2-8. Driven Signal Connection To Digital Input

Figure 2-8 shows typical connections. Rground is typically 0-100 Ω. Rseries is typically 0 Ω
(short-circuit) for 3.3/5 volt logic, or 22 kΩ (max) for high-voltage logic. Note that an individual
ground connection is often not needed for every signal. Any signals powered by the same
external supply, or otherwise referred to the same external ground, should share a single
ground connection to the U3 if possible.

When dealing with a new sensor, a push-pull signal is often incorrectly assumed when in fact
the sensor provides an open-collector signal as described next.

2.8.1.2 Input: Open-Collector Signals
Open-collector (also called open-drain or NPN) is a very common type of digital signal. Rather
than providing 5 volts and ground, like the push-pull signal, an open-collector signal provides
ground and high-impedance. This type of signal can be thought of as a switch connected to
ground. Since the U3 digital inputs have a 100 kΩ internal pull-up resistor, an open-collector
signal can generally be connected directly to the input. When the signal is inactive, it is not
driving any voltage and the pull-up resistor pulls the digital input to logic high. When the signal
is active, it drives 0 volts which overpowers the pull-up and pulls the digital input to logic low.
Sometimes, an external pull-up (e.g. 4.7 kΩ from Vs to digital input) will be installed to increase
the strength and speed of the logic high condition.

Figure 2-9. Open-Collector (NPN) Connection To Digital Input

Figure 2-9 shows typical connections. Rground is typically 0-100 Ω, Rseries is typically 0 Ω,
and the external pull-up resistor is generally not required. If there is some uncertainty about
whether the signal is really open-collector or could drive a voltage beyond 5.8 volts, use an
Rseries of 22 kΩ as discussed in Section 2.8.1.1, and the input should be compatible with an
open-collector signal or a driven signal up to at least 48 volts. Note that an individual ground
connection is often not needed for every signal. Any signals powered by the same external

 30

supply, or otherwise referred to the same external ground, should share a single ground
connection to the U3 if possible.

2.8.1.3 Input: Mechanical Switch Closure
To detect whether a mechanical switch is open or closed, connect one side of the switch to U3
ground and the other side to a digital input. The behavior is very similar to the open-collector
described above.

Figure 2-10. Basic Mechanical Switch Connection To Digital Input

When the switch is open, the internal 100 kΩ pull-up resistor will pull the digital input to about
3.3 volts (logic high). When the switch is closed, the ground connection will overpower the pull-
up resistor and pull the digital input to 0 volts (logic low). Since the mechanical switch does not
have any electrical connections, besides to the LabJack, it can safely be connected directly to
GND, without using a series resistor or SGND.

When the mechanical switch is closed (and even perhaps when opened), it will bounce briefly
and produce multiple electrical edges rather than a single high/low transition. For many basic
digital input applications, this is not a problem as the software can simply poll the input a few
times in succession to make sure the measured state is the steady state and not a bounce. For
applications using timers or counters, however, this usually is a problem. The hardware
counters, for instance, are very fast and will increment on all the bounces. Some solutions to
this issue are:

• Software Debounce: If it is known that a real closure cannot occur more than once per
some interval, then software can be used to limit the number of counts to that rate.

• Firmware Debounce: See section 2.10.1 for information about timer mode 6.
• Active Hardware Debounce: Integrated circuits are available to debounce switch

signals. This is the most reliable hardware solution. See the MAX6816 (maxim-ic.com)
or EDE2008 (elabinc.com).

• Passive Hardware Debounce: A combination of resistors and capacitors can be used to
debounce a signal. This is not foolproof, but works fine in most applications.

 31

Figure 2-11. Passive Hardware Debounce

Figure 2-12 shows one possible configuration for passive hardware debounce. First, consider
the case where the 1 kΩ resistor is replaced by a short circuit. When the switch closes it
immediately charges the capacitor and the digital input sees logic low, but when the switch
opens the capacitor slowly discharges through the 22 kΩ resistor with a time constant of 22 ms.
By the time the capacitor has discharged enough for the digital input to see logic high, the
mechanical bouncing is done. The main purpose of the 1 kΩ resistor is to limit the current surge
when the switch is closed. 1 kΩ limits the maximum current to about 5 mA, but better results
might be obtained with smaller resistor values.

2.8.1.4 Output: Controlling Relays
All the digital I/O lines have series resistance that restricts the amount of current they can sink
or source, but solid-state relays (SSRs) can usually be controlled directly by the digital I/O. The
SSR is connected as shown in the following diagram, where VS (~5 volts) connects to the
positive control input and the digital I/O line connects to the negative control input (sinking
configuration).

Figure 2-12. Relay Connections (Sinking Control, High-Side Load Switching)

When the digital line is set to output-low, control current flows and the relay turns on. When the
digital line is set to input, control current does not flow and the relay turns off. When the digital
line is set to output-high, some current flows, but whether the relay is on or off depends on the
specifications of a particular relay. It is recommended to only use output-low and input.

For example, the Series 1 (D12/D24) or Series T (TD12/TD24) relays from Crydom specify a
max turn-on of 3.0 volts, a min turn-off of 1.0 volts, and a nominal input impedance of 1500 Ω.

• When the digital line is set to output-low, it is the equivalent of a ground connection with
180 Ω (EIO/CIO) or 550 Ω (FIO) in series. When using an EIO/CIO line, the resulting
voltage across the control inputs of the relay will be about 5*1500/(1500+180) = 4.5 volts
(the other 0.5 volts is dropped across the internal resistance of the EIO/CIO line). With

 32

an FIO line the voltage across the inputs of the relay will be about 5*1500/(1500+550) =
3.7 volts (the other 1.3 volts are dropped across the internal resistance of the FIO line).
Both of these are well above the 3.0 volt threshold for the relay, so it will turn on.

• When the digital line is set to input, it is the equivalent of a 3.3 volt connection with 100

kΩ in series. The resulting voltage across the control inputs of the relay will be close to
zero, as virtually all of the 1.7 volt difference (between VS and 3.3) is dropped across the
internal 100 kΩ resistance. This is well below the 1.0 volt threshold for the relay, so it
will turn off.

• When the digital line is set to output-high, it is the equivalent of a 3.3 volt connection with

180 Ω (EIO/CIO) or 550 Ω (FIO) in series. When using an EIO/CIO line, the resulting
voltage across the control inputs of the relay will be about 1.7*1500/(1500+180) = 1.5
volts. With an FIO line the voltage across the inputs of the relay will be about
1.7*1500/(1500+550) = 1.2 volts. Both of these in the 1.0-3.0 volt region that is not
defined for these example relays, so the resulting state is unknown.

Note that sinking excessive current into digital outputs can cause noticeable shifts in analog
input readings. For example, the FIO sinking configuration above sinks about 2.4 mA into the
digital output to turn the SSR on, which could cause a shift of roughly 1 mV to analog input
readings.

Mechanical relays require more control current than SSRs, and cannot be controlled directly by
the digital I/O on the U3. To control higher currents with the digital I/O, some sort of buffer is
used. Some options are a discrete transistor (e.g. 2N2222), a specific chip (e.g. ULN2003), or
an op-amp.

Note that the U3 DACs can source enough current to control almost any SSR and even some
mechanical relays, and thus can be a convenient way to control 1 or 2 relays.

The RB12 relay board is a useful accessory available from LabJack. This board connects to the
DB15 connector on the U3 and accepts up to 12 industry standard I/O modules (designed for
Opto22 G4 modules and similar).

Another accessory available from LabJack is the LJTick-RelayDriver. This is a two channel
module that plugs into the U3 screw-terminals, and allows two digital lines to each hold off up to
50 volts and sink up to 200 mA. This allows control of virtually any solid-state or mechanical
relay.

2.9 Timers/Counters
The U3 has 2 timers (Timer0-Timer1) and 2 counters (Counter0-Counter1). When any of these
timers or counters are enabled, they take over an FIO/EIO line in sequence (Timer0, Timer1,
Counter0, then Counter1), starting with FIO0+TimerCounterPinOffset. Some examples:

1 Timer enabled, Counter0 disabled, Counter1 disabled, and TimerCounterPinOffset=4:
FIO4=Timer0

1 Timer enabled, Counter0 disabled, Counter1 enabled, and TimerCounterPinOffset=6:
FIO6=Timer0
FIO7=Counter1

2 Timers enabled, Counter0 enabled, Counter1 enabled, and TimerCounterPinOffset=8:
EIO0=Timer0

 33

EIO1=Timer1
EIO2=Counter0
EIO3=Counter1

Starting with hardware revision 1.30, timers/counters cannot appear on FIO0-3, and thus
TimerCounterPinOffset must be 4-8. A value of 0-3 will result in an error. This error can be
suppressed by a power-up default setting in LJControlPanel. If suppressed, a 0-3 will result in
an offset of 4.

Timers and counters can appear on various pins, but other I/O lines never move. For example,
Timer1 can appear anywhere from FIO4 to EIO1, depending on TimerCounterPinOffset and
whether Timer0 is enabled. On the other hand, FIO5 (for example), is always on the screw
terminal labeled FIO5, and AIN5 (if enabled) is always on that same screw terminal.

Note that Counter0 is not available with certain timer clock base frequencies. In such a case, it
does not use an external FIO/EIO pin. An error will result if an attempt is made to enable
Counter0 when one of these frequencies is configured. Similarly, an error will result if an
attempt is made to configure one of these frequencies when Counter0 is enabled.

Applicable digital I/O are automatically configured as input or output as needed when timers and
counters are enabled, and stay that way when the timers/counters are disabled.

See Section 2.8.1 for information about signal connections.

Each counter (Counter0 or Counter1) consists of a 32-bit register that accumulates the number
of falling edges detected on the external pin. If a counter is reset and read in the same function
call, the read returns the value just before the reset.

The timers (Timer0-Timer1) have various modes available:

Timer Modes
0 16-bit PWM output
1 8-bit PWM output
2 Period input (32-bit, rising edges)
3 Period input (32-bit, falling edges)
4 Duty cycle input
5 Firmware counter input
6 Firmware counter input (with debounce)
7 Frequency output
8 Quadrature input
9 Timer stop input (odd timers only)
10 System timer low read (default mode)
11 System timer high read
12 Period input (16-bit, rising edges)
13 Period input (16-bit, falling edges)

Both timers use the same timer clock. There are 7 choices for the timer base clock:

 34

TimerBaseClock
0 4 MHz
1 12 MHz
2 48 MHz (Default)
3 1 MHz /Divisor
4 4 MHz /Divisor
5 12 MHz /Divisor
6 48 MHz /Divisor

Note that these clocks apply to the U3 hardware revision 1.21+. With hardware revision 1.20 all
clocks are half of the values above.

The first 3 clocks have a fixed frequency, and are not affected by TimerClockDivisor. The
frequency of the last 4 clocks can be further adjusted by TimerClockDivisor, but when using
these clocks Counter0 is not available. When Counter0 is not available, it does not use an
external FIO/EIO pin. The divisor has a range of 0-255, where 0 corresponds to a division of
256.

Note that the DACs (Section 2.x) are derived from PWM signals that are affected by the timer
clock frequency. The default timer clock frequency of the U3 is set to 48 MHz, as this results in
the minimum DAC output noise. If the frequency is lowered, the DACs will have more noise,
where the frequency of the noise is the timer clock frequency divided by 216.

2.9.1 Timer Mode Descriptions

2.9.1.1 PWM Output (16-Bit, Mode 0)
Outputs a pulse width modulated rectangular wave output. Value passed should be 0-65535,
and determines what portion of the total time is spent low (out of 65536 total increments). That
means the duty cycle can be varied from 100% (0 out of 65536 are low) to 0.0015% (65535 out
of 65536 are low).

The overall frequency of the PWM output is the clock frequency specified by
TimerClockBase/TimerClockDivisor divided by 216. The following table shows the range of
available PWM frequencies based on timer clock settings.

TimerBaseClock Divisor=1 Divisor=256
0 4 MHz 61.04 N/A
1 12 MHz 183.11 N/A
2 48 MHz (Default) 732.42 N/A
3 1 MHz /Divisor 15.26 0.060
4 4 MHz /Divisor 61.04 0.238
5 12 MHz /Divisor 183.11 0.715
6 48 MHz /Divisor 732.42 2.861

PWM16 Frequency Ranges

Note that the clocks above apply to the U3 hardware revision 1.21. With hardware revision 1.20
all clocks are half of those values.

The same clock applies to all timers, so all 16-bit PWM channels will have the same frequency
and will have their falling edges at the same time.

 35

PWM output starts by setting the digital line to output-low for the specified amount of time. The
output does not necessarily start instantly, but rather waits for the internal clock to roll. For
example, if the PWM frequency is 100 Hz, that means the period is 10 milliseconds, and thus
after the command is received by the device it could be anywhere from 0 to 10 milliseconds
before the start of the PWM output.

2.9.1.2 PWM Output (8-Bit, Mode 1)
Outputs a pulse width modulated rectangular wave output. Value passed should be 0-65535,
and determines what portion of the total time is spent low (out of 65536 total increments). The
lower byte is actually ignored since this is 8-bit PWM. That means the duty cycle can be varied
from 100% (0 out of 65536 are low) to 0.4% (65280 out of 65536 are low).

The overall frequency of the PWM output is the clock frequency specified by
TimerClockBase/TimerClockDivisor divided by 28. The following table shows the range of
available PWM frequencies based on timer clock settings.

TimerBaseClock Divisor=1 Divisor=256
0 4 MHz 15625.00 N/A
1 12 MHz 46875.00 N/A
2 48 MHz (Default) 187500.00 N/A
3 1 MHz /Divisor 3906.25 15.259
4 4 MHz /Divisor 15625.00 61.035
5 12 MHz /Divisor 46875.00 183.105
6 48 MHz /Divisor 187500.00 732.422

PWM8 Frequency Ranges

Note that the clocks above apply to the U3 hardware revision 1.21. With hardware revision 1.20
all clocks are half of those values.

The same clock applies to all timers, so all 8-bit PWM channels will have the same frequency
and will have their falling edges at the same time.

PWM output starts by setting the digital line to output-low for the specified amount of time. The
output does not necessarily start instantly, but rather waits for the internal clock to roll. For
example, if the PWM frequency is 100 Hz, that means the period is 10 milliseconds, and thus
after the command is received by the device it could be anywhere from 0 to 10 milliseconds
before the start of the PWM output.

2.9.1.3 Period Measurement (32-Bit, Modes 2 & 3)
Mode 2: On every rising edge seen by the external pin, this mode records the number of clock
cycles (clock frequency determined by TimerClockBase/TimerClockDivisor) between this rising
edge and the previous rising edge. The value is updated on every rising edge, so a read
returns the time between the most recent pair of rising edges.

In this 32-bit mode, the processor must jump to an interrupt service routine to record the time,
so small errors can occur if another interrupt is already in progress. The possible error sources
are:

• Other edge interrupt timer modes (2/3/4/5/8/9/12/13). If an interrupt is already being
handled due to an edge on the other timer, delays of a few microseconds are possible.

• If a stream is in progress, every sample is acquired in a high-priority interrupt. These
interrupts could cause delays on the order of 10 microseconds.

 36

• The always active U3 system timer causes an interrupt 61 times per second. If this
interrupt happens to be in progress when the edge occurs, a delay of about 1
microsecond is possible. If the software watchdog is enabled, the system timer interrupt
takes longer to execute and a delay of a few microseconds is possible.

Note that the minimum measurable period is limited by the edge rate limit discussed in Section
2.9.2.

See Section 3.2.1 for a special condition if stream mode is used to acquire timer data in this
mode.

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will
return zero until a new edge is detected. If a timer is reset and read in the same function call,
the read returns the value just before the reset.

Mode 3 is the same except that falling edges are used instead of rising edges.

2.9.1.4 Duty Cycle Measurement (Mode 4)
Records the high and low time of a signal on the external pin, which provides the duty cycle,
pulse width, and period of the signal. Returns 4 bytes, where the first two bytes (least
significant word or LSW) are a 16-bit value representing the number of clock ticks during the
high signal, and the second two bytes (most significant word or MSW) are a 16-bit value
representing the number of clock ticks during the low signal. The clock frequency is determined
by TimerClockBase/TimerClockDivisor.

The appropriate value is updated on every edge, so a read returns the most recent high/low
times. Note that a duty cycle of 0% or 100% does not have any edges.

To select a clock frequency, consider the longest expected high or low time, and set the clock
frequency such that the 16-bit registers will not overflow.

Note that the minimum measurable high/low time is limited by the edge rate limit discussed in
Section 2.9.2.

When using the LabJackUD driver the value returned is the entire 32-bit value. To determine
the high and low time this value should be split into a high and low word. One way to do this is
to do a modulus divide by 216 to determine the LSW, and a normal divide by 216 (keep the
quotient and discard the remainder) to determine the MSW.

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will
return zero until a new edge is detected. If a timer is reset and read in the same function call,
the read returns the value just before the reset. The duty cycle reset is special, in that if the
signal is low at the time of reset, the high-time/low-time registers are set to 0/65535, but if the
signal is high at the time of reset, the high-time/low-time registers are set to 65535/0. Thus if no
edges occur before the next read, it is possible to tell if the duty cycle is 0% or 100%.

2.9.1.5 Firmware Counter Input (Mode 5)
On every rising edge seen by the external pin, this mode increments a 32-bit register. Unlike
the pure hardware counters, these timer counters require that the firmware jump to an interrupt
service routine on each edge.

 37

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will
return zero until a new edge is detected. If a timer is reset and read in the same function call,
the read returns the value just before the reset.

2.9.1.6 Firmware Counter Input With Debounce (Mode 6)
Intended for frequencies less than 10 Hz, this mode adds a debounce feature to the firmware
counter, which is particularly useful for signals from mechanical switches. On every applicable
edge seen by the external pin, this mode increments a 32-bit register. Unlike the pure hardware
counters, these timer counters require that the firmware jump to an interrupt service routine on
each edge.

The debounce period is set by writing the timer value. The low byte of the timer value is a
number from 0-255 that specifies a debounce period in 16 ms increments (plus an extra 0-16
ms of variability):

Debounce Period = (0-16 ms) + (TimerValue * 16 ms)

In the high byte (bits 8-16) of the timer value, bit 0 determines whether negative edges (bit 0
clear) or positive edges (bit 0 set) are counted.

Assume this mode is enabled with a value of 1, meaning that the debounce period is 16-32 ms
and negative edges will be counted. When the input detects a negative edge, it increments the
count by 1, and then waits 16-32 ms before re-arming the edge detector. Any negative edges
within the debounce period are ignored. This is good behavior for a normally-high signal where
the switch closure causes a brief low signal (Figure 2-9). The debounce period can be set long
enough so that bouncing on both the switch closure and switch open is ignored.

Writing a value of zero to the timer performs a reset. After reset, a read of the timer value will
return zero until a new edge is detected. If a timer is reset and read in the same function call,
the read returns the value just before the reset.

2.9.1.7 Frequency Output (Mode 7)
Outputs a square wave at a frequency determined by TimerClockBase/TimerClockDivisor
divided by 2*Timer#Value. The Value passed should be between 0-255, where 0 is a divisor of
256. By changing the clock configuration and timer value, a wide range of frequencies can be
output, as shown in the following table:

Divisor=1 Divisor=1
TimerBaseClock Value=1 Value=256

0 4 MHz 2000000.0 7812.50
1 12 MHz 6000000.0 23437.50
2 48 MHz (Default) 24000000.0 93750.00

Divisor=1 Divisor=256
Value=1 Value=256

3 1 MHz /Divisor 500000.0 7.629
4 4 MHz /Divisor 2000000.0 30.518
5 12 MHz /Divisor 6000000.0 91.553
6 48 MHz /Divisor 24000000.0 366.211

Mode 7 Frequency Ranges

Note that the clocks above apply to the U3 hardware revision 1.21. With hardware revision 1.20
all clocks are half of those values.

 38

The frequency output has a -3 dB frequency of about 10 MHz on the FIO lines. Accordingly, at
high frequencies the output waveform will get less square and the amplitude will decrease.

The output does not necessarily start instantly, but rather waits for the internal clock to roll. For
example, if the output frequency is 100 Hz, that means the period is 10 milliseconds, and thus
after the command is received by the device it could be anywhere from 0 to 10 milliseconds
before the start of the frequency output.

2.9.1.8 Quadrature Input (Mode 8)
Requires both timers, where Timer0 will be quadrature channel A, and Timer1 will be
quadrature channel B. Timer#Value passed has no effect. The U3 does 4x quadrature
counting, and returns the current count as a signed 32-bit integer (2’s complement). The same
current count is returned on both timer value parameters.

Writing a value of zero to either or both timers performs a reset of both. After reset, a read of
either timer value will return zero until a new quadrature count is detected. If a timer is reset
and read in the same function call, the read returns the value just before the reset.

2.9.1.9 Timer Stop Input (Mode 9)
This mode should only be assigned to Timer1. On every rising edge seen by the external pin,
this mode increments a 16-bit register. When that register matches the specified timer value
(stop count value), Timer0 is stopped. The range for the stop count value is 1-65535.
Generally, the signal applied to Timer1 is from Timer0, which is configured as output. One
place where this might be useful is for stepper motors, allowing control over a certain number of
steps.

Once this timer reaches the specified stop count value, and stops the adjacent timer, the timers
must be reconfigured to restart the output.

When Timer0 is stopped, it is still enabled but just not outputting anything. Thus rather than
returning to whatever previous digital I/O state it had, it goes to input (which has a 100 kΩ pull-
up). That means the best results are obtained if Timer0 was initially configured as input (factory
default), rather than output-high or output-low.

The MSW of the read from this timer mode returns the number of edges counted, but does not
increment past the stop count value. The LSW of the read returns edges waiting for.

2.9.1.10 System Timer Low/High Read (Modes 10 & 11)
The LabJack U3 has a free-running internal 64-bit system timer with a frequency of 4 MHz.
Timer modes 10 & 11 return the lower or upper 32-bits of this timer. An FIO line is allocated for
these modes like normal, even though they are internal readings and do not require any
external connections. This system timer cannot be reset, and is not affected by the timer clock.

If using both modes 10 & 11, read both in the same low-level command and read 10 before 11.

Mode 11, the upper 32 bits of the system timer, is not available for stream reads. Note that
when streaming on the U3, the timing is known anyway (elapsed time = scan rate * scan
number) and it does not make sense to stream the system timer modes 10 or 11.

2.9.1.11 Period Measurement (16-Bit, Modes 12 & 13)
Similar to the 32-bit edge-to-edge timing modes described above (modes 2 & 3), except that
hardware capture registers are used to record the edge times. This limits the times to 16-bit

 39

values, but is accurate to the resolution of the clock, and not subject to any errors due to
firmware processing delays.

Note that the minimum measurable period is limited by the edge rate limit discussed in Section
2.9.2.

2.9.2 Timer Operation/Performance Notes
Note that the specified timer clock frequency is the same for all timers. That is, TimerClockBase
and TimerClockDivisor are singular values that apply to all timers. Modes 0, 1, 2, 3, 4, 7, 12,
and 13, all are affected by the clock frequency, and thus the simultaneous use of these modes
has limited flexibility. This is often not an issue for modes 2 and 3 since they use 32-bit
registers.

The output timer modes (0, 1, and 7) are handled totally by hardware. Once started, no
processing resources are used and other U3 operations do not affect the output.

The edge-detecting timer input modes do require U3 processing resources, as an interrupt is
required to handle each edge. Timer modes 2, 3, 5, 9, 12, and 13 must process every
applicable edge (rising or falling). Timer modes 4 and 8 must process every edge (rising and
falling). To avoid missing counts, keep the total number of processed edges (all timers) less
than 30,000 per second (hardware V1.21). That means that in the case of a single timer, there
should be no more than 1 edge per 33 μs. For multiple timers, all can process an edge
simultaneously, but if for instance both timers get an edge at the same time, 66 μs should be
allowed before any further edges are applied. If streaming is occurring at the same time, the
maximum edge rate will be less (7,000 per second), and since each edge requires processing
time the sustainable stream rates can also be reduced.

2.10 SPC (… and SCL/SDA/SCA)
The SPC terminal is use for manually resetting default values or jumping in/out of flash
programming mode.

Hardware revision 1.20 and 1.21, had terminals labeled SCL, SDA, and/or SCA. On revision
1.20, these terminals did nothing except that SCL is used for the SPC functionality described
above. On revision 1.21, these terminals were used for asynchronous functionality, and SCL is
used for the SPC functionality described above. Note that these terminals never have anything
to do with I2C.

2.11 DB15
The DB15 connector brings out 12 additional digital I/O. It has the potential to be used as an
expansion bus, where the 8 EIO are data lines and the 4 CIO are control lines.

In the Windows LabJackUD driver, the EIO are addressed as digital I/O bits 8 through 15, and
the CIO are addressed as bits 16-19.

0-7 FIO0-FIO7
8-15 EIO0-EIO7
16-19 CIO0-CIO3

 40

These 12 channels include an internal series resistor that provides overvoltage/short-circuit
protection. These series resistors also limit the ability of these lines to sink or source current.
Refer to the specifications in Appendix A.

All digital I/O on the U3 have 3 possible states: input, output-high, or output-low. Each bit of I/O
can be configured individually. When configured as an input, a bit has a ~100 kΩ pull-up
resistor to 3.3 volts. When configured as output-high, a bit is connected to the internal 3.3 volt
supply (through a series resistor). When configured as output-low, a bit is connected to GND
(through a series resistor).

DB15 Pinouts
1 Vs 9 CIO0
2 CIO1 10 CIO2
3 CIO3 11 GND
4 EIO0 12 EIO1
5 EIO2 13 EIO3
6 EIO4 14 EIO5
7 EIO6 15 EIO7
8 GND

2.11.1 CB15 Terminal Board
The CB15 terminal board connects to the LabJack U3’s DB15 connector. It provides convenient
screw terminal access to the 12 digital I/O available on the DB15 connector. The CB15 is
designed to connect directly to the LabJack, or can connect via a standard 15-line 1:1 male-
female DB15 cable.

2.11.2 RB12 Relay Board
The RB12 provides a convenient interface for the U3 to industry standard digital I/O modules,
allowing electricians, engineers, and other qualified individuals, to interface a LabJack with high
voltages/currents. The RB12 relay board connects to the DB15 connector on the LabJack, using
the 12 EIO/CIO lines to control up to 12 I/O modules. Output or input types of digital I/O
modules can be used. The RB12 is designed to accept G4 series digital I/O modules from
Opto22, and compatible modules from other manufacturers such as the G5 series from Grayhill.
Output modules are available with voltage ratings up to 200 VDC or 280 VAC, and current
ratings up to 3.5 amps.

 41

2.12 U3-OEM
There is an OEM version of the U3 available (-LV and -HV). It is a board only (no enclosure, no
screwdriver, no cable, no DAQFactory Express), and does not have most of the through-hole
components installed. The picture below shows how the U3-OEM ships by default. Leaving the
through-hole parts off makes the OEM board very flexible. Many applications do not need the
through-hole parts, but if needed they are much easier to install than uninstall.

In the picture, note the holes available for 0.1" pin-header connectors. Connectors J3 & J4
provide pin-header access to the connections that would normally appear on the left and right
screw-terminals. Connector J2 provides a pin-header alternative to the DB15 connector. The
idea is that an OEM can connect ribbon cables to the pin-headers, or even plug the U3 directly
to the customers main board designed with mating pin-header receptacles. See Appendix B for
connector coordinates on the PCB.

J2
1 GND 2 VS
3 CIO0 4 CIO1
5 CIO2 6 CIO3
7 GND 8 EIO0
9 EIO1 10 EIO2
11 EIO3 12 EIO4
13 EIO5 14 EIO6
15 EIO7 16 GND

J3
1 FIO4 2 FIO5
3 FIO6 4 FIO7
5 VS 6 GND
7 GND (SDA on <1.30) 8 SPC (SCL on <1.30)
9 VS 10 GND

J4
1 FIO0 2 FIO1
3 FIO2 4 FIO3
5 VS 6 GND
7 DAC0 8 DAC1

 429 VS 10 GND

2.13 Hardware Revision Notes
U3A = Revision 1.20
U3B = Revision 1.21
U3C = Revision 1.30

Starting September of 2006, all U3 shipments changed from hardware revision 1.20 to 1.21.
Following are the some of the main changes in revision 1.21:

• The default timer clock frequency is 48 MHz.
• All TimerBaseClock frequencies are twice the previous frequencies.
• The input timer edge limit is now 30,000 edges/second, compared to the old limit of

10,000 edges/second.
• Stream mode is now supported. See Section 3.2.
• Other new functions are supported, including Watchdog, SPI, Asynch, I2C, and SHT1X.
• Typical supply current is 50 mA.

Revision 1.20 can be upgraded to 1.21 by LabJack for a small fee. For information about
upgrading a rev 1.20 unit, contact LabJack Corporation.

Hardware revision 1.30 was released in mid-March 2008 with 2 variations: U3-LV and U3-HV.
The U3-LV is the most compatible with the previous U3, and the only changes possibly affecting
backwards compatibility are:

• Timers/Counters cannot appear on FIO0-3. TimerCounterPinOffset must be 4-8. A
value of 0-3 will result in an error. This error can be suppressed by a power-up default
setting in LJControlPanel. If suppressed, a 0-3 will result in an offset of 4.

• The 3.66 reference voltage is no longer available on the REF/DAC1 terminal.
• There is no longer a buzzer.
• SDA terminal is gone. SCL terminal changed to SPC.
• UART (Asynch functionality) no longer uses SDA and SPC terminals, but rather uses

terminals dynamically assigned after timers and counters.

Other changes:

• Analog outputs are now specified for 10-bit resolution and DAC1 is always enabled. The
higher resolution is available with a new IOType in the low-level Feedback function,
which the high-level UD driver uses automatically. This causes the DACs to have more
noise when the timer clock is decreased from the default of 48 MHz, so there is a
compatibility option available in LJControlPanel to use 8-bit DACs.

• On the U3-HV only, the first four flexible I/O are fixed as analog inputs (AIN0-AIN3), and
have scaling such that the input range is ±10 volts normally, and +20 to -10 volts when
using the “Special” range. The input impedance of these four lines is roughly 1 MΩ,
which is good, but less than the normal low voltage analog inputs. Analog/digital
configuration and all other digital operations on these pins are ignored. FIO4-EIO7 are
still available as flexible I/O, same as the U3-LV.

Revision 1.20/21 U3s cannot be upgraded to 1.30.

 43

3. Operation

3.1 Command/Response
eaming is done in command/response mode, meaning that all

or ve ion is the primary function
use a e
Fee a ation and
stre

The l s for command/response mode. The
tim a
by and counter operations.

m
1000, and thus include everything

indows latency, UD driver overhead, communication time, U3 processing time, etc.).

mple=0, LongSettling=0)

Tab 3

Table 3-3. Typical Feedback Function Execution Times (QuickSample=0, LongSettling=1)

Everything besides str
communication is initiated by a command from the host which is followed by a response from
the U3.

F e rything besides pin configuration, the low-level Feedback funct

d, s it writes and reads virtually all I/O on the U3. The Windows UD driver uses th
db ck function under-the-hood to handle most requests besides configur
aming.

 fo lowing tables show typical measured execution time
e v ries primarily with the number of analog inputs requested, and is not noticeably affected
the number of digital I/O, DAC, timer,

These times were measured using the example program “allio.c” (VC6_LJUD). The progra
executes a loop 1000 times and divides the total time by
(W

USB high-high USB other
AIN [milliseconds] [milliseconds]

0 0.6 4.0 <- Write/Read all DIO, DACs, Timers & Counters
1.0 4.0
2.4 4.0

Table -1. Typical Feedback Function Execution Times (QuickSa3

1
4
8

 high-high USB other

4.7 9.2
16 8.3 12.2

USB
AIN [milliseconds] [milliseconds]

le -2. Typical Feedback Function Execution Times (QuickSample=1, LongSettling=0)

0
1
4
8
16

AI

0.6 4.0 <- Write/Read all DIO, DACs, Timers & Counters
0.7 4.0
1.0 4.0
2.1 8.0
3.0 8.0

USB high-high USB other
N [milliseconds] [milliseconds]

0 ll DIO, DACs, Timers & Counters

8 31 36
16 60 62

0.6 4.0 <- Write/Read a
1 4.2 5.2
4 16 17

 44

figuration means the U3 is connected to a high-speed USB2 hub which is
B2 host. Even though the U3 is not a high-speed USB
rovide improved performance.

f increased noise. This is enabled by passing a nonzero value for put_config special
hannel LJ_chAIN_RESOLUTION. There is also a LongSettling option where additional settling

 a
ptions

 by default, so the first table above shows the default conditions.

he tables above were measured with U3 hardware version 1.21 which started shipping in late

A “USB high-high” con
then connected to a high-speed US
device, such a configuration does p

The analog inputs have a QuickSample option where each conversion is done faster at the
expense o
c
time is added between the internal multiplexer configuration and the analog to digital
conversion. This allows signals with more source impedance, and is enabled by passing
nonzero value for put_config special channel LJ_chAIN_SETTLING_TIME. Both of these o
are disabled

The first row in each of the above tables (# AIN = 0) includes a write and read to all I/O on the
U3 besides analog inputs (digital I/O, DACs, timers, and counters).

T
August of 2006. The times could be up to twice as long with hardware version 1.20 or less.

 45

3.2 Stream Mode

tact
ntinuous hardware timed

ifies

r
ffer is emptied, and then

The table below shows various stream performance parameters. Some systems might require
a USB high-high configuration to obtain the maximum speed in the last row of the table. A “USB
high-high” configuration means the U3 is connected to a high-speed USB2 hub which is then
connected to a high-speed USB2 host. Even though the U3 is not a high-speed USB device,
such a configuration does often provide improved performance.

Stream data rates over USB can also be limited by other factors such as speed of the PC and
program design. One general technique for robust continuous streaming would be increasing
the priority of the stream process.

A sample is defined as a single conversion of a single channel, while a scan is defined as a
single conversion of all channels being acquired. That means the maximum scan rate for a
stream of five channels is 50k/5 = 10 kscans/second.

Table 3-4. Stream Performance

Full resolution streaming is limited to 2500 samples/s, but higher speeds are possible at the
expense of reduced effective resolution (increased noise). The first column above is the index
passed in the Resolution parameter to the low-level StreamConfig function, while the second
column is the corresponding index for the Resolution parameter in the UD driver. In the UD
driver, the default Resolution index is 0, which corresponds to automatic selection. In this case,
the driver will use the highest resolution for the specified sample rate.

ENOB stands for effective number of bits. The first ENOB column is the commonly used
“effective” resolution, and can be thought of as the resolution obtained by most readings. This

The highest input data rates are obtained in stream mode, which is supported with U3 hardware
version 1.21 or higher. Hardware version 1.21 started shipping in late August of 2006. Con

abJack for information about upgrading older U3s. Stream is a coL
input mode where a list of channels is scanned at a specified scan rate. The scan rate spec
the interval between the beginning of each scan. The samples within each scan are acquired
as fast as possible.

As samples are collected, they are placed in a small FIFO buffer on the U3, until retrieved by
the host. The buffer typically holds 984 samples, but the size ranges from 512 to 984
depending on the number of samples per packet. Each data packet has various measures to

nsure the integrity and completeness of the data received by the host. e

Since the data buffer on the U3 is very small it uses a feature called auto-recovery. If the buffe
overflows, the U3 will continue streaming but discard data until the bu
data will be stored in the buffer again. The U3 keeps track of how many packets are discarded
and reports that value. Based on the number of packets discarded, the UD driver adds the
proper number of dummy samples (-9999.0) such that the correct timing is maintained.

Low-Level UD Max Stream ENOB ENOB Noise Interchannel
Res Index Res Index (Samples/s) (RMS) (Noise-Free) (Counts) Delay (μs)

0 100 2500 12.8 10.0 ±2 320
1 101 10000 11.9 9.0 ±4 82
2 102 20000 11.3 8.4 ±6 42
3 103 50000 10.5 7.5 ±11 12.5

 46

data is calculated by collecting 128 samples and evaluating the standard deviation (RMS noise).
n is the noise-free resolution, and is the resolution obtained by all

d

t

roper value can be sampled later in the scan. For any

d
d get the LSW of Timer0, the LSW of

imer1, and the MSW of Timer1 (MSW of Timer0 is lost).

Adding these special channels to the stream scan list does not configure those inputs. If any of
the FIO or EIO lines have been configured as outputs, timers, counter, or analog inputs, a
channel 193 read will still be performed without error but the values from those bits should be
ignored. The timers/counters (200-224) must be configured before streaming using normal
timer/counter configuration commands.

nnels is the same as for normal analog channels. For instance,
 stream of the scan list {0,1,200,224,201,224} counts as 6 channels, and the maximum scan

 only the LSW or MSW

The second ENOB colum
readings. This data is calculated by collecting 128 samples and evaluating the maximum value
minus the minimum value (peak-to-peak noise). Similarly, the Noise Counts column is the
peak-to-peak noise based on counts from a 12-bit reading.

Interchannel delay is the time between successive channels within a stream scan.

3.2.1 Streaming Digital Inputs, Timers, and Counters
There are special channel numbers that allow digital inputs, timers, and counters, to be
streamed in with analog input data.

Channel#
193 EIO_FIO
200 Timer0
201 Timer1
210 Counter0
211 Counter1
224 TC_Capture

Table 3-5. Special Stream Channels

Channel number 193 returns the input states of 16 bits of digital I/O. FIO is the lower 8 bits an
EIO is the upper 8 bits.

Channels 200-201 and 210-211 retrieve the least significant word (LSW, lower 2 bytes) of the
specified timer/counter. At the same time that any one of these is sampled, the most significan
word (MSW, upper 2 bytes) of that particular timer/counter is stored in an internal capture
egister (TC_Capture), so that the pr

timer/counter where the MSW is wanted, channel number 224 must be sampled after that
channel and before any other timer/counter channel. For example, a scan list of
{200,224,201,224} would get the LSW of Timer0, the MSW of Timer0, the LSW of Timer1, an
he MSW of Timer1. A scan list of {200,201,224} woult

T

The timing for these special cha
a
rate is determined by taking the maximum sample rate at the specified resolution and dividing
by 6.

Special care must be taken when streaming timers configured in mode 2 or 3 (32-bit period
measurement). It is possible for the LSW to roll, but the MSW be captured before it is
incremented. That means the resulting value will be low by 65536 clock ticks, which is easy to

etect in many applications, but if this is an unacceptable situation thend
should be used and not both.

 47

Mode 11, the upper 32 bits of the system timer, is not available for stream reads. Note that
when streaming on the U3, the timing is known anyway (elapsed time = scan rate * scan
number) and it does not make sense to stream the system timer modes 10 or 11.

 48

4. LabJackUD High-Level Driver
he low-level U3 functions are described in Section 5, but most Windows applicatiT

the LabJackUD driver in
ons will use

stead.

The driver requires a PC running Windows 98, ME, 2000, or XP. It is recommended to install
the software before making a USB connection to a LabJack.

The download version of the installer consists of a single executable. This installer places the
driver (LabJackUD.dll) in the Windows System directory, along with a support DLL
(LabJackUSB.dll). Generally this is c:\Windows\System\ on Windows 98/ME, and
c:\Windows\System32\ on Windows 2000/XP.

Other files, including the header and Visual C library file, are installed to the LabJack drivers
directory which defaults to c:\Program Files\LabJack\drivers\.

4.1 Overview
The general operation of the LabJackUD functions is as follows:

• Open a LabJack.
• Build a list of requests to perform (Add).
• Execute the list (Go).
• Read the result of each request (Get).

At the core, the UD driver only has 4 basic functions: Open, AddRequest, Go, and GetResult.
Then with these few functions, there are many constants used to specify the desired actions.
When programming in any language, it is recommended to have the header file handy, so that
constants can be copied and pasted into the code.

The first type of constant is an IOType, which is always passed in the IOType parameter of a
function call. One example of an IOType is the constant LJ_ioPUT_DAC, which is used to update
the value of an analog output (DAC).

The second type of constant is a Channel Constant, also called a Special Channel. These
constants are always passed in the Channel parameter of a function call. For the most part,
these are used when a request is not specific to a particular channel, and go with the
configuration IOTypes (LJ_ioPUT_CONFIG or LJ_ioGET_CONFIG). One example of a Special
Channel is the constant LJ_chLOCALID, which is used to write or read the local ID of the device.

The third major type of constant used by the UD driver is a Value Constant. These constants
are always passed in the Value parameter of a function call. One example of a Value Constant
is the constant LJ_tmPWM8, which specifies a timer mode. This constant has a numeric value of
1, which could be passed instead, but using the constant LJ_tmPWM8 makes for programming
code that is easier to read.

Following is pseudocode that performs various actions. First, a call is done to open the device.
The primary work done with this call is finding the desired device and creating a handle that
points to the device for further function calls. In addition, opening the device performs various
configuration and initialization actions, such as reading the calibration constants from the
device:

 49

d LabJack U3

/Open the first found LabJack U3 over USB.

e

/The general form of the AddRequest function is:

/Request a read from AIN3 (FIO3), assuming it has been enabled as

Request (lngHandle, LJ_ioGET_AIN, 3, 0, 0, 0);

hir , t is processed and executed using a Go call. In this step, the driver
det l commands must be executed to process all the requests, calls those
low v example consists of two requests, one analog
inp e tput write, which can both be handled in a single low-level
Fee a

lts (errorcodes and values) that were stored
y the driver during the Go call. This does not involve any low-level communication with the

or an errorc
function is:

 U3 is already open):

/Set DAC0 to 2.5 volts.

Handle, IOType, Channel, *Value, x1)

//Use the following line to open the first foun
//over USB and get a handle to the device.
//The general form of the open function is:
//OpenLabJack (DeviceType, ConnectionType, Address, FirstFound, *Handle)

/
lngErrorcode = OpenLabJack (LJ_dtU3, LJ_ctUSB, "1", TRUE, &lngHandle);

Second, a list of requests is built in the UD driver using AddRequest calls. This does not involv
any low-level communication with the device, and thus the execution time is relatively
instantaneous:

//Request that DAC0 be set to 2.5 volts.
/
//AddRequest (Handle, IOType, Channel, Value, x1, UserData)
lngErrorcode = AddRequest (lngHandle, LJ_ioPUT_DAC, 0, 2.50, 0, 0);

/
//an analog line.
lngErrorcode = Add

T d he list of requests

ermines which low-leve
-le el functions, and stores the results. This
ut r ad and one analog ou
db ck call (Section 5.2.5):

//Execute the requests.
lngErrorcode = GoOne (lngHandle);

Finally, GetResult calls are used to retrieve the resu
b
device, and thus the execution time is relatively instantaneous:

//Get the result of the DAC0 request just to check f ode.
/The general form of the GetResult /

//GetResult (Handle, IOType, Channel, *Value)
lngErrorcode = GetResult (lngHandle, LJ_ioPUT_DAC, 0, 0);

//Get the AIN3 voltage. We pass the address to dblValue and the
//voltage will be returned in that variable.
lngErrorcode = GetResult (lngHandle, LJ_ioGET_AIN, 3, &dblValue);

The AddRequest/Go/GetResult method is often the most efficient. As shown above, multiple
requests can be executed with a single Go() or GoOne() call, and the driver might be able to
optimize the requests into fewer low-level calls. The other option is to use the eGet or ePut
functions which combine the AddRequest/Go/GetResult into one call. The above code would
then look like (assuming the

/
//The general form of the ePut function is:
//ePut (Handle, IOType, Channel, Value, x1)
lngErrorcode = ePut (lngHandle, LJ_ioPUT_DAC, 0, 2.50, 0);

//Read AIN3.
//The general form of the eGet function is:
//eGet (

 50

lngErrorcode = eGet (lngHandle, LJ_ioGET_AIN, 3, &dblValue, 0);

mmand and

oth the add/go/get
e Section 4.3 for

ore pseudocode examples.

request/result functions that tells the function
is obtained from the OpenLabJack

s what type

t generally specifies
e config IOTypes

special constants are passed for channel to specify what is being configured.

 parameter is only used in some of the request/result functions,
ng with the request, and returned unmodified

. Can be used to store any sort of information with the request, to
o determine what should be done when the results are

received.

atforms with
nctions are repeated with different forms of

e same. In this

e three variations:

 the sample code, alternate functions (S or SS versions) can generally be substituted as

r
 for no other reason than it is hard

 read. Functions with a single “S” replace the IOType parameter with a const char * which is a
nt. Functions with a

l with strings. OpenLabJackS replaces both
tants.

In the case of the U3, the first example using add/go/get handles both the DAC co

IN read in a single low-level call, while in the second example using ePut/eGet two low-level A
commands are used. Examples in the following documentation will use b
method and the ePut/eGet method, and they are generally interchangeable. Se
m

All the request and result functions always have 4 common parameters, and some of the
functions have 2 extra parameters:

• Handle – This is an input to all
what LabJack it is talking to. The handle
function.

• IOType – This is an input to all request/result functions that specifie
of action is being done.

• Channel – This is an input to all request/result functions tha
which channel of I/O is being written/read, although with th

• Value – This is an input or output to all request/result functions that is used to
write or read the value for the item being operated on.

• x1 – This parameter is only used in some of the request/result functions, and is
used when extra information is needed for certain IOTypes.

• UserData – This
and is data that is simply passed alo
by the result
allow a generic parser t

4.1.1 Function Flexibility
The driver is designed to be flexible so that it can work with various different LabJacks with

ifferent development pldifferent capabilities. It is also designed to work with d
different capabilities. For this reason, many of the fu
parameters, although their internal functionality remains mostly th
documentation, a group of functions will often be referred to by their shortest name. For

likely refers to any of thexample, a reference to Add or AddRequest most
AddRequest(), AddRequestS() or AddRequestSS().

In
desired, changing the parameter types accordingly. All samples here are written in pseudo-C.

Functions with an “S” or “SS” appended are provided for programming languages that can’t
include the LabJackUD.h file and therefore can’t use the constants included. It is generally poo
programming form to hardcode numbers into function calls, if
to
string. A string can then be passed with the name of the desired consta
double “SS” replace both the IOType and Channe
DeviceType and ConnectionType with strings since both take cons

For example:

 51

In C, where the LabJackUD.h file can be included and the constants used directly:
ddRequest(Handle, LJ_ioGET_CONFIG, LJ_ioHARDWARE_VERSION,0,0,0);

s, or
n

 So, for example:

LJ_ERROR e ;
err = AddRequ
if (err == StringToConstant(“LJE_INVALID_DEVICE_TYPE”))
 do some r

Once agai h

if (err == 2)

4.1.2 Multi-
This driver c
be called fro
Because o i
requests/resul
multiple thread
into another. I

 c the requests and results are in different threads.

e in by the thread ID. If a thread is killed and
ssible for the new thread to have the same ID. Its not really a

m

 Since the

s are created and destroyed
ontinuously. This will result in the slow consumption of memory as requests on old threads are

lly

commended to not create and destroy a lot of threads. It is terribly slow and inefficient. Use
s

 the middle of a call to this driver, more than likely a synchronization object will be left open on
evice and access to the device will be impossible until the application is

started. On some devices, it can be worse. On devices that have interprocess

A

The bad way (hard to read) when LabJackUD.h cannot be included:
AddRequest(Handle, 1001, 10, 0, 0, 0);

The better way when LabJackUD.h cannot be included, is to pass strings:
AddRequestSS(Handle, “LJ_ioGET_CONFIG”, “LJ_ioHARDWARE_VERSION”,0,0,0);

Continuing on this vein, the function StringToConstant() is useful for error handling routine
with the GetFirst/Next functions which do not take strings. The StringToConstant() functio

kes a string and returns the numeric constant.ta

rr
estSS(Handle, “LJ_ioGETCONFIG”, “LJ_ioHARDWARE_VERSION”,0,0,0);

er or handling..

n, t is is much clearer than:

Threaded Operation
 is ompletely thread safe. With some very minor exceptions, all these functions can

 multiple threads at the same time and the driver will keep evem rything straight.
f th s Add, Go, and Get must be called from the same thread for a particular set of

ts. Internally the list of requests and results are split by thread. This allows
s to be used to make requests without accidentally getting data from one thread
f requests are added, and then results return LJE_NO_DATA_AVAILABLE or a
hances aresimilar error,

The driver tracks which thread a request is mad
then a new one is created, it is po
problem if Add is called first, but if Get is called on a new thread results could be returned fro
the thread that already ended.

As mentioned, the list of requests and results is kept on a thread-by-thread basis.
driver cannot tell when a thread has ended, the results are kept in memory for that thread
regardless. This is not a problem in general as the driver will clean it all up when unloaded.
When it can be a problem is in situations where thread
c
left behind. Since each request only uses 44 bytes, and as mentioned the ID's will eventua
get recycled, it will not be a huge memory loss. In general, even without this issue, it is strongly
re
thread pools and other techniques to keep new thread creation to a minimum. That is what i
done internally.

The one big exception to the thread safety of this driver is in the use of the Windows
TerminateThread() function. As is warned in the MSDN documentation, using
TerminateThread() will kill the thread without releasing any resources, and more importantly,
releasing any synchronization objects. If TerminateThread() is used on a thread that is currently
in
the particular d
re

 52

synchronization, such as the U12, calling TerminateThread() may kill all access to the device
is restarted.

void using TerminateThread()! All device calls have a timeout, which defaults to 1 second, but
r the driver to finish.

through this driver no matter which process is using it and even if the application
A
can be changed. Make sure to wait at least as long as the timeout fo

 53

4.2 Function Reference
The LabJack driver file is named LabJackUD.dll, and contains the functions described in this
section.

Some parameters are common to many functions:

• LJ_ERROR – A LabJack specific numeric errorcode. 0 means no error. (long, signed
32-bit integer).

• LJ_HANDLE – This value is returned by OpenLabJack, and then passed on to other
functions to identify the opened LabJack. (long, signed 32-bit integer).

To maintain compatibility with as many languages as possible, every attempt has been made to
keep the parameter types very basic. Also, many functions have multiple prototypes. The
declarations that follow, are written in C.

To help those unfamiliar with strings in C, these functions expect null terminated 8 bit ASCII
strings. How this translates to a particular development environment is beyond the scope of this
documentation. A const char * is a pointer to a string that won’t be changed by the driver.
Usually this means it can simply be a constant such as “this is a string”. A char * is a pointer to
a string that will be changed. Enough bytes must be preallocated to hold the possible strings
that will be returned. Functions with char * in their declaration will have the required length of
the buffer documented below.

Pointers must be initialized in general, although null (0) can be passed for unused or unneeded
values. The pointers for GetStreamData and RawIn/RawOut requests are not optional. Arrays
and char * type strings must be initialized to the proper size before passing to the DLL.

4.2.1 ListAll()
Returns all the devices found of a given DeviceType and ConnectionType. Currently only USB
is supported.

ListAllS() is a special version where DeviceType and ConnectionType are strings rather than
longs. This is useful for passing string constants in languages that cannot include the header
file. The strings should contain the constant name as indicated in the header file (such as
“LJ_dtU3” and ”LJ_ctUSB”). The declaration for the S version of open is the same as below
except for (const char *pDeviceType, const char *pConnectionType, …).

Declaration:
LJ_ERROR _stdcall ListAll (long DeviceType,

long ConnectionType,
long *pNumFound,
long *pSerialNumbers,
long *pIDs,
double *pAddresses)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• DeviceType – The type of LabJack to search for. Constants are in the
labjackud.h file.

 54

• ConnectionType – Enter the constant for the type of connection to use in the
only USB is supported for this function.

• pAddresses – Must pass a pointer to a buffer with at least 128 elements.

• pAddresses – Array contains IP addresses of any found devices. The function

.2.2 OpenLabJack()

 for USB, and then Ethernet, a different handle will be returned

nnot
clude the header file. The strings should contain the constant name as indicated in the header

the S version of open is the same
r (const char *pDeviceType, const char *pConnectionType, …).

search. Currently,
• pSerialNumbers – Must pass a pointer to a buffer with at least 128 elements.
• pIDs – Must pass a pointer to a buffer with at least 128 elements.

Outputs:
• pNumFound – Returns the number of devices found, and thus the number of

valid elements in the return arrays.
• pSerialNumbers – Array contains serial numbers of any found devices.
• pIDs – Array contains local IDs of any found devices.

DoubleToStringAddress() is useful to convert these to string notation.

4
Call OpenLabJack() before communicating with a device. This function can be called multiple
times, however, once a LabJack is open, it remains open until your application ends (or the DLL
is unloaded). If OpenLabJack is called repeatedly with the same parameters, thus requesting
the same type of connection to the same LabJack, the driver will simply return the same
LJ_HANDLE every time. Internally, nothing else happens. This includes when the device is
reset, or disconnected. Once the device is reconnected, the driver will maintain the same
handle. If an open call is made
for each connection type and both connections will be open.

OpenLabJackS() is a special version of open where DeviceType and ConnectionType are
strings rather than longs. This is useful for passing string constants in languages that ca
in
file (such as “LJ_dtU3” and ”LJ_ctUSB”). The declaration for
as below except fo

Declaration:
LJ_ERROR _stdcall OpenLabJack (long DeviceType,

scription:

long ConnectionType,
const char *pAddress,
long FirstFound,
LJ_HANDLE *pHandle)

Parameter De

ror.
Inputs:

• DeviceType – to open. Constants are in the labjackud.h
file.

• ConnectionTy he constant for the type of connection, USB or
Ethernet.

• pAddress – Pass the local ID or serial number of the desired LabJack. If
FirstFound is true, Address is ignored.

d – If true, then the Address and ConnectionType parameters are
nd with the specified

DeviceType. Generally only recommended when a single LabJack is connected.
ry

 the given Address.
Outputs:

Returns: LabJack errorcodes or 0 for no er

The type of LabJack

pe – Enter t

• FirstFoun
ignored and the driver opens the first LabJack fou

Currently only supported with USB. If a USB device is not found, it will t
Ethernet but with

 55

• pHandle – A pointer to a handle for a LabJack.

4.2.3 eG (
The eGet a

The eGet v s
double where for outputs if pValue is preset to the desired
value. Thi number
of scans re

The ePut vers ill not

turn anything except the errorcode.

cial versions of these functions where IOType is a string rather

t/get config IOTypes. The strings
FIG”

et) and ePut()
nd ePut functions do AddRequest, Go, and GetResult, in one step.

er ions are designed for inputs or retrieving parameters as they take a pointer to a

the result is placed, but can be used
s is also useful for things like StreamRead where a value is input and output (
quested and number of scans returned).

ions are designed for outputs or setting configuration parameters and w
re

eGetS() and ePutS() are spe
than a long. This is useful for passing string constants in languages that cannot include the
header file, and is generally used with all IOTypes except put/get config. The string should
contain the constant name as indicated in the header file (such as “LJ_ioANALOG_INPUT”).
The declarations for the S versions are the same as the normal versions except for (…, const
char *pIOType, …).

eGetSS() and ePutSS() are special versions of these functions where IOType and Channel are
strings rather than longs. This is useful for passing string constants in languages that cannot

clude the header file, and is generally only used with the puin
should contain the constant name as indicated in the header file (such as “LJ_ioPUT_CON
and “LJ_chLOCALID”). The declaration for the SS versions are the same as the normal
versions except for (…, const char *pIOType, const char *pChannel, …).

The declaration for ePut is the same as eGet except that Value is not a pointer (…, double

alue, …), and thus is an input only. V

Declaration:
LJ_ERROR _stdcall eGet (LJ_HA

long IO
long Ch
double
long x1)

r Des

NDLE Handle,
Type,
annel,

 *pValue,

te cription:Parame
Returns:
Inputs:

Outputs:
•

LabJack errorcodes or 0 for no error.

• Handle – Handle returned by OpenLabJack().
• IOType – The type of request. See Section 4.3.
• Channel – The channel number of the particular IOType.
• pValue – Pointer to Value sends and receives data.
• x1 – Optional parameter used by some IOTypes.

pValue – Pointer to Value sends and receives data.

 56

4.2.4 eA
his function passes multiple requests via arrays, then executes a GoOne() and returns all the

least a number
f elements equal to NumRequests.

ddGoGet()
T
results via the same arrays.

The parameters that start with “*a” are arrays, and all must be initialized with at
o

Declaration:
LJ_ERROR _stdcall eAddGoGet (LJ_HANDLE Handle,

 long NumRequests,

ng *aChannels,
double *aValues,

arameter Description:

long *aIOTypes,
lo

long *ax1s,
long *aRequestErrors,
long *GoError,
long *aResultErrors)

P

th at

• aIOTypes – An array which is the list of IOTypes.

ich is the list of Values to write.
• ax1s – An array which is the list of x1s.

 f Values read.
o the list of errorcodes from each

AddRequest().
• GoError – The ed by the GoOne() call.
• aResultErrors is the list of errorcodes from each GetResult().

)
em t n the next call to Go() or GoOne().

When Add q us data is erased and cannot be
retrieved b n again. This is on a device by
device bas s usy
performing

s) d only for
t r different devices, and then

 new requ t to Go() will cause the first
evice to execute the new request and the second device to execute the original request.

Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
• NumRequests – This is the number of requests that will be made, and thus the

number of results that will be returned. All the arrays must be initialized wi
least this many elements.

• aChannels – An array which is the list of Channels.
• aValues – An array wh

Outputs:
• aValues – An array which is the list o
• aRequestErr which is rs – An array

 errorcode return
ay which – An arr

4.2.5 AddRequest(
Adds an it o the list of requests to be performed o

Re uest() is called on a particular Handle, all previo
y a y of the Get functions until a Go function is called
is, o you can call AddRequest() with a different handle while a device is b
 its I/O.

AddReque
the curren

t(only clears the request and result lists on the device handle passed an
 th ead. For example, if a request is added to each of two
es is added to the first device but not the second, a call a

d

 57

In general, the execution order of a list of requests in a single Go call is unpredictable, except

ersion of the Add function where IOType is a string rather than a
,

ader file (such as “LJ_ioANALOG_INPUT”). The
eclaration for the S version of Add is the same as below except for (…, const char *pIOType,

Type and Channel are strings
nguages that cannot include

the header file, and is generally only et config IOTypes. The strings should
contain the constant name as indicat e (such as “LJ_ioPUT_CONFIG” and
“LJ_chLOCALID”). The declaration for the SS version of Add is the same as below except for
(…, const char *pIOType, const char

eclaration:

that all configuration type requests are executed before acquisition and output type requests.

ddRequestS() is a special vA
long. This is useful for passing string constants in languages that cannot include the header file
and is generally used with all IOTypes except put/get config. The string should contain the
onstant name as indicated in the hec

d
…).

AddRequestSS() is a special version of the Add function where IO
rather than longs. This is useful for p stants in laassing string con

 used with the put/g
ed in the header fil

 *pChannel, …).

D
J_ERROR _stdcall AddRequest (LJ_HANDLE Handle,

long IOType,

Parameter e

L

long Channel,
double Value,
long x1,
double UserData)

scription:D
Returns:
Inputs:

tion 4.3.

uest, and returned

should be done when the results are received.

med.
all GetResult() or similar to retrieve any returned data or errors.

LabJack errorcodes or 0 for no error.

• Handle – Handle returned by OpenLabJack().
• IOType – The type of request. See Sec
• Channel – The channel number of the particular IOType.
• Value passed for output channels. Value –
• x1 – Optional parameter used by some IOTypes.
• UserData – Data that is simply passed along with the req

unmodified by GetFirstResult() or GetNextResult(). Can be used to store any
sort of information with the request, to allow a generic parser to determine what

Outputs:
• None

4.2.6 Go()
After using AddRequest() to make an internal list of requests to perform, call Go() to actually
perform the requests. This function causes all requests on all open LabJacks to be perfor

fter calling Go(), cA

Go() can be called repeatedly to repeat the current list of requests. Go() does not clear the list
of requests. Rather, after a call to Go(), the first subsequent AddRequest() call to a particular
device will clear the previous list of requests on that particular device only.

 58

Note that for a single Go() or GoOne() call, the order of execution of the request list cannot be
predicted. Since the driver does internal optimization, it is quite likely not the same as the order

f AddRequest() function calls. One thing that is known, is that configuration settings like o
ranges, stream settings, and such, will be done before the actual acquisition or setting of
outputs.

Declaration:
LJ_ERROR _stdcall Go()

Parameter Description:

ne()
n s to perform, call GoOne() to

actually perform the requests. This f all requests on one particular LabJack to be
performed. After calling GoOne(), ca r similar to retrieve any returned data or
errors.

oOne() can be called repeatedly to repeat the current list of requests. GoOne() does not clear
e list of requests. Rather, after a particular device has performed a GoOne(), the first

t() call to that device will clear the previous list of requests on that

t f a ion of the request list cannot be
predicted. likely not the same as the order
of AddReq s tion settings like
ranges, str ion or setting of
outputs.

Declaration

Returns: LabJack errorcodes or 0 for no error.
Inputs:

• None
Outputs:

• None

4.2.7 GoO
After using AddRequest() to make a request internal list of

unction causes
ll GetResult() o

G
th
subsequent AddReques

 devicparticular e only.

Note tha or single Go() or GoOne() call, the order of execut

Since the driver does internal optimization, it is quite
ue t() function calls. One thing that is known, is that configura
eam settings, and such, will be done before the actual acquisit

:
tdcall GoOne(LJ_HANDLE Handle)

scription:

LJ_ERROR _s

Parameter De
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
Outputs:

None

alling either Go function creates a list of results that matches the list of requests. Use

•

4.2.8 GetResult()
C
GetResult() to read the result and errorcode for a particular IOType and Channel. Normally this
function is called for each associated AddRequest() item. Even if the request was an output,
the errorcode should be evaluated.

 59

None of the Get functions will clear results from the list. The first AddRequest() call subsequen
to a Go call will clear the internal lists of requests and results for a particular device.

When processing raw in/out or stream data requests, the call to a Get function does not a
cause the

t

ctually
 data arrays to be filled. The arrays are filled during the Go call (if data is available),

nd the Get call is used to find out many elements were placed in the array.

ersion of the Get function where IOType is a string rather than a long.
his is useful for passing string constants in languages that cannot include the header file, and

 IOTypes except put/get config. The string should contain the constant
NALOG_INPUT”). The declaration for the

n of Get is the same as below except for (…, const char *pIOType, …).

SS() is a special version of the Get function where IOType and Channel are strings
rather than longs. This is useful for passing string constants in languages that cannot include

e header file, and is generally only used with the put/get config IOTypes. The strings should
ontain the constant name as indicated in the header file (such as “LJ_ioPUT_CONFIG” and

“LJ_chLOCALID”). The declaration for the SS version of Get is the same as below except for
Type, const char *pChannel, …).

a

GetResultS() is a special v
T
is generally used with all
name as indicated in the header file (such as “LJ_ioA
S versio

GetResult

th
c

(…, const char *pIO

It is acceptable to pass NULL (or 0) for any pointer that is not required.

Declaration:

J_ERRL OR _stdcall GetResult (LJ_HANDLE Handle,
long IOType,
long Channel,
double *pValue)

arameter Description:P

pValue – A pointer to the result value.

lt() and GetNextResult()
her G matches the list of requests. Use

Result() and GetNextResult() to step through the list of results in order. When either
function re n re no more items in the list of

ems can be read more than once by calling GetFirstResult() to move back to the
beginning

UserData is provided for tracking information, or whatever else the user might need.

ent to a

he arrays are filled during the Go call (if data is available),
nd the Get call is used to find out many elements were placed in the array.

Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
• IOType – The type of request. See Section 4.3.
• Channel – The channel number of the particular IOType.

utputs: O
•

4.2.9 GetFirstResu
Calling eit o function creates a list of results that
GetFirst

tur s LJE_NO_MORE_DATA_AVAILABLE, there a
results. It

of the list.

None of the Get functions clear results from the list. The first AddRequest() call subsequ
Go call will clear the internal lists of requests and results for a particular device.

When processing raw in/out or stream data requests, the call to a Get function does not actually
ause the data arrays to be filled. Tc

a

 60

It is acceptable to pass NULL (or 0) for any pointer that is not required.

The parameter lists are the same for the GetFirstResult() and GetNextResult() declarations.

Declaration:
LJ_ERROR _stdcall GetFirstResult (LJ_HANDLE Handle,

long *pIOType,
long *pChannel,
double *pValue,
long *px1,
double *pUserData)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Handle – Handle returned by OpenLabJack().
Outputs:

• pIOType – A pointer to the IOType of this item in the list.
• pChannel – A pointer to the channel number of this item in the list.

px1 – A pointer to the x1 parameter of this item in the list.
st, and

ny sort of information with the
request, to allow a generic parser to e done when the
results are received.

cial-c . This
 is e cimal-dot or hex-dot notation.

Declaration

• pValue – A pointer to the result value.
•
• pUserData – A pointer to data that is simply passed along with the reque

returned unmodified. Can be used to store a
determine what should b

4.2.10 DoubleToStringAddress()
e hannels of the config IOType pass IP address (and others) in a doubleSome sp

function us d to convert the double into a string in normal de

:
 _ tdcall DoubleToStringAddress (double Number, LJ_ERROR s

ar *pString,
g HexDot)

ch
lon

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• Number – Double precision number to be converted.
• pString – Must pass a buffer for the string of at least 24 bytes.
• HexDot – If not equal to zero, the string will be in hex-dot notation rather tha

decima
n

l-dot.
Outputs:

• pString – A pointer to the string representation.

4.2.11 StringToDoubleAddress()
Some special-channels of the config IOType pass IP address (and others) in a double. This
function is used to convert a string in normal decimal-dot or hex-dot notation into a double.

 61

Declaration:

double *pNumber,

scription:

LJ_ERROR _stdcall StringToDoubleAddress (const char *pString,

long HexDot)

Parameter De

Inputs:
• pString – A pointer to ntation.
• HexDot – If not equal d string should be in hex-dot notation

rather than decimal-do
Outputs:

• pNumber – A pointer to the double precision representation.

 StringToConstant()
t g Used internally by the S
 xt functions without the

ability to in turn values
such as:

if (IOType S

This function r

Declaration:

Returns: LabJack errorcodes or 0 for no error.

 the string represe
 to zero, the passe
t.

4.2.12
Converts
functions,

he iven string to the appropriate constant number.
but could be useful to the end user when using the GetFirst/Ne
clude the header file. In this case a comparison could be done on the re

== tringToConstant("LJ_ioANALOG_INPUT"))

eturns LJ_INVALID_CONSTANT if the string is not recognized.

ng _stdcall StringToConstant (const char *pString) lo

Parameter Description:
Returns: Constant number of the passed string.
Inputs:

• pString – A pointer to the string representation of the constant.

.2.13 ErrorToString()
tring if not found.

ion

Outputs:
• None

4
Outputs a string describing the given errorcode or an empty s

Declarat :

ll rrorToString (LJ_ERROR ErrorCode, void _stdca E

Parameter De

char *pString)

scription:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• ErrorCode – LabJack errorcode.
• string of at least 256 bytes. pString – Must pass a buffer for the

Outputs:
• *pString – A pointer to the string representation of the errorcode.

 62

4.2.14 GetDriverVersion()
bJa

eclaration:

Returns the version number of this Windows La ck driver.

D
rVersion();

r Des

double _stdcall GetDrive

Paramete cription:
Returns:
Inputs:

Driver version.

• None
Outputs:

• None

4.2.15 TCVoltsToTemp()
A utility function to convert thermocouple voltage readings to temperature.

Declaration:
LJ_ERROR _stdcall TCVoltsToTemp (long TCType,

K,
double TCVolts,
double CJTemp
double *pTCTempK)

Parameter Description:
Returns: LabJack errorcodes or 0 for no error.
Inputs:

• TCType – A constant that specifies the
TCVolts – The thermocouple voltage.

thermocouple type, such as LJ_ttK.
•

pK – Returns the calculated thermocouple temperature.

 LabJack does not invalidate the handle, thus the device does not have to be
 for a couple seconds after until the

, this function might be given an additional parameter that determines

ion

• CJTempK – The temperature of the cold junction in degrees K.
Outputs:

• pTCTem

4.2.16 ResetLabJack()
Sends a reset command to the LabJack hardware.

Resetting the
opened again after a reset, but a Go call is likely to fail
LabJack is ready.

In a future driver release
the type of reset.

Declarat :

 _ tdcall ResetLabJack (LJ_HANDLE Handle); LJ_ERROR s

r es

Paramete D cription:

LabJack errorcodes or 0 for no error. Returns:
Inputs:

• Handle – Handle returned by OpenLabJack().

 63

Outputs:
• None

4.2.17 eAIN()
An “easy” function that returns a reading from one analog input. This is a simple alternative to

based method normally used by this driver.

eded, this function automatically configures the specified channel(s) for analog input.

Declaration

the very flexible IOType

When ne

:

LJ_ERROR _stdcall eAIN (LJ_HANDLE Handle,
long ChannelP,

g ChannelN,

long Resolution,
long Settling,

y,
rved

long Reserved

arameter Description:

lon
double *Voltage,
long Range,

long Binar
long Rese 1,

2)

P

rrorcodes or 0 for no error.

• bJack().

ter
 should be 31

• Settling – Pass a nonzero value to enable LongSettling.
is nonzero (True), the Voltage parameter will return the raw

 that writes a value to one analog output. This is a simple alternative to the
ery flexible IOType based method normally used by this driver.

matically enables the
pecified analog output.

ion:

Returns: LabJack e
Inputs:

Handle – Handle returned by OpenLa
• ChannelP – The positive AIN channel to acquire.

l to acquire. For the UE9, this parame• ChannelN – The negative AIN channe
is ignored. For single-ended channels on the U3, this parameter
(see Section 2.6.1).

• Range – Ignored on the U3.
• Resolution – Pass a nonzero value to enable QuickSample.

• Binary – If this
binary value.

• Reserved (1&2) – Pass 0.
Outputs:

• Voltage – Returns the analog input reading, which is generally a voltage.

4.2.18 eDAC()
An “easy” function
v

When needed (on hardware revisions <1.30 perhaps), this function auto
s

Declarat
LJ_ERROR s _ tdcall eDAC (LJ_HANDLE Handle,

 64

long Channel,
double Voltage,
long Binary,
long Reserved1,
long Reserved2)

arameter Description:P
Returns: LabJack errorcodes or 0 for no error.
nputs: I

• Handle – Handle returned by OpenLabJack().
Channel – The analog output channel to write to.

analog output.
• Binary – If this), the value passed for Voltage should be binary.
• Reserved (1&

4.2.19 eDI()
An “easy” function that reads e digital input. This is a simple alternative to the
very flexible IOType based method normally used by this driver.

ures the specified channel as a digital input.

•
• Voltage – The voltage to write to the

 is nonzero (True
2) – Pass 0.

the state of on

When needed, this function automatically config

Declaration:
LJ_ERRO tdcall eDI (LJ_HANDLE Handle, R _s

long Channel,

Parameter De

long *State)

scription:
LabJack errorcodes oReturns: r 0 for no error.

Inputs:

0-CIO3.
Outputs:

• s the state of the digital input. 0=False=Low and 1=True=High.

4.2.20 e
n “easy” function that writes the state of one digital output. This is a simple alternative to the

ed method normally used by this driver.

• Handle – Handle returned by OpenLabJack().
• Channel – The channel to read. 0-19 corresponds to FIO

State – Return

DO()
A
very flexible IOType bas

When needed, this function automatically configures the specified channel as a digital output.

Declaration:
LJ_ERROR _stdcall eDO (LJ_HANDLE Handle,

long Channel,
long State)

 65

Parameter Description:
Returns: LabJack errorc rror.
Inputs:

• Handle – Han enLabJack().
• Channel – The channel to write to. 0-19 corresponds to FIO0-CIO3.
• State – The state to write to the digital output. 0=False=Low and 1=True=High.

” c and counters. This is a simple
alternative t d by this driver.

When nee

eclaration:

odes or 0 for no e

dle returned by Op

4.2.21 eTCConfig()
An “easy fun tion that configures and initializes all the timers

 to he very flexible IOType based method normally use

ded, this function automatically configures the needed lines as digital.

D

eTCConfig (LJ_HANDLE Handle,
long *aEnableTimers,

long TimerClockBaseIndex,

long *aTimerModes,
double *aTimerValues,
long Reserved1,

)

arameter Description:

LJ_ERROR _stdcall

long *aEnableCounters,
long TCPinOffset,

long TimerClockDivisor,

long Reserved2

P
eturns: LabJack errorcodes or 0 for no error.

• bJack().
• aEnableTimers – An array where each element specifies whether that timer is

ting from 0, so for instance,
 value for an

array element specifies to enable that timer. For the U3, this array must always

• aEnableCounters – An array where each element specifies whether that counter
is enabled. Counters do not have to be enabled in order starting from 0, so

unter1 can be enabled when Counter0 is disabled. A nonzero value for an

tart assigning timers and

default is LJ_tc48MHZ.
TimerClockDivisor – Pass a divisor from 0-255 where 0 is a divisor of 256.

 element is a constant specifying the mode
 have at least 2 elements.

• aTimerValues here each element is specifies the initial value for
that timer. For the U3, this array must always have at least 2 elements.

• Reserved (1&2) – Pass 0.

R
Inputs:

Handle – Handle returned by OpenLa

enabled. Timers must be enabled in order star
Timer1 cannot be enabled without enabling Timer0 also. A nonzero

have at least 2 elements.

Co
array element specifies to enable that counter. For the U3, this array must
always have at least 2 elements.

• TCPinOffset – Value from 4-8 specifies where to s
counters.

• TimerClockBaseIndex – Pass a constant to set the timer base clock. The

•
• aTimerModes – An array where each

for that timer. For the U3, this array must always
 – An array w

 66

4.2.22 eTCValues()
 func rs and counters. This is a simple

ve t used by this driver.

Declaration

An “eas
alternati

y” tion that updates and reads all the time
 to he very flexible IOType based method normally

:
LJ_ERROR _stdcall eTCValues (LJ_HANDLE Handle,

long *aReadTimers,
long *aUpdateResetTimers,

double *aTimerValues,

long Reserved1,
long Reserved2)

Parameter Description:

long *aReadCounters,
long *aResetCounters,

double *aCounterValues,

Returns: LabJack errorcodes o
Inputs:

• Handle – Handle retu
• aReadTimers – An array where each element specifies whether to read that

timer. A nonzero value for an array element specifies to read that timer. For the
U3, this array must alw ents.

• aUpdateResetTimers each element specifies whether to
update/reset that timer. A nonzero value for an array element specifies to
update/reset that timer. For the U3, this array must always have at least 2
elements.

unters – An array where each element specifies whether to read that
 element specifies to read that counter.

For the U3, this array must always have at least 2 elements.
nt specifies whether to reset that

•

. For the U3, this array must always have at least 2

•
Outputs:

• mer if
e aReadTimers array.

he appropriate element is set in the aReadCounters array.

r 0 for no error.

rned by OpenLabJack().

ays have at least 2 elem
 – An array where

• aReadCo
counter. A nonzero value for an array

• aResetCounters – An array where each eleme
counter. A nonzero value for an array element specifies to reset that counter.
For the U3, this array must always have at least 2 elements.
aTimerValues – An array where each element is the new value for that timer.
Each value is only updated if the appropriate element is set in the
aUpdateResetTimers array
elements.
Reserved (1&2) – Pass 0.

aTimerValues – An array where each element is the value read from that ti
the appropriate element is set in th

• aCounterValues – An array where each element is the value read from that
counter if t

 67

4.3 Example Pseudocode
hecking

The initial step is to open the LabJac t the driver uses for further
interaction. The DeviceType for the

LJ_dtU3

There is only one valid ConnectionTy

LJ_ctUSB

ollowing is example pseudocode to open a U3 over USB:

 LabJack U3 over USB.
andle);

on e the address parameter is a
string in th

The ampersan
of that varia le
function, th ion
expects a poin

In general, a fu
parameter g
cannot be mod
that can be h
passing th

4.3.2 Con g
One of the mo
analog. The fo

A L
ANALOG_ENABLE_BIT

LJ_ioPUT_A L
LJ_ioGET_ANAL

When a req e cify

e starting bit number, and the x1 parameter is used to spe
ollowing are some pseudocode examples:

/Configure FIO3 as an analog input.
ePut (lngHandle, LJ_ioPUT_ANALOG_ENABLE_BIT, 3, 1, 0);

//Configure FIO3 as digital I/O.
ePut (lngHandle, LJ_ioPUT_ANALOG_ENABLE_BIT, 3, 0, 0);

//Configure FIO0-FIO2 and EIO0-EIO7 as analog, all others as digital. That
//means a starting channel of 0, a value of b1111111100000111 (=d65287), and

The following pseudocode examples are simplified for clarity, and in particular no error c
 shown. The language used for the pseudocode is C. is

4.3.1 Open
k and get a handle tha
U3 is:

pe for the U3:

F

//Open the first found

ck (OpenLabJa LJ_dtU3, LJ_ctUSB, "1", TRUE, &lngH

The reas for the quotes around the address (“1”), is becaus

e OpenLabJack function.

d (&) in front of lngHandle is a C notation that means we are passing the address
, rather than the value of that variable. In the definitiob n of the OpenLabJack

e handle parameter is defined with an asterisk (*) in front, meaning that the funct
ter, i.e. an address.

nction parameter is passed as a pointer (address) rather than a value, when the
 mi ht need to output something. The parameter value passed to a function in C

ified in the function, but the parameter can be an address that points to a value
anged. Pointers are also used when passing arrays, as ratherc than actually

e array, an address to the first element in the array is passed.

fi uration
st important operations on the U3 is configuring the flexible I/O as digital or
llowing 4 IOTypes are used for that:

LJ_ioPUT_
LJ_ioGET_

NA OG_ENABLE_BIT

NA OG_ENABLE_PORT //x1 is number of bits.
OG_ENABLE_PORT //x1 is number of bits.

u st is done with one of the port IOTypes, the Channel parameter is used to spe
cify the number of applicable bits. th

F

/

 68

//all 16 bits will be updated.
ePut (lngHandle, LJ_ioPUT_ANALOG_ENABLE_PORT, 0, 65287, 16);

ng channel of 2,
/a value of b00111 (=d7), and 5 bits will be updated.

 will need to initialize the flexible I/O to a known pin
tion. One way to do this is with the following pseudocode:

IMERS_ENABLED, 0, 0);
NTER_PIN_OFFSET, 4, 0);

Handle, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_BASE, LJ_tc48MHZ, 0);
Handle, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_DIVISOR, 0, 0);

Put (lngHandle, LJ_ioPUT_COUNTER_ENABLE, 0, 0, 0);

ored on hardware rev 1.30+.
 0, 0, 16);

is disables all timers and counters, sets the timer/counter pin offset to 4, sets the timer clock
l.

 IOType created exactly for this purpose, which does the
ame thing as the 8 function calls above:

here are two IOTypes used to write or read general U3 configuration parameters:

J_chPRODUCTID

 write and read the local

/Read the local ID.
hLOCALID, &dblValue, 0);

e IOTypes to retrieve a command/response analog input reading are:

//Configure FIO2-FIO4 as analog, and FIO5-FIO6 as digital, without
//configuring any other bits. That means a starti
/
ePut (lngHandle, LJ_ioPUT_ANALOG_ENABLE_PORT, 2, 7, 5);

Because of the pin configuration interaction between digital I/O, analog inputs, and
timers/counters, many software applications
configura

ePut (lngHandle, LJ_ioPUT_CONFIG, LJ_chNUMBER_T
ePut (lngHandle, LJ_ioPUT_CONFIG, LJ_chTIMER_COU
ePut (lng
ePut (lng
e
ePut (lngHandle, LJ_ioPUT_COUNTER_ENABLE, 1, 0, 0);
Put (lngHandle, LJ_ioPUT_DAC_ENABLE, 1, 0, 0); //Igne

ePut (lngHandle, LJ_ioPUT_ANALOG_ENABLE_PORT,

Th
base to 48 MHz (no divisor), sets the timer clock divisor to 0, and sets all flexible I/O to digita
A simpler option is using the following
s

ePut (lngHandle, LJ_ioPIN_CONFIGURATION_RESET, 0, 0, 0);

T

LJ_ioPUT_CONFIG
LJ_ioGET_CONFIG

The following constants are then used in the channel parameter of the config function call to
pecify what is being written or read: s

LJ_chLOCALID
LJ_chHARDWARE_VERSION
LJ_chSERIAL_NUMBER
LJ_chFIRMWARE_VERSION
LJ_chBOOTLOADER_VERSION
L
LJ_chLED_STATE

Following is example pseudocode to ID:

//Set the local ID to 4.
ePut (lngHandle, LJ_ioPUT_CONFIG, LJ_chLOCALID, 4, 0);

/
eGet (lngHandle, LJ_ioGET_CONFIG, LJ_c

4.3.3 Analog Inputs
Th

 69

LJ_ioGET_AIN //Single-ended. Negative channel is fixed as 31.

 configure

J_chAIN_SETTLING_TIME //LongSettling enabled if TRUE.
J_chAIN_BINARY

s as

.
Put (lngHandle, LJ_ioPUT_ANALOG_ENABLE_PORT, 0, 70, 16);

2.
, 0, 0, 0);

ddRequest (lngHandle, LJ_ioGET_AIN_DIFF, 1, 0, 6, 0);

e-ended read of AIN1.
andle, LJ_ioGET_AIN_DIFF, 1, 0, 31, 0);

N_DIFF, 1, 0, 32, 0);

requests.

ts were made with the same IOType
1 was different, GetFirst/GetNext
ve the results. The simple

ction does not use the x1 parameter and
 no way to specify which result is desired.

/Rather than specifying the IOType and Channel of the
/result to be read, the GetFirst/GetNext functions retrieve

t
/used in a loop, but here they are simply called in succession.

ype,
st.

re just retrieving the results in order

//Get the AIN1-AIN6 voltage.
e, 0, 0, &dblValue, 0, 0);

etNextResult (lngHandle, 0, 0, &dblValue, 0, 0);

LJ_ioGET_AIN_DIFF //Specify negative channel in x1.

The following are special channels, used with the get/put config IOTypes, to
parameters that apply to all analog inputs:

J_chAIN_RESOLUTION //QuickSample enabled if TRUE.L

L
L

Following is example pseudocode to read analog inputs:

//Execute the pin_configuration_reset IOType so that all
//pin assignments are in the factory default condition.
//The ePut function is used, which combines the add/go/get.
ePut (lngHandle, LJ_ioPIN_CONFIGURATION_RESET, 0, 0, 0);

//Configure FIO1, FIO2, and FIO6 as analog, all other
//digital (see Section 4.3.2).
//The ePut function is used, which combines the add/go/get
e

//Now, an add/go/get block to execute multiple requests.

//Request a single-ended read from AIN
ddRequest (lngHandle, LJ_ioGET_AIN, 2A

/Request a differential read of AIN1-AIN6. /

A

//Request a differential read of AIN1-Vref.
ddRequest (lngHandle, LJ_ioGET_AIN_DIFF, 1, 0, 30, 0); A

//Request a singl
ddRequest (lngHA

//Request a read of AIN1 using the special 0-3.6 volt range.
AddRequest (lngHandle, LJ_ioGET_AI

//Execute the
GoOne (lngHandle);

//Since multiple reques
//and Channel, and only x

o retrie//must be used t
//GetResult fun
/thus there is/

/
/
//the results in order. Normally, GetFirst/GetNext are bes
/

//Retrieve AIN2 voltage. GetFirstResult returns the IOT

Channel, Value, x1, and UserData from the first reque//
//In this example we a
//and Value is the only parameter we need.
etFirstResult (lngHandle, 0, 0, &dblValue, 0, 0); G

GetNextResult (lngHandl

//Get the AIN1-Vref voltage.
G

 70

//Get the AIN1 voltage.
GetNextResult (lngHandle, 0, 0, &dblValue, 0, 0);

ue, 0, 0);

utputs
he IOType to set the voltage on an analog output is:

AC1:

lways enabled.

used with the get/put config IOTypes, to configure a

_chDAC_BINARY

 to 2.5 volts:

d digital I/O information:

_ioGET_DIGITAL_BIT //Also sets direction to input.

_ioGET_DIGITAL_PORT //Also sets directions to input. x1 is number of bits.
 //x1 is number of bits.

T_STATE //x1 is number of bits.

.
 x1 is number of bits.

l parameter is used to specify

ameter. That means that if two (or
different x1, the result

undefined. The GetFirstResult/GetNextResult commands do
sponses from multiple port requests

//Get the AIN1 voltage (special 0-3.6 volt range).
etNextResult (lngHandle, 0, 0, &dblValG

4.3.4 Analog O
T

J_ioPUT_DAC L

The following are IOTypes used to write/read the enable bit for D

DAC1 aLJ_ioPUT_DAC_ENABLE //Ignored on hardware rev 1.30+, as
J_ioGET_DAC_ENABLE L

The following is a special channel,
parameter that applies to all DACs:

LJ

Following is example pseudocode to set DAC0

//Set DAC0 to 2.5 volts.
ePut (lngHandle, LJ_ioPUT_DAC, 0, 2.50, 0);

4.3.5 Digital I/O
There are eight IOTypes used to write or rea

LJ
LJ_ioGET_DIGITAL_BIT_DIR
LJ_ioGET_DIGITAL_BIT_STATE
LJ
LJ_ioGET_DIGITAL_PORT_DIR
LJ_ioGET_DIGITAL_POR

LJ_ioPUT_DIGITAL_BIT //Also sets direction to output
LJ_ioPUT_DIGITAL_PORT //Also sets directions to output.

When a request is done with one of the port IOTypes, the Channe
the starting bit number, and the x1 parameter is used to specify the number of applicable bits.
The bit numbers corresponding to different I/O are:

0-7 FIO0-FIO7
8-15 EIO0-EIO7
16-19 CIO0-CIO3

Note that the GetResult function does not have an x1 par

ore) port requests are added with the same IOType and Channel, but m
retrieved by GetResult would be
have the x1 parameter, and thus can handle retrieving re
with the same IOType and Channel.

 71

Following is example pseudocode for various digital I/O operations:

t all
on.
go/get.

0, 0);

 to execute multiple requests.

ddRequest (lngHandle, LJ_ioGET_DIGITAL_BIT, 2, 0, 0, 0);

ead from FIO4-EIO5 (10-bits starting

e, LJ_ioPUT_DIGITAL_BIT, 3, 1, 0, 0);

=0, EIO7=0, CIO0=1,

ndle, LJ_ioPUT_DIGITAL_PORT, 14, 20, 5, 0);

/Execute the requests.
oOne (lngHandle);

oGET_DIGITAL_BIT, 2, &dblValue);

etResult (lngHandle, LJ_ioGET_DIGITAL_PORT, 4, &dblValue);

s used to writ

r mode IOType:

 //16-bit PWM output
 //8-bit PWM output
 //Period input (32-bit, rising edges)
 //Period input (32-bit, falling edges)

m timer low read (no FIO)
J_tmSYSTIMERHIGH //System timer high read (no FIO)

/Execute the pin_configuration_reset IOType so tha/
//pin assignments are in the factory default conditi

d///The ePut function is used, which combines the ad
Put (lngHandle, LJ_ioPIN_CONFIGURATION_RESET, 0, e

//Now, an add/go/get block

//Request a read from FIO2.
A

Request a r//
//from digital channel #4).
ddRequest (lngHandle, LJ_ioGET_DIGITAL_PORT, 4, 0, 10, 0); A

-high. //Set FIO3 to output

ddRequest (lngHandlA

//Set EIO6-CIO2 (5-bits starting from digital channel #14)
//to b10100 (=d20). That is EIO6
/CIO1=0, and CIO2=1. /

AddRequest (lngHa

/
G

/Get the FIO2 read. /

GetResult (lngHandle, LJ_i

/Get the FIO4-EIO5 read. /

G

4.3.6 Timers & Counters
There are eight IOType e or read timer and counter information:

LJ_ioGET_COUNTER

 LJ_ioPUT_COUNTER_ENABLE
LJ_ioGET_COUNTER_ENABLE
LJ_ioPUT_COUNTER_RESET

LJ_ioGET_TIMER
LJ_ioPUT_TIMER_VALUE
J_ioPUT_TIMER_MODE L

LJ_ioGET_TIMER_MODE

In addition to specifying the channel number, the following mode constants are passed in the
value parameter when doing a request with the time

LJ_tmPWM16
LJ_tmPWM8
LJ_tmRISINGEDGES32
J_tmFALLINGEDGES32L

LJ_tmDUTYCYCLE //Duty cycle input
LJ_tmFIRMCOUNTER //Firmware counter input
LJ_tmFIRMCOUNTERDEBOUNCE //Firmware counter input (with debounce)
LJ_tmFREQOUT //Frequency output
LJ_tmQUAD //Quadrature input
LJ_tmTIMERSTOP //Timer stop input (odd timers only)
LJ_tmSYSTIMERLOW //Syste
L

 72

LJ_tmRISINGEDGES16 //Period input (16-bit, rising edge
J_tmFALLINGEDGES16 //Period input (16-bit, falling edges)

s)

 IOTypes, to configure a

_chNUMBER_TIMERS_ENABLED //0-2

 //4-8 only starting with hardware rev 1.30.

ith the clock base special channel above, the following constants are passed in the value

 clock base

er0)
r0)
er0)

 Counter0)

ocode for configuring various timers and a hardware counter:

Execute the pin_configuration_reset IOType so that all
in the factory default condition.

ut (lngHandle, LJ_ioPIN_CONFIGURATION_RESET, 0, 0, 0);

/First, an add/go/get block to configure the timers and counters.

ich causes the timers to start on FIO4.
UT_CONFIG, LJ_chTIMER_COUNTER_PIN_OFFSET, 4, 0, 0);

dle, LJ_ioPUT_CONFIG, LJ_chNUMBER_TIMERS_ENABLED, 2, 0, 0);

isabled.
_ioPUT_COUNTER_ENABLE, 0, 0, 0, 0);

1. It will use the next available line, FIO6.
 LJ_ioPUT_COUNTER_ENABLE, 1, 1, 0, 0);

se the same timer clock, configured here. The
to 48MHZ_DIV, meaning that the clock divisor

 LJ_tc48MHZ_DIV, 0, 0);

 timer clock.
OCK_DIVISOR, 48, 0, 0);

Hz.
dl LJ_ PWM8, 0, 0);

8, 0, 0);

l LJ_ , 0, 0);

L

The following are special channels, used with the get/put config
parameter that applies to all timers/counters:

LJ
LJ_chTIMER_CLOCK_BASE //Value constants below
J_chTIMER_CLOCK_DIVISOR //0-255, where 0=256 L

LJ_chTIMER_COUNTER_PIN_OFFSET

W
parameter to select the frequency:

J_tc4MHZ //4 MHz clock base L
LJ_tc12MHZ //12 MHz
LJ_tc48MHZ //48 MHz clock base
J_tc1MHZ_DIV //1 MHz clock base w/ divisor (no CountL

LJ_tc4MHZ_DIV //4 MHz clock base w/ divisor (no Counte
o CountLJ_tc12MHZ_DIV //12 MHz clock base w/ divisor (n

48 MHz clock base w/ divisor (noLJ_tc48MHZ_DIV //
LJ_tcSYS //Equivalent to LJ_tc48MHZ

Following is example pseud

//
//pin assignments are
//The ePut function is used, which combines the add/go/get.
eP

/

//Set the pin offset to 4, wh
AddRequest (lngHandle, LJ_ioP

/Enable both timers. They will use FIO4-FIO5 /

AddRequest (lngHan

//Make sure Counter0 is d

LJAddRequest (lngHandle,

//Enable Counter
AddRequest (lngHandle,

u//All output timers
/base clock is set /

//is supported and Counter0 is not available. Note that this timer
//clock base is not valid with U3 hardware version 1.20.
AddRequest (lngHandle, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_BASE,

//Set the timer clock divisor to 48, creating a 1 MHz

LAddRequest (lngHandle, LJ_ioPUT_CONFIG, LJ_chTIMER_C

//Configure Timer0 as 8-bit PWM. It will have a frequency

906.2//of 1M/256 = 3 5
AddRequest (lngHan e, ioPUT_TIMER_MODE, 0, LJ_tm

//Initialize the 8-bit PWM with a 50% duty cycle.
AddRequest (lngHandle, LJ_ioPUT_TIMER_VALUE, 0, 3276

//Configure Timer1 as duty cycle input.
AddRequest (lngHand e, ioPUT_TIMER_MODE, 1, LJ_tmDUTYCYCLE

 73

//Execute the requests.

he following pseudocode, but some applications
lls into a single add/go/get block so that a single low-level call is

Put (lngHandle, LJ_ioPUT_TIMER_VALUE, 0, 49152, 0);

 1, &dblValue, 0);

cy e rea alue where the
i cant the high time

signi

es (doub e) / (65536));
blDutyCycle = 100 * dblHighCycles / (dblHighCycles + dblLowCycles));

t value.

llowing is pseudocode to reset the input timer and the counter:

as been a new

ote that if a timer/counter is read and reset at the same time (in the same Add/Go/Get block),

ed with U3 hardware

GoOne (lngHandle);

The following pseudocode demonstrates reading input timers/counters and updating the values

f output timers. The e-functions are used in to
might combine the following ca
used.

//Change Timer0 PWM duty cycle to 25%.
e

//Read duty-cycle from Timer1.
Get (lngHandle, LJ_ioGET_TIMER,e

//The duty cl d returns a 32-bit v
//least sign fi word (LSW) represents
//and the mo t ficant word (MSW) reps resents the low
//time. The times returned are the number of cycles of
//the timer clock. In this case the timer clock was set
//to 1 MHz, so each cycle is 1 microsecond.
dblHighCycles = (double)(((unsigned long)dblValue) % (65536));
dblLowCycl = le)(((unsigned long)dblValu
d
dblHighTime = 0.000001 * dblHighCycles;
blLowTime = 0.000001 * dblLowCycles; d

bi//Read the count from Counter1. This is an unsigned 32-

eGet (lngHandle, LJ_ioGET_COUNTER, 1, &dblValue, 0);

Fo

//Reset the duty-cycle measurement (Timer1) to zero, by writing
//a value of zero. The duty-cycle measurement is continuously
//updated, so a reset is normally not needed, but one reason
//to reset to zero is to detect whether there h
//measurement or not.
ePut (lngHandle, LJ_ioPUT_TIMER_VALUE, 1, 0, 0);

//Reset Counter1 to zero.
ePut (lngHandle, LJ_ioPUT_COUNTER_RESET, 1, 1, 0);

N
the read will return the value just before reset.

4.3.7 Stream Mode
The highest input data rates are obtained in stream mode, which is support
version 1.21 or higher. See Section 3.2 for more information about stream mode.

There are five IOTypes used to control streaming:

J_ioCLEAR_STREAM_CHANNELS L
LJ_ioADD_STREAM_CHANNEL
LJ_ioADD_STREAM_CHANNEL_DIFF //Put negative channel in x1.

_ioSTART_STREAM //Value returns actual scan rate. LJ
LJ_ioSTOP_STREAM
LJ_ioGET_STREAM_DATA

 74

The following constant is passed in the Channel parameter with the get stream data IOType to
g all scanned channels, rather than retrieving each scanned channel

parately:

 stream values:

f samples.
5.

ts are passed in the value

r none.
ump wait mode.

much data is left in the stream
ffer on the U3 or in the UD driver. These parameters are updated whenever a stream packet

f the buffers, but can

ransfers it to a buffer on
waiting to be transferred to
ow much data is left in the

3), where 0 means 0% full and 256 would
, but if the

ink is too slow for some reason, the driver might not be able to
ere will be data left over in the U3

uffer.

unt of data transferred per low-level packet is
ontrolled by LJ_chSTREAM_SAMPLES_PER_PACKET . The driver will use the parameter

 to determine how many low-level packets to retrieve per read.

ough to
revent overflow. After each read, use LJ_chSTREAM_BACKLOG_UD to determine how many

 is very small a feature called auto-recovery is used. If the buffer
treaming but discard data u r is emptied, and then
gain ckets are discarded

e Based on the number of packets d dds the
y samples (-9999.0) such that the correct timing is maintained. Auto-

covery will generally occur when the U3 buffer is 90-95% full.

specify a read returnin
se

LJ_chALL_CHANNELS

The following are special channels, used with the get/put config IOTypes, to write or read
ariousv

LJ_chSTREAM_SCAN_FREQUENCY

_chSTREAM_BUFFER_SIZE //UD driver stream buffer size in samples. LJ
LJ_chSTREAM_WAIT_MODE
LJ_chSTREAM_DISABLE_AUTORECOVERY

_chSTREAM_BACKLOG_COMM //Read-only. 0=0% and 256=100%. LJ
LJ_chSTREAM_BACKLOG_UD //Read-only. Number o
LJ_chSTREAM_SAMPLES_PER_PACKET //Default 25. Range 1-2
LJ_chSTREAM_READS_PER_SECOND //Default 25.

With the wait mode special channel above, the following constan
parameter to select the behavior when reading data:

LJ_swNONE //No wait. Immediately return available data.

ly return requested amount, oLJ_swALL_OR_NONE //No wait. Immediate
LJ_swPUMP //Advanced message p

_swSLEEP //Wait until requested amount available.LJ

The backlog special channels return information about how
bu
is read by the driver, and thus might not exactly reflect the current state o
be useful to detect problems.

 tWhen streaming, the processor acquires data at precise intervals, and
the U3 itself. The U3 has a small buffer (512-984 samples) for data
the host. The LJ_chSTREAM_BACKLOG_COMM special channel specifies h
U3 buffer (COMM or CONTROL are the same thing on the U

ean 100% full. The UD driver retrieves stream data from the U3 in the backgroundm
computer or communication l
read the data as fast as the U3 is acquiring it, and thus th
b

To obtain the maximum stream rates documented in Section 3.2, the data must be transferred
between host and U3 in large chunks. The amo
c
LJ_chSTREAM_READS_PER_SECOND

The size of the UD stream buffer on the host is controlled by LJ_chSTREAM_BUFFER_SIZE . The
application software on the host must read data out of the UD stream buffer fast en
p
samples are left in the buffer.

Since the data buffer on the U3
overflows, the U3 will continue s ntil the buffe

 t buffe adata will be stored in he r . The U3 keeps track of how many pa
u . iscarded, the UD driver aand reports that val

proper number of dumm
re

 75

In stream mode the LabJack acquires inputs at a fixed interval, controlled by the hardware clock

n the device itself, and stores the data in a buffer. The LabJackUD driver automatically reads
are buffer and stores it in a PC RAM buffer until requested. The general

rocedure for streaming is:

ration parameters.

eve stream data in a loop.

l stream.

);

 UD river econds).
ndl 0, 0);

 r ds to data.
l Handl , LJ_swSLEEP, 0, 0);

/Execute the requests.

ctual scan rate is dependent on how the desired scan rate divides into
/the LabJack clock. The actual scan rate is returned in the value parameter

nel
e

arameter should be the number of scans (all channels) or

ta

o
data from the hardw
p

• Update configu
• Build the scan list.
• Start the stream.
• Periodically retri
• Stop the stream.

Following is example pseudocode to configure a 2-channe

//Set the scan rate.
AddRequest (lngHandle, LJ_ioPUT_CONFIG, LJ_chSTREAM_SCAN_FREQUENCY, scanRate, 0, 0

//Give the d a 5 second buffer (scanRate * 2 channels * 5 s
AddRequest ng e, LJ_ioPUT_CONFIG, LJ_chSTREAM_BUFFER_SIZE, sca(l Ha nRate*2*5,

//Configure ea wait and retrieve the desired amount of
AddRequest (ng e, LJ_ioPUT_CONFIG, LJ_chSTREAM_WAIT_MODE

//Define the scan list as singled ended AIN2 then differential AIN3-AIN9.
AddRequest (lngHandle, LJ_ioCLEAR_STREAM_CHANNELS, 0, 0, 0, 0);
AddRequest (lngHandle, LJ_ioADD_STREAM_CHANNEL, 2, 0, 0, 0);
AddRequest (lngHandle, LJ_ioADD_STREAM_CHANNEL_DIFF, 3, 0, 9, 0);

/
GoOne (lngHandle);

Next, start the stream:

//Start the stream.
eGet(lngHandle, LJ_ioSTART_STREAM, 0, &dblValue, 0);

//The a
/
//from the start stream command.
actualScanRate = dblValue;
actualSampleRate = 2*dblValue;

Once a stream is started, the data must be retrieved periodically to prevent the buffer from
overflowing. To retrieve data, add a request with IOType LJ_ioGET_STREAM_DATA. The Chan
parameter should be LJ_chALL_CHANNELS or a specific channel number (ignored for a singl
channel stream). The Value p
samples (single channel) to retrieve. The x1 parameter should be a pointer to an array that has
been initialized to a sufficient size. Keep in mind that the required number of elements if
retrieving all channels is number of scans * number of channels.

Data is stored interleaved across all streaming channels. In other words, if two channels are
streaming, 0 and 1, and LJ_chALL_CHANNELS is the channel number for the read request, the da

 76

will be returned as Channel0, Channel1, Channel0, Channel1, etc. Once the data is read it is
moved from the internal buffer, and the next read will give new data.

al

n the scan is requested. Reading the data from the last channel
ot necessarily all channels) is the trigger that causes the block of data to be removed from the

buffe T e streaming, 0, 1 and 2 (in that order in the scan
list), d rom channel 0, then channel 1, then channel 0 again, the request
for c n me will return the same data as the first request. New data will not
be re e nel 2 is last in the scan list. If the first get
strea d 1, the reads from channels 0 and 2 also

ust be el at a time (not using
J_chALL_CHANNELS), the scan list cannot have duplicate channel numbers.

rmine how

The number of samples read per loop iteration will vary, but the time per loop iteration
an the PC clock, it is

 Go command will loop
es from the device before

cation. The time per
ry, but the number of samples read per loop will be the same every

mmand should be called to determine whether all the data was retrieved,
or a timeout condition occurred and none of the data was retrieved.

• LJ_swALL_OR_NONE: If available, the Go call will retrieve the amount of data
rwise it will retrieve no data. A Get command should be called to
er all the data was returned or none. This could be a good mode if

 execution is desirable, but without the application continuously waiting in

e:

//Must set the number of scans to read each iteration, as the read
//returns the actual number read.
numScans = 1000;

;

owing lines
//get the first sample from each channel.

re

If multiple channels are being streamed, data can be retrieved one channel at a time by passing
a specific channel number in the request. In this case the data is not removed from the intern
buffer until the last channel i
(n

r. his means that if three channels ar
an data is requested f
ha nel 0 the second ti
tri ved until after channel 2 is read, since chan

10 samples from channelm ata request is for
for 10 samples. Note that when reading stream data one channm

L

here are three basic wait modes for retrieving the data: T

• LJ_swNONE: The Go call will retrieve whatever data is available at the time of the call
up to the requested amount of data. A Get command should be called to dete
many scans were retrieved. This is generally used with a software timed read interval.

will be pretty consistent. Since the LabJack clock could be faster th
recommended to request more scans than are expected each time so that the
application does not get behind.

• LJ_swSLEEP: This makes the Go command a blocking call. The
until the requested amount of is retrieved or no new data arriv
timeout. In this mode, the hardware dictates the timing of the appli
loop iteration will va
time. A Get co

requested, othe
determine wheth
hardware timed
SLEEP mode.

The following pseudocode reads data continuously in SLEEP mode as configured abov

//Read data until done.
while(!done)
{

 //Read the data. Note that the array passed must be sized to hold

//enough SAMPLES, and the Value passed specifies the number of SCANS
//to read.

 eGet(lngHandle, LJ_ioGET_STREAM_DATA, LJ_chALL_CHANNELS, &numScans, array)
 actualNumberRead = numScans;

 //When all channels are retrieved in a single read, the data

//is interleaved in a 1-dimensional array. The foll

channelA = array[0];
channelB = array[1];

 77

 //Retrieve the current U3 backlog. The UD driver retrieves
//stream data from the U3 in the background, but if the computer
//is too slow for some reason the driver might not be able to read

/Stop the stream.
;

4.3.8
There a
functio
to acce

LJ_
LJ_ R

When u
is the n
in value
the l

Followi k
(Sectio

riteA ,0xF8,0x02,0x0A,0x00,0x00,0x00,0x00,0x00,0x00};
umBytesToWrite = 10;

writes the bytes to the device.
, LJ_ioRAW_OUT, 0, &numBytesToWrite, pwriteArray);

et(l ToRead, preadArray);

.3.9 E

ed b

eDAC()
eDI()
eDO() gital output.
eTCConf timers and counters.
eTCValues() //Update/reset and read all timers and counters.

//the data as fast as the U3 is acquiring it, and thus there will
//be data left over in the U3 buffer.

 eGet(lngHandle, LJ_ioGET_CONFIG, LJ_chSTREAM_BACKLOG_COMM, &dblCommBacklog, 0);

 //Retrieve the current UD driver backlog. If this is growing, then

//the application software is not pulling data from the UD driver
//fast enough.
eGet(lngHandle, LJ_ioGET_CONFIG, LJ_chSTREAM_BACKLOG_UD, &dblUDBacklog, 0);

}

Finally, stop the stream:

/
errorcode = ePut (Handle, LJ_ioSTOP_STREAM, 0, 0, 0)

Raw Output/Input
re two IOTypes used to write or read raw data. These can be used to make low-level

n calls (Section 5) through the UD driver. The only time these generally might be used is
ss some low-level device functionality not available in the UD driver.

ioRAW_OUT
io AW_IN

sing these IOTypes, channel # specifies the desired communication pipe. For the U3, 0
ormal pipe while 1 is the streaming pipe. The number of bytes to write/read is specified
 (1-16384), and x1 is a pointer to a byte array for the data. When retrieving the result,

 va ue returned is the number of bytes actually read/written.

ng is example pseudocode to write and read the low-level command ConfigTimerCloc
n 5.2.4).

rray[2] = {0x05w
n
numBytesToRead = 10;

//Raw Out. This command
eGet(lngHandle

//Raw In. This command reads the bytes from the device.
eG ngHandle, LJ_ioRAW_IN, 0, &numBytes

4 asy Functions
The easy functions are simple alternatives to the very flexible IOType based method normally

s available: us y this driver. There are 6 function

eAIN() //Read 1 analog input.

 //Write to 1 analog output.
 //Read 1 digital input.
 //Write to 1 di
ig() //Configure all

 78

In addition to the basic operations, these functions also automatically handle configuration as
needed nfigured as
analog igital.

nction
ethod . With

single c s, however, there will be little difference between using an easy
function

e last two functions handle almost all functionality related to timers and counters, and will
sually be as efficient as any other method. These easy functions are recommended for most

.

pseudocode:

/Take a single-ended measurement from AIN3.
/eAIN (Handle, ChannelP, ChannelN, *Voltage, Range, Resolution,

Settling, Binary, Reserved1, Reserved2)

oltage, 0, 0, 0, 0, 0, 0);

/
, 0, 3.1, 0, 0, 0);

/Read state of FIO2.

3, 1);

ounter0.
 the desired values, then make the call.
,1}; //Enable Timer0-Timer1

er modes

ffset,

/ *aTimerValues, Reserved1, Reserved2);

EnableTimers, alngEnableCounters, 4, LJ_tc48MHZ, 0,

/Read and reset the input timer (Timer1), read and reset Counter0, and update
lue (t timer (Timer0).
he ar then make the call.
Timer
teRes er0 and reset Timer1

u

. For example, eDO() sets the specified line to digital output if previously co
d and/or input, and eAIN() sets the line to analog if previously configured as

The first 4 functions should not be used when speed is critical with multi-channel reads. These
fu s use one low-level function per operation, whereas using the normal Add/Go/Get
m all with IOTypes, many operations can be combined into a single low-level c

hannel operation
 or Add/Go/Get.

Th
u
timer/counter applications

Following is example

/
/
//
//
eAIN(lngHandle, 3, 31, &dblV
printf("AIN3 value = %.3f\n",dblVoltage);

//Set DAC0 to 3.1 volts.
//eDAC (Handle, Channel, Voltage, Binary, Reserved1, Reserved2)
/
eDAC(lngHandle

/
//eDI (Handle, Channel, *State)
//
eDI(lngHandle, 2, &lngState);
printf("FIO2 state = %.0f\n",lngState);

/Set FIO3 to output-high. /

//eDO (Handle, Channel, State)
//
eDO(lngHandle,

1 output timer and 1 input timer, and enable C//Enable and configure
//Fill the arrays with

ngEnableTimers = {1al
alngTimerModes = {LJ_tmPWM8,LJ_tmRISINGEDGES32}; //Set tim
adblTimerValues = {16384,0}; //Set PWM8 duty-cycle to 75%.

ngEnableCounters = {1,0}; //Enable Counter0 al
//
//eTCConfig (Handle, *aEnableTimers, *aEnableCounters, TCPinO
/ TimerClockBaseIndex, TimerClockDivisor, *aTimerModes, /

/
//
eTCConfig(lngHandle, alng
alngTimerModes, adblTimerValues, 0, 0);

/
//the va duty-cycle) of the outpu
//Fill t rays with the desired values,
alngRead s = {0,1}; //Read Timer1
alngUpda etTimers = {1,1}; //Update Tim
alngReadCounters = {1,0}; //Read Counter0
alngResetCounters = {1,0}; //Reset Counter0

blTimerVal es = {32768,0}; //Change Timer0 duty-cycle to 50% ad

 79

//
//eTCValues (Handle, *aReadTimers, *aUpdateResetTimers, *aReadCounters,
// *aResetCounters, *aTimerValues, *aCounterValues, Reserved1,
// Reserved2);
//

Rather, the host application will
SB communicates with some other device

nced topic. A good
ic analyzer or oscilloscope might be

ere is one IOType used to write/read data over the SPI bus:

array.

ed with the get/put config IOTypes, to configure various
 SPI bus. See the low-level function description in Section 5.3.15 for

ters:

_chSPI_MODE

hSPI_MISO_PIN_NUM

_chSPI_CS_PIN_NUM

equest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_AUTO_CS,1,0,0);

eq st(ln BLE_DIR_CONFIG,0,0,0);

_chSPI_MODE,0,0,0);

Maximum clock rate (~100kHz).

LJ_chSPI_MOSI_PIN_NUM,2,0,0);

PI_MISO_PIN_NUM,3,0,0);

eTCValues(lngHandle, alngReadTimers, alngUpdateResetTimers, alngReadCounters,
alngResetCounters, adblTimerValues, adblCounterValues, 0, 0);
printf("Timer1 value = %.0f\n",adblTimerValues[1]);
printf("Counter0 value = %.0f\n",adblCounterValues[0]);

4.3.10 SPI Serial Communication
The U3 (hardware version 1.21+ only) supports Serial Peripheral Interface (SPI) communication
as the master only. SPI is a synchronous serial protocol typically used to communicate with
hips that support SPI as slave devices. c

his serial link is not an alternative to the USB connection. T

write/read data to/from the U3 over USB, and the U
using the serial protocol. Using this serial protocol is considered an adva
knowledge of the protocol is recommended, and a log
needed for troubleshooting.

Th

LJ_ioSPI_COMMUNICATION // Value= number of bytes (1-50). x1=

The following are special channels, us
parameters related to the
more information about these parame

LJ_chSPI_AUTO_CS
LJ_chSPI_DISABLE_DIR_CONFIG
LJ
LJ_chSPI_CLOCK_FACTOR
LJ_chSPI_MOSI_PIN_NUM
LJ_c
LJ_chSPI_CLK_PIN_NUM
LJ

Following is example pseudocode to configure SPI communication:

//First, configure the SPI communication.

//Enable automatic chip-select control.
AddR

//Do not disable automatic digital i/o direction configuration.
AddR ue gHandle, LJ_ioPUT_CONFIG, LJ_chSPI_DISA

//Mode A: CPHA=1, CPOL=1.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ

//
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_CLOCK_FACTOR,0,0,0);

//Set MOSI to FIO2.
AddRequest(lngHandle, LJ_ioPUT_CONFIG,

//Set MISO to FIO3.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chS

 80

//Set CLK to FIO0.

equest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_CS_PIN_NUM,1,0,0);

Following is pseudocode to do the actual SPI communication:

.3.11 I C Serial Communication

 from
d also note that the screw terminals labeled SDA and SCL (if

2

cation will
 U3 other device

e used to write/read I2C data:

ICATION

sed with the I2C IOType above:

 Value= number of bytes (0-52). x1= array.

e get/put config IOTypes, to configure various
-level function description in Section 5.3.19 for

_chI2C_ADDRESS_BYTE
ired.

_chI2C_OPTIONS

m LabJack with an I2C 24C01C EEPROM chip. Following

the EEPROM on the LJTick-DAC is 0xA0 or decimal 160.

AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSPI_CLK_PIN_NUM,0,0,0);

//Set CS to FIO1.
AddR

//Execute the configuration requests.
GoOne(lngHandle);

//Transfer the data.
eGet(lngHandle, LJ_ioSPI_COMMUNICATION, 0, &numBytesToTransfer, array);

24
The U3 (hardware version 1.21+ only) supports Inter-Integrated Circuit (I2C or I2C)
communication as the master only. I2C is a synchronous serial protocol typically used to
communicate with chips that support I2C as slave devices. Any 2 digital I/O lines are used for
SDA and SCL. Note that the I2C bus generally requires pull-up resistors of perhaps 4.7 kΩ
SDA to Vs and SCL to Vs, an
present) are not used for I C.

This serial link is not an alternative to the USB connection. Rather, the host appli

rite/read data to/from the over USB, and the USB communicates with somew
using the serial protocol. Using this serial protocol is considered an advanced topic. A good
knowledge of the protocol is recommended, and a logic analyzer or oscilloscope might be
needed for troubleshooting.

There is one IOTyp

LJ_ioI2C_COMMUN

The following are special channels u

//LJ_chI2C_READ
J_chI2C_WRITE // Value= number of bytes (0-50). x1= array. L

LJ_chI2C_GET_ACKS

The following are special channels, used with th

arameters related to the I2C bus. See the lowp
more information about these parameters:

LJ
LJ_chI2C_SCL_PIN_NUM // 0-19. Pull-up resistor usually requ
LJ_chI2C_SDA_PIN_NUM // 0-19. Pull-up resistor usually required.
LJ
LJ_chI2C_SPEED_ADJUST

The LJTick-DAC is an accessory fro
is example pseudocode to configure I2C to talk to that chip:

//The AddressByte of
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chI2C_ADDRESS_BYTE,160,0,0);

//SCL is FIO0
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chI2C_SCL_PIN_NUM,0,0,0);

 81

//SDA is FIO1
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chI2C_SDA_PIN_NUM,1,0,0);

//See description of low-level I2C function.

tion. 0 is max speed of about 150 kHz.
e, LJ_ioPUT_CONFIG, LJ_chI2C_SPEED_ADJUST,0,0,0);

Execute the configuration requests.

at writes the address and then reads
e an ack after writing the address,

2C_COMMUNICATION, LJ_chI2C_READ, numRead, array, 0);

tion
 1.21+ only) has a UART available that supports asynchronous serial

 (receive) lines appear on
abled, and pin offset set to

X and SCL for

ommunication is in the common 8/n/1 format. Similar to RS232, except that the logic is normal
,

his serial link is not an alternative to the USB connection. Rather, the host application will
e U3 over USB, and the USB communicates with some other device

. Usi opic. A good
ol is r e might be

g.

BLE // Enables UART to begin buffering rx data.
.

AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chI2C_OPTIONS,0,0,0);

//See description of low-level I2C func
AddRequest(lngHandl

//
GoOne(lngHandle);

Following is pseudocode to read 4 bytes from the EEPROM:

//Initial read of EEPROM bytes 0-3 in the user memory area.
//We need a single I2C transmission th
//the data. That is, there needs to b
//not a stop condition. To accomplish this, we use Add/Go/Get to combine
//the write and read into a single low-level call.
numWrite = 1;
array[0] = 0; //Memory address. User area is 0-63.
AddRequest(lngHandle, LJ_ioI2C_COMMUNICATION, LJ_chI2C_WRITE, numWrite, array, 0);

numRead = 4;
AddRequest(lngHandle, LJ_ioI

//Execute the requests.
GoOne(lngHandle);

For more example code, see the I2C.cpp example in the VC6_LJUD archive.

4.3.12 Asynchronous Serial Communica
The U3 (hardware version
communication. On hardware version 1.30 the TX (transmit) and RX
FIO/EIO after any timers and counters, so with no timers/counters en
4, TX=FIO4 and RX=FIO5. On hardware version 1.21, the UART uses SDA for T
RX.

C
CMOS/TTL. Connection to an RS232 device will require a converter chip such as the MAX233
which inverts the logic and shifts the voltage levels.

T
write/read data to/from th
using the serial protocol ng this serial protocol is considered an advanced t
knowledge of the protoc ecommended, and a logic analyzer or oscilloscop
needed for troubleshootin

There is one IOType used to write/read asynchronous data:

J_ioASYNCH_COMMUNICATION L

The following are special channels used with the asynch IOType above:

LJ_chASYNCH_ENA
LJ_chASYNCH_RX // Value= returns pre-read buffer size. x1= array

_chASYNCH_TX // Value= number to send (0-56), number in rx buffer. x1= array. LJ

 82

LJ_chASYNCH_FLUSH // Flushes the rx buffer. All data discarded. Value ignored.

returns the size of the Asynch buffer before
d. If the size is more

an 32 bytes, then the call read 32 this time and there are still bytes left in the buffer.

 parameter. The
nch read buffer.

e following is a special channel, used with the get/put config IOTypes, to specify the baud

. 8-bit for V1.21.

the following
udFactor16 =

revision 1.21, the value is only 8-bit
esired Baud).

llowing is example pseudocode for asynchronous communication:

CONFIG, LJ_chASYNCH_BAUDFACTOR, 63036, 0);

ut(lngHandle, LJ_ioASYNCH_COMMUNICATION, LJ_chASYNCH_ENABLE, 1, 0);

Get(lngHandle, LJ_ioASYNCH_COMMUNICATION, LJ_chASYNCH_TX, &numBytes, array);

CH_RX, &numBytes, array);

ms requiring maximum up-time might use this capability to reset the U3 or the entire
ystem. When any of the options are enabled, an internal timer is enabled which resets on any

lly to reset the watchdog timer.

e of

e
 device on timeout.

e repeatedly reset. With such
ubs, the operating system will quit reenumerating the device on reset and the computer will

 excessive resets with hubs that seem to have this problem.

ry low timeout period

r up the U3 with

When using LJ_chASYNCH_RX, the Value parameter
the read. If the size is 32 bytes or less, that is how many bytes were rea
th

When using LJ_chASYNCH_TX, specify the number of bytes to send in the Value
Value parameter returns the size of the Asy

Th
rate for the asynchronous communication:

LJ_chASYNCH_BAUDFACTOR // 16-bit value for hardware V1.30

With hardware revision 1.30 this is a 16-bit value that sets the baud rate according
formula: BaudFactor16 = 2^16 - 48000000/(2 * Desired Baud). For example, a Ba
63036 provides a baud rate of 9600 bps. With hardware
and the formula is BaudFactor8 = 2^8 – TimerClockBase/(D

Fo

//Set data rate for 9600 bps communication.
ePut(lngHandle, LJ_ioPUT_

/Enable UART. /

eP

//Write data.
e

//Read data. Always initialize array to 32 bytes.
eGet(lngHandle, LJ_ioASYNCH_COMMUNICATION, LJ_chASYN

4.3.13 Watchdog Timer
The U3 (hardware version 1.21+ only) has firmware based watchdog capability. Unattended
syste
s
incoming USB communication. If this timer reaches the defined TimeoutPeriod before being
reset, the specified actions will occur. Note that while streaming, data is only going out, so
some other command will have to be called periodica

Timeout of the watchdog on the U3 can be specified to cause a device reset, update the stat
1 digital I/O (must be configured as output by user), or both.

Typical usage of the watchdog is to configure the reset defaults as desired, and then use th
watchdog simply to reset the

Note that some USB hubs do not like to have any USB devic
h
have to be rebooted, so avoid

 the watchdog is accidentally configured to reset the processor with a veIf
(such as 1 second), it could be difficult to establish any communication with the device. In such
a case, the reset-to-default jumper can be used to turn off the watchdog. Powe

 83

a short from FIO6 to SPC (FIO2 to SCL on U3 1.20/1.21), then remove the jumper and power
ycle the device again. This resets all power-up settings to factory default values.

J_ioSWDT_CONFIG // Channel is enable or disable constant.

ry (and reloaded at reset), so every
sh has a rated endurance of at least

. The settings are not
is used:

STATE

mple pseudocode to configure and enable the watchdog:

the direction to output.
ing the power-up defaults.

//Specify that the device should be reset on timeout.
UT_CONFIG, LJ_chSWDT_RESET_DEVICE,1,0,0);

E,60,0,0);

c

There is one IOType used to configure and control the watchdog:

L

The watchdog settings are stored in non-volatile flash memo

quest with this IOType causes a flash erase/write. The flare
20000 writes, which is plenty for reasonable operation, but if this IOType is called in a high-
speed loop the flash could be damaged.

The following are special channels used with the watchdog config IOType above:

LJ_chSWDT_ENABLE // Value is timeout in seconds (1-65535).
LJ_chSWDT_DISABLE

The following are special channels, used with the put config IOType, to configure watchdog
options. These parameters cause settings to be updated in the driver only
actually sent to the hardware until the LJ_ioSWDT_CONFIG IOType (above)

LJ_chSWDT_RESET_DEVICE
LJ_chSWDT_UDPATE_DIOA
LJ_chSWDT_DIOA_CHANNEL
LJ_chSWDT_DIOA_

Following is exa

//Initialize EIO2 to output-low, which also forces
//It would probably be better to do this by configur
AddRequest(lngHandle, LJ_ioPUT_DIGITAL_BIT, 10,0,0,0);

AddRequest(lngHandle, LJ_ioP

//Specify that the state of the digital line should be updated on timeout.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSWDT_UDPATE_DIOA,1,0,0);

//Specify that EIO2 is the desired digital line.
AddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSWDT_DIOA_CHANNEL,10,0,0);

//Specify that the digital line should be set high.
ddRequest(lngHandle, LJ_ioPUT_CONFIG, LJ_chSWDT_DIOA_STATE,1,0,0); A

//Enable the watchdog with a 60 second timeout.
AddRequest(lngHandle, LJ_ioSWDT_CONFIG, LJ_chSWDT_ENABL

//Execute the requests.
GoOne(lngHandle);

Following is pseudocode to disable the watchdog:

//Disable the watchdog.
Put(lngHandle, LJ_ioSWDT_CONFIG, LJ_chSWDT_DISABLE,0,0); e

 84

4.3.14 Miscellaneous
he following are special channels, used with the get/put config IOTypes, to read/wT rite the

S

he following wait IOType is used to create a delay between other actions:

J_ioPUT_WAIT // Channel ignored. Value = 0-8388480 microseconds. Actual

the same low-
. It is useful when the desired delay is less than what can be
ware.

illisecond pulse can be created by executing a single Add/Go/Get block
at sequentially requests to set FIO4 to output-high, wait 1024 microseconds, then set FIO4 to

utput-low.

calibration memory and user memory:

LJ_chCAL_CONSTANT
LJ_chUSER_MEM

For more information, see the low-level descriptions in Sections 5.2.6-5.2.8, and see the
Memory example in the VC6_LJUD archive.

T

L
resolution is 128 microseconds.

Any value (in microseconds) from 0-8388480 can be passed, but the actual resolution is 128
microseconds.

This is typically used to put a small delay between two actions that will execute in
level Feedback command

ftaccomplished through so

For example, a 1.024 m
th
o

 85

4.4 Errorcodes
All functions return an LJ_ERROR errorcode as listed in the following tables.

Table 4-1. Request Level Errorcodes (Part 1)

Errorcode Name Description

-2 LJE_UNABLE_TO_READ_CALDATA Warning: Defaults used instead.

Channel that does not exist (e.g. DAC2 on a
UE9), or data from stream is requested on a

e scan list.

UNAB
STREAM

6 LJE_NOTHING_TO_STREAM

BUFFER_OVERRUN Overrun of the UD stream buffer.
9 LJE_STREAM_NOT_RUNNING

GE
13 LJE_STREAM_CHECKSUM_ERROR

E_AD_PIN_CONFIGURATION_ERROR Analog request on a digital pin, or vice versa.
17 LJE_REQUEST_NOT_PROCESSED Previous request had an error.
19 LJE_SCRATCH_ERROR
20 LJE_DATA_BUFFER_OVERFLOW
21 LJE_ADC0_BUFFER_OVERFLOW
22 LJE_FUNCTION_INVALID
23 LJE_SWDT_TIME_INVALID
24 LJE_FLASH_ERROR
25 LJE_STREAM_IS_ACTIVE
26 LJE_STREAM_TABLE_INVALID
27 LJE_STREAM_CONFIG_INVALID
28 LJE_STREAM_BAD_TRIGGER_SOURCE
30 LJE_STREAM_INVALID_TRIGGER
31 LJE_STREAM_ADC0_BUFFER_OVERFLOW
33 LJE_STREAM_SAMPLE_NUM_INVALID
34 LJE_STREAM_BIPOLAR_GAIN_INVALID
35 LJE_STREAM_SCAN_RATE_INVALID

-1 LJE_DEVICE_NOT_CALIBRATED Warning: Defaults used instead.
0 LJE_NOERROR
2 LJE_INVALID_CHANNEL_NUMBER

channel that is not in th
3 LJE_INVALID_RAW_INOUT_PARAMETER
4 LJE_ LE_TO_START_STREAM
5 LJE_UNABLE_TO_STOP_

7 LJE_UNABLE_TO_CONFIG_STREAM
8 LJE_

10 LJE_INVALID_PARAMETER
11 LJE_INVALID_STREAM_FREQUENCY
12 LJE_INVALID_AIN_RAN

14 LJE_STREAM_COMMAND_ERROR
15 LJE_STREAM_ORDER_ERROR Stream packet received out of sequence.
16 LJ

 86

Errorcode Name Description
36 LJE_TIMER_INVALID_MODE

39 LJE_TIMER_BAD_CLOCK_SOURCE
40 LJE_TIMER_STREAM_ACTIVE
41 LJE_TIMER_PWMSTOP_MODULE_ERROR
42 LJE_TIMER_SEQUENCE_ERROR
43 LJE_TIMER_SHARING_ERROR
44 LJE_TIMER_LINE_SEQUENCE_ERROR
45 LJE_EXT_OSC_NOT_STABLE
46 LJE_INVALID_POWER_SETTING
47 LJE_PLL_NOT_LOCKED
48 LJE_INVALID_PIN
49 LJE_IOTYPE_SYNCH_ERROR
50 LJE_INVALID_OFFSET
51 LJE_FEEDBACK_IOTYPE_NOT_VALID
52 LJE_SHT_CRC
53 LJE_SHT_MEASREADY
54 LJE_SHT_ACK
55 LJE_SHT_SERIAL_RESET
56 LJE_SHT_COMMUNICATION
57 LJE_AIN_WHILE_STREAMING AIN not available to command/response

functions while the UE9 is streaming.
58 LJE_STREAM_TIMEOUT
60 LJE_STREAM_SCAN_OVERLAP New scan started before the previous scan

completed. Scan rate is too high.
61 LJE_FIRMWARE_VERSION_IOTYPE IOType not supported with this firmware.
62 LJE_FIRMWARE_VERSION_CHANNEL Channel not supported with this firmware.
63 LJE_FIRMWARE_VERSION_VALUE Value not supported with this firmware.
64 LJE_HARDWARE_VERSION_IOTYPE IOType not supported with this hardware.
65 LJE_HARDWARE_VERSION_CHANNEL Channel not supported with this hardware.
66 LJE_HARDWARE_VERSION_VALUE Value not supported with this hardware.
67 LJE_CANT_CONFIGURE_PIN_FOR_ANALOG
68 LJE_CANT_CONFIGURE_PIN_FOR_DIGITAL
70 LJE_TC_PIN_OFFSET_MUST_BE_4_TO_8

37 LJE_TIMER_QUADRATURE_AB_ERROR
38 LJE_TIMER_QUAD_PULSE_SEQUENCE

 87

Table 4-2. Request Level Errorcodes (Part 2)

Errorcode Name Description
1000 LJE_MIN_GROUP_ERROR Errors above this number stop all requests.
1001 LJE_UNKNOWN_ERROR Unrecognized error that is caught.
1002 LJE_INVALID_DEVICE_TYPE
1003 LJE_INVALID_HANDLE
1004 LJE_DEVICE_NOT_OPEN AddRequest() called even though Open() failed.
1005 LJE_NO_DATA_AVAILABLE GetResult() called without calling a Go

function, or a channel is passed that was not
in the request list.

1006 LJE_NO_MORE_DATA_AVAILABLE
1007 LJE_LABJACK_NOT_FOUND LabJack not found at the given id or address.
1008 LJE_COMM_FAILURE Unable to send or receive the correct number

of bytes.
1009 LJE_CHECKSUM_ERROR
1010 LJE_DEVICE_ALREADY_OPEN
1011 LJE_COMM_TIMEOUT
1012 LJE_USB_DRIVER_NOT_FOUND
1013 LJE_INVALID_CONNECTION_TYPE
1014 LJE_INVALID_MODE

Table 4-3. Group Level Errorcodes

The first two tables list errors which are specific to a request. For example,
LJE_INVALID_CHANNEL_NUMBER. If this error occurs, other requests are not affected. The
last table lists errors which cause all pending requests for a particular Go() to fail with the same
error. If this type of error is received the state of any of the request is not known. For example,
if requests are executed with a single Go() to set the AIN range and read an AIN, and the read
fails with an LJE_COMM_FAILURE, it is not known whether the AIN range was set to the new
value or whether it is still set at the old value.

 88

5. Low-Level Function Reference
This section describes the low level functions of the U3. These are commands sent over USB
directly to the processor on the U3.

The majority of Windows users will use the high-level UD driver rather than these low-level
functions.

5.1 General Protocol
Following is a description of the general U3 low-level communication protocol. There are two
types of commands:

Normal: 1 command word plus 0-7 data words.
Extended: 3 command words plus 0-125 data words.

Normal commands have a smaller packet size and can be faster in some situations. Extended
commands provide more commands, better error detection, and a larger maximum data
payload.

Normal command format:

Byte
0 Checksum8: Includes bytes 1-15.
1 Command Byte: DCCCCWWW

Bit 7: Destination bit:
0 = Local,

Extended command format:

1 = Remote.
Bits 6-3: Normal command number (0-14).
Bits 2-0: Number of data words.

2-15 Data words.

Byte
0 Checksum8: Includes bytes 1-5.
1 Command Byte: D1111CCC

Bit 7: Destination bit:
0 = Local,
1 = Remote.

Bits 6-3: 1111 specifies that this is an extended command.
Bits 2-0: Used with some commands.

2 Number of data words.
3 Extended command number.
4 Checksum16 (LSB)
5 Checksum16 (MSB)

6-255 Data words.

 89

Checksum calculations:

 and if true add one to the accumulator.

et the subarray consisting of bytes 1 and up.
 into a U16 accumulator.

otient and remainder.

 a high-level language, do the following for an extended command 16-bit checksum:

onvert bytes to U16 and sum into a U16 accumulator (can't overflow).

et the subarray consisting of bytes 1 through 5.
onvert bytes to U16 and sum into a U16 accumulator.

 quotient and remainder.
-Divide by 2^8 and sum the quotient and remainder.

Destination bit:

All checksums are a "1's complement checksum". Both the 8-bit and 16-bit checksum are
unsigned. Sum all applicable bytes in an accumulator, 1 at a time. Each time another byte is

dded, check for overflow (carry bit),a

In a high-level language, do the following for the 8-bit normal command checksum:

-G
-Convert bytes to U16 and sum
-Divide by 2^8 and sum the qu
-Divide by 2^8 and sum the quotient and remainder.

In

-Get the subarray consisting of bytes 6 and up.
-C

Then do the following for the 8-bit extended checksum:

-G
-C
-Divide by 2^8 and sum the

This bit specifies whether the command is destined for the local or remote target. This bit is
ignored on the U3.

Multi-byte parameters:

 the following function definitions there are various multi-byte parameters. The least
ignificant byte of the parameter will always be found at the lowest byte number. For instance,

Config are the IP address which is 4 bytes long. Byte 10 is the
least significant byte (LSB), and byte 13 is the most significant byte (MSB).

Masks:

In
s
bytes 10 through 13 of Comm

Some functions have mask parameters. The WriteMask found in some functions specifies
which parameters are to be written. If a bit is 1, that parameter will be updated with the new
passed value. If a bit is 0, the parameter is not changed and only a read is performed.

The AINMask found in some functions specifies which analog inputs are acquired. This is a 16-
bit parameter where each bit corresponds to AIN0-AIN15. If a bit is 1, that channel will be
acquired.

The digital I/O masks, such as FIOMask, specify that the passed value for direction and state

re updated if a bit 1. If a bit of the mask is 0 only a read is performed on that bit of I/O.

a

 90

Binary Encoded Parameters:

er to
n

e bit in the
arameter (e.g. the direction of FIO0 is set in bit 0 of parameter FIODir). For instance, in the

s the
irection of each of the 8 FIO lines:

re input,
ut, all other FIO lines are input,

• 0 7

Many parameters in the following functions use specific bits within a single integer paramet
write/read specific information. In particular, most digital I/O parameters contain the informatio
for each bit of I/O in one integer, where each bit of I/O corresponds to the sam
p
function ControlConfig, the parameter FIODir is a single byte (8 bits) that writes/read
d

• if FIODir is 0, all FIO lines are input,
• if FIODir is 1 (20), FIO0 is output, FIO1-FIO7 a
• if FIODir is 5 (20 + 22), FIO0 and FIO2 are outp

if FIODir is 255 (2 + … + 2), FIO0-FIO7 are output.

 91

5.2 Low-Level Functions

se
5.2.1 BadChecksum
If the processor detects a bad checksum in any command, the following 2-byte normal respon
will be sent and nothing further will be done.

ponse:Res

Byte
0 0xB8
1 0xB8

 92

5.2.2 ConfigU3
Writes and reads various configuration settings. Although this function has many of the same

ns, most parameters in this case are affecting the power-up values,

rom FIO6 to SPC (FIO2 to SCL on U3 1.20/1.21),

If WriteMask is nonzero, some or all default values are written to flash. The U3 flash has a
rated endurance of at least 20000 writes, which is plenty for reasonable operation, but if this
function is called in a high-speed loop with a nonzero WriteMask, the flash could eventually be
damaged.

parameters as other functio
not the current values. There is a hardware method to restore bytes 9-20 to the factory default
value of 0x00: Power up the U3 with a short f
then remove the jumper and power cycle the device again.

Command:

Byte
0 Checksum8
1 0xF8
2 0x0A
3 0x08
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 WriteMask0

Bit 5: CompatibilityOptions
Bit 4: TimerClockConfig & TimerClockDivisor
Bit 3: LocalID
Bit 2: DAC Defaults
Bit 1: Digital I/O Defaults
Bit 0: Reserved

7 WriteMask1 (Reserved)
8 LocalID
9 TimerCounterConfig

Bits 4-7: TimerCounterPinOffset
Bit 3: Enable Counter1
Bit 2: Enable Counter0
Bits 0-1: Number of timers enabled

10 FIOAnalog
11 FIODirection
12 FIOState
13 EIOAnalog
14 EIODirection
15 EIOState
16 CIODirection
17 CIOState
18 DAC1Enable
19 DAC0
20 DAC1
21 TimerClockConfig
22 TimerClockDivisor (0 = ÷256)
23 CompatibilityOptions
24 0x00
25 0x00

 93

Response:

Byte
0 Checksum8
1 0xF8
2 0x10
3 0x08
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 Reserved
8 Reserved

9-10 Fi

• WriteMask: Has bits that determine which, if any, of the parameters will be written to
flash as the reset defaults. If a bit is 1, that parameter will be updated with the new
passed value. If a bit is 0, the parameter is not changed and only a read is performed.
Note that reads return reset defaults, not necessarily current values (except for LocalID).
For instance, the value returned by FIODirection is the directions at reset, not
necessarily the current directions.

• LocalID: If the WriteMask bit 3 is set, the value passed become the default value,
meaning it is written to flash and used at reset. This is a user-configurable ID that can
be used to identify a specific LabJack. The return value of this parameter is the current
value and the power-up default value.

• TimerCounterConfig: If the WriteMask bit 1 is set, the value passed becomes the default
value, meaning it is written to flash and used at reset. The return value of this parameter
is a read of the power-up default. See Section 5.2.3.

• FIO/EIO/CIO: If the WriteMask bit 1 is set, the values passed become the default
values, meaning they are written to flash and used at reset. Regardless of the mask bit,
this function has no effect on the current settings. The return value of these parameters
are a read of the power-up defaults.

rmwareVersion
11-12 BootloaderVersion
13-14 HardwareVersion
15-18 SerialNumber
19-20 ProductID

21 LocalID
22 TimerCounterMask
23 FIOAnalog
24 FIODirection
25 FIOState
26 EIOAnalog
27 EIODirection
28 EIOState
29 CIODirection
30 CIOState
31 DAC1Enable
32 DAC0
33 DAC1
34 TimerClockConfig
35 TimerClockDivisor (0 = ÷256)
36 CompatibilityOptions
37 VersionInfo

 94

• DAC: If the WriteMask bit 2 is set, the values passed become the default values,
meaning they are written to flash and used at reset. Regardless of the mask bit, this
function has no effect on the current settings. The return values of these parameters are
a read of the power-up defaults.

• TimerClockConfig & TimerClockDivisor: If the WriteMask bit 4 is set, the values passed
become the default values, meaning they are written to flash and used at reset. The
return values of these parameters are a read of the power-up defaults. See Section
5.2.4.

• CompatibilityOptions: If the WriteMask bit 5 is set, the value passed becomes the
default value, meaning it is written to flash and used at reset. The return value of this
parameter is a read of the power-up default. If bit 0 is set, Timer Counter Pin Offset
errors are ignored. If bit 1 is set, all DAC operations will use 8-bit mode rather than 10-
bit mode.

• FirmwareVersion: Fixed parameter specifies the version number of the main firmware.
A firmware upgrade will generally cause this parameter to change. The lower byte is the
integer portion of the version and the higher byte is the fractional portion of the version.

• BootloaderVersion: Fixed parameter specifies the version number of the bootloader.
The lower byte is the integer portion of the version and the higher byte is the fractional
portion of the version.

• HardwareVersion: Fixed parameter specifies the version number of the hardware. The
lower byte is the integer portion of the version and the higher byte is the fractional
portion of the version.

• SerialNumber: Fixed parameter that is unique for every LabJack.
• ProductID: (3) Fixed parameter identifies this LabJack as a U3.
• VersionInfo: Bit 0 specifies U3B. Bit 1 specifies U3C and if set then bit 4 specifies -HV

version.

 95

5.2.3
Writes

• WriteMask: Has bits that determine which, if any, of the parameters will be written.
• TimerCounterConfig: Used to enable/disable timers and counters. Timers/counters will

be assigned to IO pins starting with FIO0 plus TimerCounterPinOffset (4-8 only starting
with hardware revision 1.30). Timer0 takes the first IO pin, then Timer1, Counter0, and
Counter1. Whenever this function is called and timers are enabled, the timers are
initialized to mode 10, so the desired timer mode must always be specified after every

 ConfigIO
and reads the current IO configuration.

Command:

Byte
0 Checksum8

2
3
4
5 um16 (MSB)

Bit 1: Reserved, Pass 0
Bit 0: Enable DAC1

10 FIOAnalog
11 EIOAnalog

Response:

1 0xF8
0x03
0x0B
Checksum16 (LSB)
Checks

6 WriteMask
Bit 4: Reserved, Pass 0
Bit 3: EIOAnalog
Bit 2: FIOAnalog
Bit 1: DAC1Enable
Bit 0: TimerCounterConfig

7 Reserved
8 TimerCounterConfig

Bits 4-7: TimerCounterPinOffset
Bit 3: Enable Counter1
Bit 2: Enable Counter0
Bits 0-1: Number of timers enabled

9 DAC1Enable (ignored on hardware rev 1.30+)

Byte
0 Checksum8
1 0xF8
2 0x03
3 0x0B
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 Reserved
8 TimerCounterConfig
9 DAC1Enable

10 FIOAnalog
11 EIOAnalog

 96

call to this function. Note that Counter0 is not available when using a timer clock base
 a timer clock divisor (TimerClockBase = 3-6).

.20/1.21 only, bit 0 enables DAC1. When DAC1

When DAC1 is enabled, the internal Vref is not available for the analog inputs and Vreg
(~3.3 volts) is used as the AIN reference. Starting with hardware revision 1.30, DAC1 is
always enabled.

• FIOAnalog: Each bit determines whether that bit of FIO is analog input (=1) or digital I/O
(=0).

• EIOAnalog: Each bit determines whether that bit of EIO is analog input (=1) or digital I/O
(=0).

that supports
• DAC1Enable: On hardware revisions 1

is disabled, it outputs a constant voltage of 1.5 times the internal Vref (~2.44 volts).

 97

5.2.4
Writes

• TimerClockConfig: Bit 7 determines whether the new TimerClockBase and
TimerClockDivisor are written, or if just a read is performed. Bits 0-2 specify the
TimerClockBase. If TimerClockBase is 3-6, then Counter0 is not available.

• TimerClockDivisor: The base timer clock is divided by this value, or divided by 256 if this
value is 0. Only applies if TimerClockBase is 3-6.

a

ConfigTimerClock
and read the timer clock configuration.

Comm nd:

Byte
0 Checksum8

0xF81

3 0 0A

5 ecksum16 (MSB)
6 Reserved
7 Reserved
8 TimerClockConfig

Bit 7: Configure the clock
Bits 2-0: TimerClockBase

b000: 4 MHz
b001: 12 MHz
b010: 48 MHz (Default)
b011: 1 MHz /Divisor
b100: 4 MHz /Divisor
b101: 12 MHz /Divisor
b110: 48 MHz /Divisor

9 TimerClockDivisor (0 = ÷256)

Response:

2 0x02
x

4 Checksum16 (LSB)
Ch

Byte
0 Checksum8
1 0xF8
2 0x02
3 0x0A
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 Reserved
8 TimerClockConfig
9 TimerClockDivisor (0 = ÷256)

 98

5.2.5 Feedback
A flexible function that handles all command/response functionality. One or more IOTypes are
used to perform a single write/read or multiple writes/reads.

Note that the general protocol described in Section 4.1 defines byte 2 of an extended command
as the number of data words, which is the number of words in a packet beyond the first 3 (a
word is 2 bytes). Also note that the overall size of a packet must be an even number of bytes,
so in this case an extra 0x00 is added to the end of the command and/or response if needed to
accomplish this.

Since this command has a flexible size, byte 2 will vary. For instance, if a single IOType of
PortStateRead (d26) is passed, byte 2 would be equal to 1 for the command and 3 for the
response. If a single IOType of LED (d9) is passed, an extra 0 must be added to the command
to make the packet have an even number of bytes, and byte 2 would be equal to 2. The
response would also need an extra 0 to be even, and byte 2 would be equal to 2.

, up to the
tgoing
the

•
sequential numbers to ensure the responses are in order and associated with the proper
command.

Command:

Byte
0 Checksum8
1 0xF8
2 0.5 + Number of Data Words (IOTypes and Data)
3 0x00
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Echo

7-63 IOTypes and Data

Response:

Byte
0 Checksum8
1 0xF8
2 1.5 + Number of Data Words (If Errorcode = 0)
3 0x00
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 ErrorFrame
8 Echo

9-63 Data

• IOTypes & Data: One or more IOTypes can be passed in a single command
maximum packet size. More info about the available IOTypes is below. In the ou
command each IOType is passed and accompanied by 0 or more data bytes. In
incoming response, only data bytes are returned without the IOTypes.
Echo: This byte is simply echoed back in the response. A host application might pass

 99

• ErrorFrame: If Errorcode is not zero, this parameter indicates which IOType caused the
tance, if the 3rd passed IOType caused the error, the ErrorFrame would be

BitDirRead 12 2 1
BitDirWrite 13 2 0

PortStateRead 26 1 3
PortStateWrite 27 7 0
PortDirRead 28 1 3
PortDirWrite 29 7 0
DAC0 (8-bit) 34 2 0
DAC1 (8-bit) 35 2 0
DAC0 (16-bit) 38 3 0
DAC1 (16-bit) 39 3 0

Timer0 42 4 4
Timer0Config 43 4 0

Timer1 44 4 4
Timer1Config 45 4 0

Counter0 54 2 4
Counter1 55 2 4
Buzzer 63 6 0

error. For ins
equal to 3. Also note that data is only returned for IOTypes before the one that caused
the error, so if any IOType causes an error the overall function response will have less
bytes than expected.

IOTypes for Feedback Command:

Name IOType (dec) WriteBytes ReadBytes
AIN 1 3 2

WaitShort 5 2 0
WaitLong 6 2 0

LED 9 2 0
BitStateRead 10 2 1
BitStateWrite 11 2 0

 100

5.2 1

This IOType returns a single analog input reading.

• Positive Channel: 0-15 for AIN0-AIN15, 30 for temp sensor, or 31 for Vreg. Note that
AIN0-AIN7 appear on FIO0-FIO7, and AIN8-AIN15 appear on EIO0-EIO7.

• LongSettling: If this bit is set, additional settling time is added between the multiplexer
configuration and the analog to digital conversion.

put conversion is done, at the expense

ded. Note that
15 appear on EIO0-EIO7.

d as a 16-bit value (always
unsigned).

5.2.5.2 WaitShort: IOType=5

This IOType provides a way to add a delay during execution of the Feedback function. The
typical use would be putting this IOType in between IOTypes that set a digital output line high

nd low, thus providing a simple way to create a pulse. Note that this IOType uses the same
ternal timer as stream mode, so cannot be used while streaming.

• Time: This value (0-255) is multiplied by 128 microseconds to determine the delay.

5.2.5.3 WaitLong: IOType=6

This IOType provides a way to add a delay during execution of the Feedback function. The
typical use would be putting this IOType in between IOTypes that set a digital output line high

.5. AIN: IOType=1
AIN, 3 Command Bytes:

0
1 Bits 4-0: Positive Channel

Bit 6: LongSettling
Bit 7: QuickSample
Negative Channel

IOType=1

2

ponse Bytes:2 Res

• QuickSample: If this bit is set, a faster analog in
of increased noise.

• Negative Channel: 0-15 for AIN0-AIN15, 30 for Vref, or 31 for single-en
AIN0-AIN7 appear on FIO0-FIO7, and AIN8-AIN

• AIN LSB & MSB: Analog input reading is returned justifie

0 AIN LSB
1 AIN MSB

WaitShort, 2 Command Bytes:
0 IOType=5
1 Time (*128 us)

0 Response Bytes:

a
in

WaitLong, 2 Command Bytes:
0 IOType=6
1 Time (*32 ms)

0 Response Bytes:

 101

and low, thus providing a simple way to create a pulse. Note that this IOType uses the same
internal timer as stream mode, so cannot be used while streaming.

• Time: This value (0-255) is multiplied by 32 milliseconds to determine the delay.

5.2.5.4 LED: IOType=9

5

lines configured as digital (not

.2.5.6 BitStateWrite: IOType=11

ngle bit of digital I/O. The direction of the specified line is

• IO Number: 0-7=FIO, 8-15=EIO, or 16-19=CIO.
• State: 1=High, 0=Low.

LED, 2 Command Bytes:
0 IOType=9
1 State

This IOType simply turns the status LED on or off.
0 Response Bytes:

• State: 1=On, 0=Off.

5.2.5. BitStateRead: IOType=10

Bit tSta eRead, 2 Command Bytes:
0 IOType=10
1 Bits 0-4: IO Number

onse Byte:1 Resp

This IOType reads the state of a sin

0 Bit 0: State

gle bit of digital I/O. Only
analog) return valid readings.

• IO Number: 0-7=FIO, 8-15=EIO, or 16-19=CIO.
• State: 1=High, 0=Low.

5

BitStateWrite, 2 Command Bytes:
0 IOType=11
1 Bits 0-4: IO Number

Bit 7: State

0 Response Bytes:

This IOType writes the state of a si
forced to output.

 102

5.2.5.7 BitDirRead: IOType=12

BitDirRead, 2 Command Bytes:

0 IOType=12
1 Bits 0-4: IO Number

ponse Byte:1 Res

This IOType reads the direction of a single bit of digital I/O. This is the digital direction only, and

nfigured as digital or analog.

nd 16-19=CIO. Only

 bit of I/O such that 1=High and
are high, State=d1048575.

r I/O are low
(b000000010000011100000111), State=d67335.

does not provide any information as to whether the line is co

• IO Number: 0-7=FIO, 8-15=EIO, or 16-19=CIO.
• Direction: 1=Output, 0=Input.

5.2.5.8 BitDirWrite: IOType=13

0 Bit 0: Direction

Bit WDir rite, 2 Command Bytes:
0 IOType=13
1 Bits 0-4: IO Number

0 Response Bytes:

Bit 7: Direction

This IOType writes the direction of a single bit of digital I/O.

• IO Number: 0-7=FIO, 8-15=EIO, or 16-19=CIO.
• Direction: 1=Output, 0=Input.

5.2.5.9 PortStateRead: IOType=26

PortStateRead, 1 Command Byte:
0 IOType=26

3 Response Bytes:
0-2 State

This IOType reads the state of all digital I/O, where 0-7=FIO, 8-15=EIO, a
lines configured as digital (not analog) return valid readings.

• State: Each bit of this value corresponds to the specified
0=Low. If all are low, State=d0. If all 20 standard digital I/O
If FIO0-FIO2 are high, EIO0-EIO2 are high, CIO0 are high, and all othe

 103

 104

.2.5.10 PortStateWrite: IOType=27

This IOType writes the state of all digital I/O, where 0-7=FIO, 8-15=EIO, and 16-19=CIO. The
direction of the selected lines is forced to output.

• WriteMask: Each bit specifies whether to update the corresponding bit of I/O.
• State: Each bit of this value corresponds to the specified bit of I/O such that 1=High and

0=Low. To set all low, State=d0. To set all 20 standard digital I/O high,
 high, EIO0-EIO2 high, CIO0 high, and all other I/O

l I/O, where 0-7=FIO, 8-15=EIO, and 16-19=CIO.

information as to whether the lines

ied bit of I/O such that
standard digital I/O are

output, Direction=d1048575. If FIO0-FIO2 are output, EIO0-EIO2 are output, CIO0 are
output, and all other I/O are input (b000000010000011100000111), Direction=d67335.

5.2.5.12 PortDirWrite: IOType=29

This IOType writes the direction of all digital I/O, where 0-7=FIO, 8-15=EIO, and 16-19=CIO.
Note that the desired lines must be configured as digital (not analog).

• WriteMask: Each bit specifies whether to update the corresponding bit of I/O.
• Direction: Each bit of this value corresponds to the specified bit of I/O such that

1=Output and 0=Input. To configure all as input, Direction=d0. For all 20 standard
digital I/O as output, Direction=d1048575. To configure FIO0-FIO2 as output, EIO0-

5

PortStateWrite, 7 Command Bytes:
0 IOType=27

1-3 WriteMask
4-6 State

0 Response Bytes:

State=d1048575. To set FIO0-FIO2
low (b000000010000011100000111), State=d67335.

5.2.5.11 PortDirRead: IOType=28

This IOType reads the directions of all digita
These are the digital directions only, and do not provide any
are configured as digital or analog.

• Direction: Each bit of this value corresponds to the specif
1=Output and 0=Input. If all are input, Direction=d0. If all 20

PortDirRead, 1 Command Byte:
0 IOType=28

3 Response Bytes:
0-2 Direction

PortDirWrite, 7 Command Bytes:
0 IOType=29

1-3 WriteMask
4-6 Direction

0 Response Bytes:

 104

EIO2 as output, CIO0 as output, and all other I/O as input
(b000000010000011100000111), Direction=d67335.

his IOType controls a single analog output.

um.

38,39

.2.5.15 Timer#: IOType=42,44

This O

•

• Timer: Returns the value from the timer module. This is the value before reset (if reset
was done).

DAC# (8-bit)

5.2.5.13 DAC# (8-bit): IOType=34,35

, 2 Command Bytes:
0 IOType=34,35
1 Value

0 Response Bytes:

T

• Value: 0=Minimum, 255=Maxim

5.2.5.14 DAC# (16-bit): IOType=

This IOType controls a single analog output.

• Value: 0=Minimum, 65535=Maximum.

5

 I Type provides the ability to update/reset a given timer, and read the timer value.

Value: These values are only updated if the UpdateReset bit is 1. The meaning of this
parameter varies with the timer mode.

Timer#, 4 Command Bytes:
0 IOType=42,44
1 Bit 0: UpdateReset
2 Value LSB
3 Value MSB

4 Response Bytes:
0 Timer LSB

DAC# (16-bit), 3 Command Bytes:
0 IOType=38,39
1 Value LSB
2 Value MSB

0 Response Bytes:

1 Timer
2 Timer
3 Timer MSB

 105

5.2.5.16 Timer#Config: IOType=43,45

rmation about the available modes.
• Value: The meaning of this parameter varies with the timer mode.

5.2 1

 a reset.

5.2 1

This IOType is used to make the buzzer buzz. The buzzer is only available on hardware
revisions 1.20 and 1.21, not on 1.30.

• Continuous: If this bit is set, the buzzer will toggle continuously.

 Toggles: If Continuous is false, this value specifies how many times the buzzer will

Timer#Config, 4 Command Bytes:
0 IOType=43,45
1 TimerMode
2 Value LSB
3 Value MSB

T
0 Response Bytes:
his IOType configures a particular timer.

• TimerMode: See Section 2.9 for more info

.5. 7 Counter#: IOType=54,55

Counter#, 2 Command Bytes:
0
1 Bit 0: Reset

IOType=54,55

4 Response Bytes:
0 Counter LSB

This IOType reads a hardware counter, and optionally can do

• Reset: Setting this bit resets the counter to 0 after reading.
• Counter: Returns the current count from the counter if enabled. This is the value before

reset (if reset was done).

.5. 8 Buzzer: IOType=63

1 Counter
2 Counter
3 Counter MSB

Buzzer, 6 Command Bytes:
0
1 Bit 0: Continuous
2 Period LSB

5 Toggles MSB

0 Response Bytes:

IOType=63

3 Period MSB
4 Toggles LSB

• Period: This value determines how many main firmware loops the processor will
execute before toggling the buzzer voltage.

•
toggle.

 106

5.2.6
Reads er
0x2A a (block numbers 0-7).

omm a which consists of 96 bytes
lock numbers 0-2). Do not call this function while streaming.

 ReadMem (ReadCal)
1 block (32 bytes) from the non-volatile user or calibration memory. Command numb
ccesses the user memory area which consists of 256 bytes
and number 0x2D accesses the calibration memory areC

(b

Command:

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x2A (0x2D)
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00
7 BlockNum

ponse:

Res

Byte
0 Checksum8
1 0xF8
2 0x11
3 0x2A (0x2D)
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 0x00

8-39 32 Bytes of Data

 107

5.2.7
Wr

memory area which consists of 256 bytes (block numbers 0-7).
ommand number 0x2B accesses the calibration memory area which consists of 96 bytes

efore writing. Do not call this function while

 WriteMem (WriteCal)
ites 1 block (32 bytes) to the non-volatile user or calibration memory. Command number

0x28 accesses the user
C
(block numbers 0-2). Memory must be erased b
streaming.

Command:

Byte
0 Checksum8
1 0xF8
2 0x11
3 0x28 (0x2B)
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00
7 BlockNum

8-39 32 Bytes of Data

Response:

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x28 (0x2B)
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 0x00

 108

5.2
The 3 rases
the ent 2C erases the entire calibration memory
are T the
function accidentally. Do not call this function while streaming.

.8 EraseMem (EraseCal)
 U uses flash memory that must be erased before writing. Command number 0x29 e

ire user memory area. Command number 0x
a. he EraseCal command has two extra constant bytes, to make it more difficult to call

Command:

Byte
0 Checksum8
1 0xF8
2 0x00 (0x01)
3 0x29 (0x2C)
4 Checksum16 (LSB)
5 Checksum16 (MSB)

(6) (0x4C)
(7) (0x6C)

Response:

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x29 (0x2C)
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 0x00

 109

5.2.9 Reset
Causes a soft or hard reset. A soft reset consists of re-initializing most variables without re-
enumeration. A hard reset is a reboot of the processor and does cause re-enumeration.

Command:

Byte
0 Checksum8
1 0x99
2 ResetOptions

Bit 1: Hard Reset
Bit 0: Soft Reset

3 0x00

Response:

Byte
0 Checksum8
1 0x99
2 0x00
3 Errorcode

 110

5.2.10 StreamConfig
Stream mode operates on a table of channels that are scanned at the specified scan rate.
Before starting a stream, you need to call this function to configure the table and scan clo
Requires U3 hardware version 1.21.

Command:

ck.

• NumChannels: This is the number of channels you will sample per scan (1-25).
• SamplesPerPacket: Specifies how many samples will be pulled out of the U3 FIFO

buffer and returned per data read packet. For faster stream speeds, 25 samples per
packet are required for data transfer efficiency. A small number of samples per packet

Byte
0 Checksum8
1 0xF8
2 NumChannels + 3
3 0x11
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 NumChannels
7 SamplesPerPacket (1-25)
8 Reserved
9 ScanConfig

Bit 7: Reserved
Bit 6: Reserved
Bit 3: Internal stream clock frequency.

b0: 4 MHz
b1: 48 MHz

Bit 2: Divide Clock by 256
Bits 0-1: Resolution

b00: 12.8-bit effective
b01: 11.9-bit effective
b10: 11.3-bit effective
b11: 10.5-bit effective

10-11 Scan Interval (1-65535)
12 PChannel
13 NChannel

Repeat 12-13 for each channel

Response:

Byte
0 Checksum8
1 0xF8
2 0x01
3 0x11
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 0x00

 111

would be desirable for low-latency data retrieval. Note that this parameter is not
number of channels per scan. Even if only 1 channel is

• PChannel/NChannel: For each channel, these two parameters specify the positive and
negative voltage measurement point. PChannel is 0-7 for FIO0-FIO7, 8-15 for EIO0-
EIO15, 30 for temp sensor, 31 for Vreg, or 193.-224 for digital/timer/counter channels.
NChannel is 0-7 for FIO0-FIO7, 8-15 for EIO0-EIO15, 30 for Vref, or 31 for single-ended.

necessarily the same as the
being scanned, SamplesPerPacket will usually be set to 25, so there are usually multiple
scans per packet.

• ScanConfig: Has bits to specify the stream bas clock and effective resolution.
• ScanInterval: (1-65535) This value divided by the clock frequency defined in the

ScanConfig parameter, gives the interval (in seconds) between scans.

 112

5.2.11 StreamStart
 U3

Once the stream settings are configured, this function is called to start the stream. Requires
hardware version 1.21.

Command:

Byte
0 0xA8
1 0xA8

Response:

Byte
0 Checksum8
1 0xA9
2 Errorcode
3 0x00

 113

5.2.12 StreamData
After starting the stream, the data will be sent as available in the following format. Reads olde
data from buffer. Requires U3 hardware version 1.21.

st

• SamplesPerPacket: From StreamConfig function.
• TimeStamp: Not currently implemented during normal operation, but after auto-recovery

this reports the number of packets missed (1-65535).
• PacketCounter: An 8-bit (0-255) counter that is incremented by one for each packet of

data. Useful to make sure packets are in order and no packets are missing.
• Sample#: Stream data is placed in a FIFO (first in first out) buffer, so Sample0 is the

oldest data read from the buffer. The analog input reading is returned justified as a 16-
bit value. Differential readings are signed, while single-ended readings are unsigned.

• Backlog: When streaming, the processor acquires data at precise intervals, and
transfers it to a FIFO buffer until it can be sent to the host. This value represents how
much data is left in the buffer after this read. The value ranges from 0-255, where 256
would equal 100% full.

tream mode on the U3 uses a feature called auto-recovery. If the stream buffer gets too full,
the U3 will go into auto-recovery mode. In this mode, the U3 no longer stores new scans in the
buffer, but rather new scans are discarded. Data already in the buffer will be sent until the
buffer contains less samples than SamplesPerPacket, and every StreamData packet will have
errorcode 59. Once the stream buffer contains less samples than SamplesPerPacket, the U3
will start to buffer new scans again. The next packet returned will have errorcode 60. This
packet will have 1 dummy scan where each sample is 0xFFFF, and this scan separates new
data from any pre auto-recovery data. Note that the dummy scan could be at the beginning,
middle, or end of this packet, and can even extend to following packets. Also, the TimeStamp
parameter in this packet contains the number of scans that were discarded, allowing correct
time to be calculated. The dummy scan counts as one of the missing scans included in the
TimeStamp value.

Response:

Byte
0 Checksum8
1 0xF9
2 4 + SamplesPerPacket
3 0xC0
4 Checksum16 (LSB)
5 Checksum16 (MSB)

6-9 TimeStamp
10 PacketCounter
11 Errorcode

12-13 Sample0
62 (max) Backlog
63 (max) 0x00

S

 114

5.2.13 StreamStop
Requires U3 hardware version 1.21.

Command:

Byte
0 0xB0
1 0xB0

Response:

Byte
0 Checksum8
1 0xB1

Errorcode
0x00

2
3

 115

5.3.14 Watchdog
Requires U3 hardware version 1.21. Controls a firmware based watchdog timer. Unattended
systems requiring maximum up-time might use this capability to reset the U3 or the entire
ystem. When any of the options are enabled, an internal timer is enabled which resets on any
coming USB communication. If this timer reaches the defined TimeoutPeriod before being

reset, the specified actions will occur. Note that while streaming, data is only going out, so
some other command will have to be called periodically to reset the watchdog timer.

If the watchdog is accidentally configured to reset the processor with a very low timeout period
(such as 1 second), it could be difficult to establish any communication with the device. In such

eset-to-default jumper can be used to turn off the watchdog (sets bytes 7-10 to 0).
ower up the U3 with a short from FIO6 to SPC (FIO2 to SCL on U3 1.20/1.21), then remove

the jumper and power cycle the device again. This also affects the parameters in the ConfigU3
function.

The watchdog settings (bytes 7-10) are stored in non-volatile flash memory, so every call to this
function where settings are written causes a flash erase/write. The flash has a rated endurance
of at least 20000 writes, which is plenty for reasonable operation, but if this function is called in
a high-speed loop the flash could be damaged.

s
in

a case, the r
P

Command:

Byte
0 Checksum8
1 0xF8
2 0x05
3 0x09
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 WriteMask

Bit 0: Write
7 WatchdogOptions

Bit 5: Reset on Timeout
Bit 4: Set DIO State on Timeout

8-9 TimeoutPeriod
10 DIOConfig

Bit 7: State
Bit 0-4: DIO#

11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Reserved

 116

Response:

Byte
0 Checksum8
1 0xF8

• WatchdogOptions: The watchdog is enabled when this byte is nonzero. Set the
appropriate bits to reset the device and/or update the state of 1 digital output.

• TimeoutPeriod: The watchdog timer is reset to zero on any incoming USB
f a write and read, but StreamData is

s

2 0x05
3 0x09
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 WatchdogOptions

8-9 TimeoutPeriod
10 DIOConfig
11 Reserved
12 Reserved
13 Reserved
14 Reserved
15 Reserved

communication. Note that most functions consist o
outgoing only and does not reset the watchdog. If the watchdog timer is not reset before
it counts up to TimeoutPeriod, the actions specified by WatchdogOptions will occur. The
watchdog timer has a clock rate of about 1 Hz, so a TimeoutPeriod range of 1-65535
corresponds to about 1 to 65535 seconds.

• DIOConfig: Determines which digital I/O is affected by the watchdog, and the state it i
set to. The specified DIO must have previously been configured for output. DIO# is a
value from 0-19 according to the following:

0-7 FIO0-FIO7
8-15 EIO0-EIO7
16-19 CIO0-CIO3

 117

Requires U3 hardware version 1.21. Sends and receives serial data using SPI synchronous
communication.

• NumSPIWords: This is the number of SPI bytes divided by 2. If the number of SPI
bytes is odd, round up and add an extra zero to the packet.

• SPIOptions: If AutoCS is true, the CS line is automatically driven low during the SPI
communication and brought back high when done. If DisableDirConfig is true, this
function does not set the direction of the lines, whereas if it is false the lines are
configured as CS=output, CLK=output, MISO=input, and MOSI=output. SPIMode
specifies the standard SPI mode as discussed below.

• SPIClockFactor: Sets the frequency of the SPI clock according the following
approximate formula: Frequency = 1000000/(10+10*(256-SPIClockFactor), where

5.3.15 SPI

Command:

Byte
0 Checksum8
1 0xF8
2 4 + NumSPIWords
3 0x3A
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 SPIOptions

Bit 7: AutoCS
Bit 6: DisableDirConfig
Bits 1-0: SPIMode (0=A, 1=B, 2=C, 3=D)

7 SPIClockFactor
8 Reserved
9 CSPinNum
10 CLKPinNum
11 MISOPinNum
12 MOSIPinNum
13 NumSPIBytesToTransfer
14 SPIByte0
… …

Response:

Byte
0 Checksum8
1 0xF8
2 1 + NumSPIWords
3 0x3A
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 NumSPIBytesTransferred
8 SPIByte0
… …

 118

passing a value of 0 corresponds to a factor of 256, and thus a maximum frequency of

he initial state of SCK is set properly (CPOL), by this function, before CS (chip select) is

o CPOL. If CPHA is 0, data is valid
going away from CPOL. Clock Polarity (CPOL) determines the idle state of SCK.

Up to 50 bytes can be written/read. Communication is full duplex so 1 byte is read at the same
time each byte is written.

about 100 kHz.
• CS/CLK/MISO/MOSI -PinNum: Assigns which digital I/O line is used for each SPI line.

Value passed is 0-19 corresponding to the normal digital I/O numbers as specified in
Section 2.8.

• NumSPIBytesToTransfer: Specifies how many SPI bytes will be transferred (1-50).

T
brought low (final state is also set properly before CS is brought high again). If CS is being
handled manually, outside of this function, care must be taken to make sure SCK is initially set
to CPOL before asserting CS.

All standard SPI modes supported (A, B, C, and D).

Mode A: CPHA=1, CPOL=1
Mode B: CPHA=1, CPOL=0
Mode C: CPHA=0, CPOL=1
Mode D: CPHA=0, CPOL=0

 Clock Phase (CPHA) is 1, data is valid on the edge going tIf

on the edge

 119

5.3.16 AsynchConfig
Requires U3 hardware version 1.21+. Configures the U3 UART for asynchronous
communication. On hardware version 1.30 the TX (transmit) and RX (receive) lines appear on
FIO/EIO after any timers and counters, so with no timers/counters enabled, and pin offset set to
4, TX=FIO4 and RX=FIO5. On hardware version 1.21, the UART uses SDA for TX and SCL for
RX. Communication is in the common 8/n/1 format. Similar to RS232, except that the logic is
normal CMOS/TTL. Connection to an RS232 device will require a converter chip such as the
MAX233, which inverts the logic and shifts the voltage levels.

• AsynchOptions: If Update is true, the new parameters are written (otherwise just a read
is done). If UARTEnable is true, the UART is enabled and the RX line will start buffering
any incoming bytes.

• BaudFactor16 (BaudFactor8): This 16-bit value sets the baud rate according the
following formula: BaudFactor16 = 2^16 - 48000000/(2 * Desired Baud). For example, a
BaudFactor16 = 63036 provides a baud rate of 9600 bps. (With hardware revision 1.21,
the value is only 8-bit and the formula is BaudFactor8 = 2^8 – TimerClockBase/(Desired
Baud)).

Command:

Byte
0 Checksum8
1 0xF8
2 0x02
3 0x14
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00

AsynchOptions7
Bit 7: Update
Bit 6: UARTEnable
Bit 5: Reserved

Reserved
9) BaudFactor16 (BaudFactor8 for hardware 1.21)

8
9-10 (

Response:

Byte
0
1
2
3
4
5 Checksum16 (MSB)
6 Errorcode
7 AsynchOptions
8 Reserved

9-10 (9) BaudFactor16 (BaudFactor8 for hardware 1.21)

Checksum8
0xF8
0x02
0x14
Checksum16 (LSB)

 120

5.3.17 AsynchTX
ardware version 1.21. Sends bytes to the U3 UART which will be sent

ber of asynch data bytes divided by 2. If the number
n extra zero to the packet.

 many bytes will be sent (0-56).
Buffer: Returns how many bytes are currently in the RX buffer.

Requires U3 h
asynchronously on the transmit line.

Command:

Byte
0 Checksum8
1 0xF8
2 1 + NumAsynchWords
3 0x15
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 0x00
7 NumAsynchBytesToSend
8 AsynchByte0
… …

Response:

Byte
0 Checksum8
1 0xF8
2 0x02
3 0x15
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 NumAsynchBytesSent
8 NumAsynchBytesInRXBuffer
9 0x00

• NumAsynchWords: This is the num
of bytes is odd, round up and add a

• NumAsynchBytesToSend: Specifies how
• NumAsynchBytesInRX

 121

5.3.18
Requir
(received on receive terminal). The buffer holds

• Flush: Empties the entire 256-byte RX buffer. If there are more than 32 bytes in the
buffer that data is lost.

• NumAsynchBytesInRXBuffer: Returns the number of bytes in the buffer before this
read.

• AsynchByte#: Returns the 32 oldest bytes from the RX buffer.

 AsynchRX
es U3 hardware version 1.21. Reads the oldest 32 bytes from the U3 UART RX buffer

256 bytes.

and:Comm

Byte

0 Checksum8
1 0xF8

6 0x00

Respon

2 0x01
3 0x16
4 Checksum16 (LSB)
5 Checksum16 (MSB)

7 Flush

se:

Byte
0
1 0xF8

4 Checksum16 (LSB)

7 NumAsynchBytesInRXBuffer
8 AsynchByte0
… …
39 AsynchByte31

Checksum8

2 0x11
3 0x16

5 Checksum16 (MSB)
6 Errorcode

 122

5.3.19 I2C
Requires U3 hardware version 1.21+. Sends and receives serial data using I2C (I2
synchronous communication.

Command:

C)

• s: If ResetAtStart is true, an I2C bus reset will be done before communicating.
• SpeedAdjust: Allows the communication frequency to be reduced. 0 is the maximum

speed of about 150 kHz. 20 is a speed of about 70 kHz. 255 is the minimum speed of
about 10 kHz.

Byte
0 Checksum8
1 0xF8
2 4+NumI2CWordsSend
3 0x3B
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 I2COptions

Bit 1: ResetAtStart
Bit 0: Reserved

7 SpeedAdjust
8 SDAPinNum
9 SCLPinNum
10 AddressByte
11 Reserved
12 NumI2CBytesToSend
13 NumI2CBytesToReceive
14 I2CByte0
… …

ponse:

Res

Byte
0 Checksum8
1 0xF8
2 3+NumI2CWordsReceive
3 0x3B
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 Reserved
8 AckArray0
9 AckArray1
10 AckArray2
11 AckArray3
12 I2CByte0
… …

• NumI2CWordsSend: This is the number of I2C bytes to send divided by 2. If the
number of bytes is odd, round up and add an extra zero to the packet. This parameter is
actually just to specify the size of this packet, as the NumI2CbytesToSend parameter
below actually specifies how many bytes will be sent.
I2COption

 123

• SDAP/SCLP -PinNum: Assigns which digital I/O line is used for each I2C line. Value
orresponding to the normal digital I/O numbers as specified in Section

ion 1.20
esistors of

• AddressByte: This is the first byte of data sent on the I2C bus. The upper 7 bits are the
address of the slave chip and bit 0 is the read/write bit. Note that the read/write bit is
controlled automatically by the LabJack, and thus bit 0 is ignored.

• NumI2CBytesToSend: Specifies how many I2C bytes will be sent (0-50).
• NumI2CBytesToReceive: Specifies how many I2C bytes will be read (0-52).
• I2Cbyte#: In the command, these are the bytes to send. In the response, these are the

bytes read.
• NumI2CWordsReceive: This is the number of I2C bytes to receive divided by 2. If the

number of bytes is odd, the value is rounded up and an extra zero is added to the
packet. This parameter is actually just to specify the size of this packet, as the
NumI2CbytesToReceive parameter above actually specifies how many bytes to read.

• AckArray#: Represents a 32-bit value where bits are set if the corresponding I2C write
byte was ack’ed. Useful for debugging up to the first 32 write bytes of communication.
Bit 0 corresponds to the last data byte, bit 1 corresponds to the second to last data byte,
and so on up to the address byte. So if n is the number of data bytes, the ACKs value
should be (2^(n+1))-1.

passed is 0-19 c
2.9. Note that the screw terminals labeled “SDA” and “SCL” on hardware revis
or 1.21 are not used for I2C. Note that the I2C bus generally requires pull-up r
perhaps 4.7 kΩ from SDA to Vs and SCL to Vs.

 124

5.3.20 SHT1X
Requires U3 hardware version 1.21. Reads temperature and humidity from a Sensirion SHT1X
sensor (which is used by the EI-1050). For more information

, see the EI-1050 datasheet from

labjack.com, and the SHT1X datasheet from sensirion.com.

passed is 0-7 corresponding to FIO0-FIO7. State and direction are controlled
automatically for the specified lines.

• StatusReg: Returns a read of the SHT1X status register.
• Temperature: Returns the raw binary temperature reading.
• Humidity: Returns the raw binary humidity reading.
• #CRC: Returns the CRC values from the sensor.

Command:

Byte
0 Checksum8
1 0xF8
2 0x02
3 0x39
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 DataPinNum (0-19)
7 ClockPinNum (0-19)
8 Reserved
9 Reserved

Response:

Byte
0 Checksum8
1 0xF8
2 0x05
3 0x39
4 Checksum16 (LSB)
5 Checksum16 (MSB)
6 Errorcode
7 0x00
8 StatusReg
9 StatusRegCRC

10-11 Temperature
12 TemperatureCRC

1 1
15
3- 4 Humidity

HumidityCRC

• Data/Clock -PinNum: Assigns which digital I/O line is used for each SPI line. Value

 125

5.3 Errorcodes
Following is a list of the low-level function errorcodes.

Code
1 SCRATCH_WRT_FAIL
2 SCRATCH_ERASE_FAIL
3 DATA_BUFFER_OVERFLOW
4 ADC0_BUFFER_OVERFLOW
5 FUNCTION_INVALID
6 SWDT_TIME_INVALID
7 XBR_CONFIG_ERROR
16 FLASH_WRITE_FAIL
17 FLASH_ERASE_FAIL
18 FLASH_JMP_FAIL
19 FLASH_PSP_TIMEOUT
20 FLASH_ABORT_RECEIVED
21 FLASH_PAGE_MISMATCH
22 FLASH_BLOCK_MISMATCH
23 FLASH_PAGE_NOT_IN_CODE_AREA
24 MEM_ILLEGAL_ADDRESS
25 FLASH_LOCKED
26 INVALID_BLOCK
27 FLASH_ILLEGAL_PAGE
28 FLASH_TOO_MANY_BYTES
29 FLASH_INVALID_STRING_NUM
40 SHT1x_COMM_TIME_OUT
41 SHT1x_NO_ACK
42 SHT1x_CRC_FAILED
43 SHT1X_TOO_MANY_W_BYTES
44 SHT1X_TOO_MANY_R_BYTES
45 SHT1X_INVALID_MODE
46 SHT1X_INVALID_LINE
48 STREAM_IS_ACTIVE
49 STREAM_TABLE_INVALID
50 STREAM_CONFIG_INVALID
51 STREAM_BAD_TRIGGER_SOURCE
52 STREAM_NOT_RUNNING
53 STREAM_INVALID_TRIGGER
54 STREAM_ADC0_BUFFER_OVERFLOW
55 STREAM_SCAN_OVERLAP
56 STREAM_SAMPLE_NUM_INVALID
57 STREAM_BIPOLAR_GAIN_INVALID
58 STREAM_SCAN_RATE_INVALID
59 STREAM_AUTORECOVER_ACTIVE
60 STREAM_AUTORECOVER_REPORT
63 STREAM_AUTORECOVER_OVERFLOW

 126

 127

Errorc

odes (Continued):

Code
TIMER_INVALID_MODE
TIMER_QUADRATURE_AB_ERROR
TIMER_QUAD_PULSE_SEQUENCE
TIMER_BAD_CLOCK_SOURCE

64
65
66
67

70

97
98
99

0
101
102

68 TIMER_STREAM_ACTIVE
69 TIMER_PWMSTOP_MODULE_ERROR

TIMER_SEQUENCE_ERROR
71 TIMER_LINE_SEQUENCE_ERROR
72 TIMER_SHARING_ERROR
80 EXT_OSC_NOT_STABLE
81 INVALID_POWER_SETTING

PLL_NOT82 _LOCKED
96 INVALID_PIN

PIN_CONFIGURED_FOR_ANALOG
PIN_CONFIGURED_FOR_DIGITAL
IOTYPE_SYNCH_ERROR

10 INVALID_OFFSET
IOTYPE_NOT_VALID
TC_PIN_OFFSET_MUST_BE_4-8

 127

A. Specifications

Specifications at 25 degrees C and Vusb/Vext = 5.0V, except where noted.

Parameter Conditions Min Typical Max Units
General
USB Cable Length 5 meters
Supply Voltage 4.0 5.0 5.25 volts
Supply Current (1) Hardware V1.21+ 50 mA
Operating Temperature -40 85 °C
Clock Error -40 to 85 °C 1.5 %
Typ. Command Execution Time (2) USB high-high 0.6 ms

USB other 4 ms
Vs Outputs
Typical Voltage (3) Self-Powered 4.75 5.0 5.25 volts

Bus-Powered 4.0 5.0 5.25
Maximum Current (3) Self-Powered 450 mA

Bus-Powered 50 mA

(1) Typical current drawn by the U3 itself, not including any user connections.

(3) These specifications are related to the power provided by the host/hub. Self- and bus-powered describes the host/hub, not
the U3. Self-powered would apply to USB hubs with a power supply, all known desktop computer USB hosts, and some
notebook computer USB hosts. An example of bus-powered would be a hub with no power supply, or many PDA ports. The
current rating is the maximum current that should be sourced through the U3 and out of the Vs terminals.

(2) Total typical time to execute a single Feedback function with no analog inputs. Measured by timing a Windows application
that performs 1000 calls to the Feedback function. See Section 3.1 for more timing information.

 128

Parameter Conditions Min Typical Max Units

 129

0 2.44 volts
-2.44 2.44 volts

Special, LV 0 3.6 volts
Single-Ended, HV -10.3 10.3 volts

Special, HV -10.3 20.1 volts
Max AIN Voltage to GND (2) Valid Readings, LV -0.3 3.6 volts
Max AIN Voltage to GND (3) No Damage, FIO -10 10 volts

No Damage, EIO -6 6 volts
No Damage, HV -40 40 volts

Input Impedance (4) LV 40 MΩ
HV 1.3 MΩ

Source Impedance (4) LongSettling Off, LV 10 kΩ
LongSettling On, LV 200 kΩ
LongSettling Off, HV 1 kΩ
LongSettling On, HV 1 kΩ

Resolution 12 bits
Integral Linearity Error ±0.05 % FS
Differential Linearity Error ±1 counts
Absolute Accuracy Single-Ended ±0.13 % FS

Differential ±0.25 % FS
Special 0-3.6 ±0.25 % FS

Temperature Drift 15 ppm/°C
Noise (Peak-To-Peak) (5) QuickSample Off ±1 counts

QuickSample On ±2 counts
Effective Resolution (RMS) (6) QuickSample Off >12 bits
Noise-Free Resolution (5) QuickSample Off 11.0 bits

Single-Ended, LV 1.2 mV
Diff., Special, LV 2.4 mV
Single-Ended, HV 9.8 mV

Special, HV 19.5 mV
Command/Response Speed See Section 3.1
Stream Performance See Section 3.2

(5) Measurements taken with AIN connected to a 2.048 reference (REF191 from Analog Devices) or GND. All "counts" data
are aligned as 12-bit values. Noise-free data is determined by taking 128 readings and subtracting the minimum value from the
maximum value.

ffective (RMS) data is determined from the standard deviation of 128 readings. In other words, this data represents most
ngs, whereas noise-free data represents all readings.

(1) With DAC1 disabled on hardware versions < 1.30.

(2) This is the maximum voltage on any AIN pin compared to ground for valid measurements. Note that a differential channel
has a minimum voltage of -2.44 volts, meaning that the positive channel can be 2.44 volts less than the negative channel, but
no AIN pin can go more than 0.3 volts below ground.
(3) Maximum voltage, compared to ground, to avoid damage to the device. Protection level is the same whether the device is
powered or not.

(4) The low-voltage analog inputs essentially connect directly to a SAR ADC on the U3, presenting a capacitive load to the
signal source. The high-voltage inputs connect first to a resistive level-shifter/divider. The key specification in both cases is the
maximum source impedance. As long as the source impedance is not over this value, there will be no substantial errors due to
impedance problems.

Analog Inputs
Typical Input Range (1) Single-Ended, LV

Differential, LV

(6) E
readi

Parameter Conditions Min Typical Max Units
Analog Outputs (DAC)
Nominal Output Range (1) No Load 0.04 4.95 volts

@ ±2.5 mA 0.225 4.775 volts
Resolution 10 bits
Absolute Accuracy 5% to 95% FS ±5.0 % FS
Integral Linearity Error ±1 counts
Differential Linearity Error ±1 counts
Error Due To Loading @ 100 μA 0.1 %

@ 1 mA 1 %
Source Impedance 50 Ω
Short Circuit Current (2) Max to GND 45 mA
Slew Rate 0.4 V/ms
Digital I/O, Timers, Counters
Low Level Input Voltage -0.3 0.8 volts
High Level Input Voltage 2 5.8 volts
Maximum Input Voltage (3) FIO -10 10 volts

EIO/CIO -6 6 volts
Output Low Voltage (4) No Load 0 volts
 FIO Sinking 1 mA 0.55 volts
 EIO/CIO Sinking 1 mA 0.18 volts
 EIO/CIO Sinking 5 mA 0.9 volts
O

utput High Voltage (4) No Load 3.3 volts
IO Sourcing 1 mA 2.75 volts

Sourcing 1 mA 3.12 volts
 EIO/CIO Sourcing 5 mA 2.4 volts
Short Circuit Current (4) FIO 6 mA

EIO/CIO 18 mA
Output Impedance (4) FIO 550 Ω

EIO/CIO 180 Ω
Counter Input Frequency (5) Hardware V1.21+ 8 MHz
Input Timer Total Edge Rate (6) No Stream, V1.21+ 30000 edges/s

While Streaming 7000 edges/s

(2) Continuous short circuit will not cause damage.

(5) Hardware counters. 0 to 3.3 volt square wave. Limit about 2 MHz with older hardware versions.

(1) Maximum and minimum analog output voltage is limited by the supply voltages (Vs and GND). The specifications
assume Vs is 5.0 volts. Also, the ability of the DAC output buffer to drive voltages close to the power rails, decreases with
increasing output current, but in most applications the output is not sinking/sourcing much current as the output voltage
approaches GND.

(3) Maximum voltage to avoid damage to the device. Protection works whether the device is powered or not, but continuous
voltages over 5.8 volts or less than -0.3 volts are not recommened when the U3 is unpowered, as the voltage will attempt to
supply operating power to the U3 possibly causing poor start-up behavior.

(6) To avoid missing edges, keep the total number of applicable edges on all applicable timers below this limit. See Section
2.9 for more information. Limit about 10000 with older hardware versions.

(4) These specifications provide the answer to the question: "How much current can the digital I/O sink or source?". For
instance, if EIO0 is configured as output-high and shorted to ground, the current sourced by EIO0 into ground will be about 18
mA (3.3/180). If connected to a load that draws 5 mA, EIO0 can provide that current but the voltage will droop to about 2.4
volts instead of the nominal 3.3 volts. If connected to a 180 ohm load to ground, the resulting voltage and current will be
about 1.65 volts @ 9 mA.

 F
 EIO/CIO

 130

B. Enclosure & PCB Drawings
rt #TKAD.

Units are inches.

The square holes shown below are for a DIN rail mounting adapter: Tyco pa

 131

 132

U3 PCB drawing showing the coordinates (in Inches) for pin 1 of each connector.

 133

	Declaration of Conformity
	1. Installation on Windows
	1.1 Control Panel Application (LJControlPanel)
	1.2 Self-Upgrade Application (LJSelfUpgrade)

	2. Hardware Description
	2.1 USB
	2.2 Status LED
	2.3 GND and SGND
	2.4 Vs
	2.5 Flexible I/O (FIO/EIO)
	2.6 AIN
	2.6.1 Channel Numbers
	2.6.2 Converting Binary Readings to Voltages
	2.6.2.1 Analog Inputs With DAC1 Enabled (Hardware Revisions 1.20 & 1.21 only)

	2.6.3 Typical Analog Input Connections
	2.6.3.1 Signal from the LabJack
	2.6.3.2 Unpowered isolated signal
	2.6.3.3 Signal powered by the LabJack
	2.6.3.4 Signal powered externally
	2.6.3.5 Amplifying small signal voltages
	2.6.3.6 Signal voltages beyond 0-2.44 volts (and resistance measurement)
	2.6.3.7 Measuring current (including 4-20 mA) with a resistive shunt
	2.6.3.8 Floating/Unconnected Inputs

	2.6.4 Internal Temperature Sensor

	2.7 DAC
	2.7.1 Typical Analog Output Connections
	2.7.1.1 High Current Output
	2.7.1.2 Different Output Ranges

	2.8 Digital I/O
	2.8.1 Typical Digital I/O Connections
	2.8.1.1 Input: Driven Signals
	2.8.1.2 Input: Open-Collector Signals
	2.8.1.3 Input: Mechanical Switch Closure
	2.8.1.4 Output: Controlling Relays

	2.9 Timers/Counters
	2.9.1 Timer Mode Descriptions
	2.9.1.1 PWM Output (16-Bit, Mode 0)
	2.9.1.2 PWM Output (8-Bit, Mode 1)
	2.9.1.3 Period Measurement (32-Bit, Modes 2 & 3)
	2.9.1.4 Duty Cycle Measurement (Mode 4)
	2.9.1.5 Firmware Counter Input (Mode 5)
	2.9.1.6 Firmware Counter Input With Debounce (Mode 6)
	2.9.1.7 Frequency Output (Mode 7)
	2.9.1.8 Quadrature Input (Mode 8)
	2.9.1.9 Timer Stop Input (Mode 9)
	2.9.1.10 System Timer Low/High Read (Modes 10 & 11)
	2.9.1.11 Period Measurement (16-Bit, Modes 12 & 13)

	2.9.2 Timer Operation/Performance Notes

	2.10 SPC (… and SCL/SDA/SCA)
	2.11 DB15
	2.11.1 CB15 Terminal Board
	2.11.2 RB12 Relay Board

	 2.12 U3-OEM
	2.13 Hardware Revision Notes

	 3. Operation
	3.1 Command/Response
	 3.2 Stream Mode
	3.2.1 Streaming Digital Inputs, Timers, and Counters

	4. LabJackUD High-Level Driver
	4.1 Overview
	4.1.1 Function Flexibility
	4.1.2 Multi-Threaded Operation

	 4.2 Function Reference
	4.2.1 ListAll()
	4.2.2 OpenLabJack()
	4.2.3 eGet() and ePut()
	4.2.4 eAddGoGet()
	4.2.5 AddRequest()
	4.2.6 Go()
	4.2.7 GoOne()
	4.2.8 GetResult()
	4.2.9 GetFirstResult() and GetNextResult()
	4.2.10 DoubleToStringAddress()
	4.2.11 StringToDoubleAddress()
	4.2.12 StringToConstant()
	4.2.13 ErrorToString()
	4.2.14 GetDriverVersion()
	4.2.15 TCVoltsToTemp()
	4.2.16 ResetLabJack()
	4.2.17 eAIN()
	4.2.18 eDAC()
	4.2.19 eDI()
	4.2.20 eDO()
	4.2.21 eTCConfig()
	4.2.22 eTCValues()

	 4.3 Example Pseudocode
	4.3.1 Open
	4.3.2 Configuration
	4.3.3 Analog Inputs
	4.3.4 Analog Outputs
	4.3.5 Digital I/O
	4.3.6 Timers & Counters
	4.3.7 Stream Mode
	4.3.8 Raw Output/Input
	4.3.9 Easy Functions
	4.3.10 SPI Serial Communication
	4.3.11 I2C Serial Communication
	4.3.12 Asynchronous Serial Communication
	4.3.13 Watchdog Timer
	4.3.14 Miscellaneous

	 4.4 Errorcodes

	5. Low-Level Function Reference
	5.1 General Protocol
	 5.2 Low-Level Functions
	5.2.1 BadChecksum
	 5.2.2 ConfigU3
	 5.2.3 ConfigIO
	 5.2.4 ConfigTimerClock
	 5.2.5 Feedback
	 5.2.5.1 AIN: IOType=1
	5.2.5.2 WaitShort: IOType=5
	5.2.5.3 WaitLong: IOType=6
	5.2.5.4 LED: IOType=9
	5.2.5.5 BitStateRead: IOType=10
	5.2.5.6 BitStateWrite: IOType=11
	 5.2.5.7 BitDirRead: IOType=12
	5.2.5.8 BitDirWrite: IOType=13
	5.2.5.9 PortStateRead: IOType=26
	 5.2.5.10 PortStateWrite: IOType=27
	5.2.5.11 PortDirRead: IOType=28
	5.2.5.12 PortDirWrite: IOType=29
	5.2.5.13 DAC# (8-bit): IOType=34,35
	5.2.5.14 DAC# (16-bit): IOType=38,39
	5.2.5.15 Timer#: IOType=42,44
	5.2.5.16 Timer#Config: IOType=43,45
	5.2.5.17 Counter#: IOType=54,55
	5.2.5.18 Buzzer: IOType=63

	 5.2.6 ReadMem (ReadCal)
	 5.2.7 WriteMem (WriteCal)
	 5.2.8 EraseMem (EraseCal)
	 5.2.9 Reset
	 5.2.10 StreamConfig
	 5.2.11 StreamStart
	 5.2.12 StreamData
	 5.2.13 StreamStop
	 5.3.14 Watchdog
	5.3.15 SPI
	 5.3.16 AsynchConfig
	 5.3.17 AsynchTX
	 5.3.18 AsynchRX
	 5.3.19 I2C
	 5.3.20 SHT1X

	 5.3 Errorcodes

	A. Specifications
	 B. Enclosure & PCB Drawings

