
DAQFactory - LabJack Application
Guide

AzeoTech DAQFactory
® ®

U3 / U6 / UE9x

7/18/2008

DAQFactory for Windows, Version 5.75, Friday, July 18, 2008:

Copyright © 2001-2008 AzeoTech, Inc. All rights reserved worldwide.

Information in this document is subject to change without notice.

AzeoTech is a registered trademark of AzeoTech, Inc. DAQFactory is a registered
trademark of AzeoTech, Inc. Other brand and product names are trademarks of
their respective holders.

This manual: Copyright © 2008 AzeoTech, Inc. All rights reserved worldwide.

No portion of this manual may be copied, modified, translated, or reduced into
machine-readable form without the prior written consent of AzeoTech, Inc.

DAQFactory - LabJack Application Guide

3Contents

3

© 2008 AzeoTech®, Inc.

Table of Contents

1 Introduction 7

... 71.1 Welcome

... 71.2 How to use this guide

... 71.3 DAQFactory Versions

... 81.4 Acknowledgments

... 91.5 End User License Agreement

2 Installing and Starting 14

... 142.1 Installation

... 142.2 Setup device

... 152.3 Starting DAQFactory

... 162.4 Ethernet setup

3 Basic I/O, read/write analog/digital 19

... 193.1 Reading inputs

... 203.2 Differential analog inputs

... 203.3 Channel Pinouts

... 213.4 Setting outputs

4 Display the data 24

... 244.1 Manipulating screen components

... 244.2 Variable value components for numeric display

... 254.3 Conversions vs direct expressions

... 264.4 Descriptive text components for textual display

... 274.5 Graphing

... 29
4.6 Outputting with variable value and descriptive text
components

5 Logging 32

... 325.1 Logging to ASCII files

... 335.2 Batch logging

... 355.3 Doing daily logs

... 365.4 Conditional logging and the export set

... 375.5 Loading logged data into Excel

6 Intro to scripting 40

... 406.1 Creating sequences

DAQFactory - LabJack Application Guide4

© 2008 AzeoTech®, Inc.

... 416.2 Scripting basics

.. 416.2.1 Assignment

.. 426.2.2 Variables

.. 426.2.3 Calling functions

.. 436.2.4 Conditional statements

.. 446.2.5 Loops and Delay

7 Some Common Tasks 46

... 467.1 Doing things based on an input

... 467.2 Sending email out of DAQFactory

... 487.3 Uploading data using FTP

... 487.4 Performing a ramped output

8 Calling the LabJackUD 51

... 518.1 Using() and include() for LabJack

... 528.2 Doing configuration steps

... 538.3 Error handling with OnAlert

... 548.4 Handling Disconnect / Reconnect

... 558.5 Error handling in script

9 Analog and Digital I/O 58

... 589.1 Low speed acquisition < 100hz

.. 589.1.1 Introduction

.. 589.1.2 The easy way - with channels

.. 589.1.3 Basic scripting using eGet

.. 599.1.4 More advanced using Add / Go / Get

.. 609.1.5 Controlling outputs

... 619.2 High speed acquisition - streaming

.. 619.2.1 Introduction

.. 619.2.2 Basic streaming

.. 629.2.3 Streaming other inputs

.. 639.2.4 Triggered

.. 659.2.5 Error handling for streaming

10 Counters and Timers 67

... 6710.1 Configuring

... 6710.2 Reading values for counters and input timers

... 6710.3 Basic Counter and Timer setup

... 6910.4 Resetting Counters

... 7010.5 Setting up specific timer modes

.. 7010.5.1 PWM out

.. 7010.5.2 Period in

.. 7110.5.3 Duty cycle in

.. 7210.5.4 Firmware counter in

.. 7210.5.5 Firmware counter in w/ Debounce

.. 7310.5.6 Frequency out

.. 7310.5.7 Quadrature

5Contents

5

© 2008 AzeoTech®, Inc.

.. 7410.5.8 Timer stop

.. 7510.5.9 System timer in

11 Advanced 77

... 7711.1 Opening a LabJack manually

... 7711.2 Raw In/Out and other functions that require array pointers

... 7811.3 SPI communications

... 7911.4 Utilizing multicore processors

... 7911.5 Unsupported functions

1 Introduction

I

1 Introduction 7

© 2008 AzeoTech®, Inc.

1 Introduction

1.1 Welcome

Congratulations on the purchase of your new LabJack. Included on your installation CD is a fully licensed copy of
DAQFactory-Express and a 25-day trial of DAQFactory-Pro which will help you make the most of your new device.

With DAQFactory-Express you can take data and control outputs, log data to files easily read by other programs like
Excel, create your own screens for displaying your data using any combination of 10 screen components including
buttons, graphs, images and more.

For more advanced applications, consider one of the other versions of DAQFactory which, depending on the version,
include 42 screen components, networking, PID, alarming, a 3800 image library, unlimited channels, unlimited
pages, unlimited scripting and much more. All your DAQFactory-Express applications will work in the other versions
of DAQFactory.

This document will start you on your way using your new device with DAQFactory-Express and will also work in all
the other versions of DAQFactory. Feel free to use DAQFactory-Express to its full capabilities. If you need a more
powerful version such as demonstrated by the trial version, please visit www.azeotech.com or your LabJack reseller
to purchase a license.

For updates to DAQFactory Express, sample documents and other DAQFactory Express specific information, please
visit www.daqexpress.com.

This document is not for the LabJack U12, which uses a different driver. Please see the DAQFactory help file for
information on using the U12 with DAQFactory.

1.2 How to use this guide

This document explains how to do the most common things with DAQFactory and your LabJack device. Because it is
likely that you will actually want to do the things described in the first eight chapters, we strongly recommend you
actually go through the first eight chapters. After that, you will probably want to jump to the appropriate section in
the later part of the manual that describes how to perform more specific tasks with your LabJack device.

Most of the sections include a sample document that you can load directly into DAQFactory. These applications are
included in the LJGuideSamples directory of your DAQFactory installation. The exact file name is specified on each
page.

1.3 DAQFactory Versions

PRO STANDARD BASE LITE EXPRESS

Acquisition and logging Yes Yes Yes Yes Yes

Custom Screens Yes Yes Yes Yes 2 max

Graphing / Trending Yes Yes Yes Yes Yes

Data Analysis Yes Yes Yes Yes Yes

40 Screen Components Yes Yes Yes Yes Only 10

Sequences and Automation Yes Yes Yes Yes Yes

Email Out / FTP Upload Yes Yes Yes Yes Yes

PID Loops Yes Yes Yes

ODBC Database Logging Yes Yes

3,800 Image Library Yes Yes

http://www.azeotech.com
http://www.daqexpress.com

DAQFactory - LabJack Application Guide8

© 2008 AzeoTech®, Inc.

PRO STANDARD BASE LITE EXPRESS

Networking and Web Server Yes Yes

Advanced Data Analysis Yes Yes

Alarming Yes

Auto-Dialer Yes

Maximum Channels / Tags Unlimited Unlimited 64 32 16

1.4 Acknowledgments

We would like to thank the following companies for their excellent components and tools which
are in use by DAQFactory or were used to help create DAQFactory.

Dundas Software: For their Ultimate Grid MFC, Ultimate Toolbox, Ultimate Edit, and M++
math libraries.
BCGSoft Ltd.: For their BCGControl application framework.
Gigasoft, Inc.: For their ProEssentials graphing component.
OptiCode - Dr. Martin Sander Software Development: For their curve fitting routine in the
OptiVec math library.
Software Toolbox, Inc: For their OPCData component and Symbol Factory image library.
PJ Naughter: For his tray, single instance and web server components.
Concept Software, Inc: For their Protection Plus copy protection.
eHelp Corporation: For their RoboHelp help authoring environment and tools
Red Hat, Inc.: For their foreign function interface code.
Neil Hodgson: For the scintilla code editor

Here are the copyright notices for some of the above products:

This software contains material that is © 1994-2000 DUNDAS SOFTWARE LTD., all rights
reserved.
Copyright © BCGSoft Ltd. 1998-2001. All rights reserved
Copyright (C) 2001 Gigasoft, Inc. All rights reserved
Copyright © 1998-2001 OptiCode - Dr. Martin Sander Software Development
Copyright Software Toolbox, Inc., 1996-2000, All Rights Reserved Worldwide
Copyright (c) 1996 - 2001 by PJ Naughter
Copyright © 1997-2000 Concept Software, Inc.
Copyright (c) 1996-2003 Red Hat, Inc.
Copyright 1998-2003 by Neil Hodgson <neilh@scintilla.org> All Rights Reserved

And do not forget that DAQFactory, which includes DAQFactory® and associated files (including
this one) are Copyright © 2001-2007 AzeoTech®, Inc. All rights reserved worldwide.
AzeoTech® and DAQFactory® are registered trademarks of AzeoTech, Inc.

The following notice is required for the Red Hat foreign function interface license:
libffi 2.00-beta - Copyright (c) 1996-2003 Red Hat, Inc.
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
"Software''), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
CYGNUS SOLUTIONS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
The following notice is required for the Scintilla editor:
Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in
supporting documentation.
NEIL HODGSON DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL NEIL HODGSON BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF

1 Introduction 9

© 2008 AzeoTech®, Inc.

THIS SOFTWARE.

1.5 End User License Agreement

AzeoTech, Inc., ("AzeoTech") licenses the accompanying software to you (referred to herein as "you"
or the "end user") only upon the condition that you accept all of the terms contained within this
Agreement relevant to the software. Please read the terms carefully before continuing the
installation, as pressing the "Yes" button will indicate your assent to them. If you do not agree
to these terms, please press the "No" button to exit the install, and return the full product with
proof of purchase to AzeoTech within thirty (30) days of purchase.

I. LICENSE TERMS APPLICABLE TO ALL SOFTWARE

The following terms and conditions are applicable to any and all AzeoTech software products. The
software which accompanies this Agreement is the property of AzeoTech and/or its licensors and is
protected by U.S. Copyright law and state and federal trademark law, in addition to other
intellectual property laws and treaties. This software is licensed to you, not sold. While
AzeoTech continues to own the software, upon your acceptance of this Agreement you will have the
following specifically defined rights and obligations arising from your license:

Once you have purchased a software license from AzeoTech, you may do the following:

(a) Use only one copy of the relevant software on a single computer;

(b) Make one copy of the software for archival purposes, or copy the software onto the hard disk of
your computer and retain the original for archival purposes;

(c) Use the software on a network, provided that you have a licensed copy of the software for each
computer that can access the software over that network;

(d) Upon written notice to AzeoTech and your receipt of AzeoTech’s written approval, transfer the
software on a permanent basis to another person or entity, provided that you retain no copies of
the software, and that the transferee agrees to the terms of this Agreement.

(e) If you are an entity, you may designate one individual within your organization to have the
right to use the software in the manner provided herein. The software is "in use" on a computer
when it is loaded into temporary memory (RAM) or installed into permanent memory (hard disk,
CD-ROM, or other storage device) of that computer.

The following are strictly prohibited by this Agreement:

(a) Copying the documentation which accompanies this software;

(b) The distribution of this software or copies of this software to third parties, except as
provided in Section II(A) herein regarding the distribution of copies of Evaluation Software for
evaluation purposes;

(c) Sublicensing, renting or leasing any portion of this software;

(d) Reverse engineering, decompiling, disassembling, modifying, or translating the software,
attempting to discover the source code of the software, or creating derivative works of the
software; and

(e) Using a previous version or copy of the software after you have received a disk replacement set
or an upgraded version as a replacement of the prior version. Upon upgrading the software, all
copies of the prior version must be immediately destroyed.

II. LICENSING TERMS RELEVANT TO SPECIFIC SOFTWARE PRODUCTS

A. DAQFactory and DAQFactory Runtime. The following provisions apply only to the use and license
of all versions of DAQFactory and DAQFactory Runtime, but shall not apply to the use and license of
DAQFactory Runtime in conjunction with DAQFactory-Developer, as provided in Section II(B) below, or
to the use and license of DAQFactory Express, as provided in Section II(C) below.

1. AzeoTech provides a temporary version ("Evaluation Software") of DAQFactory and DAQFactory
Runtime to all potential end users for a twenty-five (25) day evaluation period. At the end of the
evaluation period, the Evaluation Software automatically shuts down and ceases to work unless the
end user purchases a license from AzeoTech for the full versions of the products. Upon payment,
AzeoTech provides the end user with a code that allows full use of the software. If at the end of
the evaluation period, you have not purchased a license to use the full version of DAQFactory or
DAQFactory Runtime from AzeoTech, any continued or additional use is in violation of this Agreement
and of U.S. Copyright laws.

DAQFactory - LabJack Application Guide10

© 2008 AzeoTech®, Inc.

2. You may distribute the Evaluation Software to third parties for evaluation purposes only. Such
copies shall be subject to the relevant terms and conditions of this Agreement in the same manner
as if distributed directly by AzeoTech.

B. DAQFactory-Developer. The following provisions apply only to the use and license of
DAQFactory-Developer and the use and license of DAQFactory Runtime in conjunction with
DAQFactory-Developer and all documents and applications created with DAQFactory-Developer.

1. If you have purchased a license for DAQFactory-Developer, AzeoTech grants you permission to
distribute your created documents and applications, together with DAQFactory Runtime, to third
parties without a licensing fee. In exchange, you agree to be bound by all of the relevant terms
and conditions set forth in this Agreement.

2. All third party users and recipients of documents or applications created with
DAQFactory-Developer are bound by all of the terms and conditions of this agreement, and are
strictly prohibited from distributing DAQFactory Runtime absent their own purchase of a license for
DAQFactory-Developer. In addition, third party users and recipients are strictly prohibited from
using DAQFactory Runtime to run applications other than those created with DAQFactory-Developer,
except upon their purchase of a license for DAQFactory Runtime from AzeoTech.

3. Neither you nor third party users or recipients are permitted to create generic data
acquisition applications using DAQFactory-Developer that would directly compete with DAQFactory or
any other AzeoTech software product. This includes, but is not limited to, generic strip chart
recorders, data loggers and PID loop controllers.

C. DAQFactory Express. The following provisions apply to the use and license of DAQFactory
Express, a separate software product available from AzeoTech and often provided to you in
association with hardware from a hardware manufacturer. Using DAQFactory Evaluation Software and
selecting the Express option during start up is considered DAQFactory and subject to the provisions
in Section II(A) above.
1. If you have received DAQFactory Express in conjunction with hardware from a hardware
manufacturer, your license for DAQFactory Express is provided to you free of charge, by AzeoTech,
through the hardware manufacturer. This license is strictly limited to your use of DAQFactory
Express in conjunction with the accompanying hardware, and this program may not be used on any
computer or device which does not contain the accompanying hardware. Despite the fact that you
have not paid a licensing fee for this product, it is licensed software, subject to the relevant
provisions of this Agreement. If you are a hardware manufacturer, you must enter into a separate
agreement with AzeoTech to distribute DAQFactory Express licenses. DAQFactory Express cannot be
distributed for free by simply including it with hardware.

2. DAQFactory Express is not "Evaluation Software" as defined in Section II(A) above, and
accordingly, there is no 25 day time limit on its use and license. You are not permitted to
distribute DAQFactory Express in any form to third parties, or upload this program onto the
internet or a network which may be accessed by unlicensed third parties.

III. DESCRIPTION OF OTHER RIGHTS AND LIMITATIONS

A. Support Services. AzeoTech may provide you with support services related to the software. Use
of support services is governed by the AzeoTech policies and programs described in on-line
documentation and other materials provided by AzeoTech. Any supplemental software code provided to
you as part of the support services shall be considered part of the software and shall be subject
to the relevant terms and conditions of this agreement. With respect to technical information
provided to AzeoTech as a part of the support services, AzeoTech may use such information for its
business purposes, including for product support and development.

B. Termination. Without prejudice to any other rights, AzeoTech may terminate this Agreement, in
writing, upon your failure to comply with any of the terms and conditions of this Agreement, with
such termination being effective upon your receipt of such notice. In such event, you shall
immediately destroy all copies of the software and all of its component parts.

C. DISCLAIMER OF WARRANTIES. AZEOTECH EXPRESSLY DISCLAIMS ANY WARRANTY FOR THE SOFTWARE. THE
SOFTWARE AND ANY RELATED DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OR CONDITION OF ANY
KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES AND
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT. THE ENTIRE
RISK ARISING OUT OF USE OR PERFORMANCE OF THE SOFTWARE REMAINS WITH YOU.

AZEOTECH DOES NOT WARRANT THAT THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT OPERATION OF THE
SOFTWARE WILL BE UNINTERRUPTED OR ERROR FREE. AZEOTECH HAS TAKEN PRECAUTIONS TO GUARD AGAINST
COMPUTER VIRUSES, BUT DOES NOT WARRANT THAT THE SOFTWARE PROVIDED WILL BE WITHOUT ANY COMPUTER
VIRUSES. YOU ASSUME ALL RESPONSIBILITY FOR ACHIEVING YOUR INTENDED RESULTS, TAKING PROPER
PRECAUTIONS TO GUARD AGAINST COMPUTER VIRUSES, AND FOR THE USE AND RESULTS OBTAINED FROM THE
SOFTWARE.

D. No Liability for Damages. In no event shall AzeoTech or its suppliers be liable for any

1 Introduction 11

© 2008 AzeoTech®, Inc.

damages whatsoever, including, without limitation, any special, consequential, indirect or similar
damages, including damages for loss of business profits, lost data arising out of the use or
inability to use the software, business interruption, loss of business information, or any other
pecuniary loss, arising from or out of the use of or inability to use the AzeoTech software, even
if AzeoTech has been advised of the possibility of such damage. In any case, AzeoTech’s entire
liability under any provision of this Agreement shall be limited to the amount actually paid by you
for the software. The disclaimers and limitations set forth herein will apply regardless of
whether you accept the software. Because some states/jurisdictions do not allow the exclusion or
limitation of liability for consequential or incidental damages, the above limitation may not apply
to you.

E. WARNING. AZEOTECH’S SOFTWARE IS NOT DESIGNED FOR COMPONENTS OR TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH ANY APPLICATION WHERE MALFUNCTION OF HARDWARE
OR SOFTWARE COULD RESULT IN INJURY OR DEATH, OR AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT SYSTEMS
WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY OR DEATH. THE
SOFTWARE MUST NEVER BE USED FOR ANY PURPOSE THAT, IF THE SOFTWARE FAILED, COULD CAUSE INJURY OR
DEATH TO ANY PERSON.

IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE CAN BE IMPAIRED
BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO THE FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER VIRUSES, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS,
FITNESS OF COMPILER AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS,
SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR
CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED
USES OR MISUSES, OR ERRORS ON THE PART OF THE USER OF APPLICATIONS DESIGNER (THE ADVERSE FACTORS
SUCH AS THE FOREGOING EXAMPLES ARE HEREAFTER TERMED "SYSTEM FAILURE"). ANY APPLICATION WHERE A
SYSTEM FAILURE WOULD CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY
INJURY OR DEATH) SHOULD NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF
SYSTEM FAILURE. TO AVOID DAMAGE, INJURY OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE
REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP
OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER IS CUSTOMIZED AND DIFFERS FROM AZEOTECH TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE AZEOTECH PRODUCTS IN COMBINATION WITH
OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY AZEOTECH, THE USER OR APPLICATION
DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF AZEOTECH
PRODUCTS WHENEVER AZEOTECH PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT
LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

IV. COPYRIGHT

All title and copyrights in and to AzeoTech software, including but not limited to any images,
photographs, animations, video, audio, music, text, and "applets" incorporated into the software,
any printed materials, and any copies of the software are owned by AzeoTech and its suppliers. The
software is protected by U.S. Copyright laws and international treaty provisions. Therefore, you
must treat the software like any other copyrighted material, subject to the terms of this
agreement.

V. U.S. GOVERNMENT RESTRICTED RIGHTS

The software and documentation are provided with restricted rights. The software may constitute
"commercial computer software" or "commercial computer software documentation" as those terms are
used in 48 CFR 12.212. Unless otherwise agreed, the use, duplication or disclosure of such
software and documentation by U.S. Government agencies is subject to the restrictions set forth in
48 CRR 52.227-14 (ALT III), 48 CFR 52.227-19 and the Defense Federal Acquisition Regulation
Supplement (DFARS) 252.227.7013, as applicable, and the use, duplication or disclosure by the
Department of Defense is subject to the restrictions set forth in 48 CFR 252.227-7013(c)(1)(ii)
(Oct.1988). The manufacturer is AzeoTech, Inc., 443 Allison Street, Ashland, Oregon 97520.

VI. EXPORT RESTRICTIONS

You agree that you will not export or re-export the software, any part thereof, or any process or
service that is the direct product of the software (the foregoing collectively referred to as the
"Restricted Components"), to any country, person, entity, or end user subject to U.S. export
restrictions. You specifically agree not to export or re-export any of the Restricted Components
(i) to any country to which the U.S. has embargoed or restricted the export of goods or services,
which currently include, but are not limited to Cuba, Iran, Iraq, Libya, North Korea, Sudan, and
Syria, or to any national or any such country, wherever located, who intends to transmit or
transport the products back to such country; (ii) to any end user who you know or have reason to
know will utilize the Restricted Components in the design, development or production of nuclear,
chemical or biological weapons; or (iii) to any end user who has been prohibited from participating
in U.S. export transactions by any federal agency of the U.S. Government. You warrant and
represent that neither the Bureau of Export Administration (BXA) nor any other U.S. Federal agency
has suspended, revoked or denied your export privileges.

VII. GENERAL PROVISIONS

DAQFactory - LabJack Application Guide12

© 2008 AzeoTech®, Inc.

A. Entire Agreement. This Agreement contains the entire agreement of the parties, and may not be
amended or modified except in writing signed by all of the parties. This Agreement supercedes any
prior or contemporaneous understandings or agreements with respect to the subject matter hereof.
Nothing in this Agreement shall be construed to limit any rights that AzeoTech may have under trade
secret, U.S. and state trademark, copyright, patent, or other laws.

B. Non-Assignment. The end user may not assign any right or interest in this Agreement without
the prior written consent of AzeoTech.

C. Divisibility. In the event that any provision of this Agreement shall be found to be invalid,
unenforceable or prohibited by state or Federal law, the Agreement shall be considered divisible as
to such part and all remaining provisions shall remain valid, enforceable and binding as though
such part were not included in this Agreement.

D. Attorney Fees. In the event it becomes necessary for either party to file suit or instigate
mediation or arbitration to enforce this Agreement or any provisions contained herein, and either
party prevails in such action, then such prevailing party shall be entitled to recover, in addition
to all other remedies or damages, reasonable attorney’s fees and court costs incurred in the
mediation, arbitration, at trial, and on appeal in such suit.

E. Choice of Law; Venue. This agreement shall be governed by the laws of the State of Oregon.
Venue for all proceedings shall be in the Circuit or Federal Court for the State of Oregon, County
of Jackson.

F. Contact Information. If you have any questions concerning this Agreement, or if you desire to
contact AzeoTech for any reason, please email AzeoTech at support@azeotech.com.

2 Installing and Starting

II

DAQFactory - LabJack Application Guide14

© 2008 AzeoTech®, Inc.

2 Installing and Starting

2.1 Installation

The first step to using your LabJack device is to insert the CD that came with your LabJack and install the included
software. The LabJack software must be installed on any machine that uses the LabJack device, and should be
installed before you plug the device into the USB port. DAQFactory Express and the 25 day trial of DAQFactory Pro
are separate installers that should be automatically run once the LabJack drivers are installed. DAQFactory installers
do not include the low level LabJack drivers, so you must install the drivers that come from LabJack to use their
devices. This is required even if you are going to connect over Ethernet to an Ethernet compatible LabJack device,
such as the UE9.

Note: If you get a alert message in DAQFactory saying that it is unable to load the LabJackN.dll file then you
probably forgot to install the LabJack drivers from LabJack. Reinstall from your CD, or go to www.labjack.com for
the latest drivers. If you upgrade DAQFactory (by going to www.azeotech.com) or DAQFactory Express (by going
to www.daqexpress.com), you will most likely also need to ensure that you are using the latest LabJack drivers. You
should therefore go to www.labjack.com and download and install those drivers as well.

2.2 Setup device

Once installed, and if necessary, rebooted, you’ll want to quickly make sure your new device can be found, and set
its ID. If you are going to connect over Ethernet, we strongly suggest you perform this step over USB first:

1) Plug in your new device into a USB port.

For maximum capabilities, we recommend plugging into a USB port directly on the computer or to a powered
USB hub. If you plug into an unpowered USB hub, you may run into sourcing limitations. This can also occur if
you have multiple devices plugged into the hub, even if it is powered.

2) Go to Start – Programs – LabJack – LJControlPanel.

The complete documentation for this program is installed with the LabJack driver, but there a few more steps to
perform before starting DAQFactory.

3) Click on “Find Devices”.

This will search and hopefully find your new device. If your device is not found, you should refer to the LabJack
User’s Guide for more assistance.

http://www.labjack.com
http://www.azeotech.com
http://www.daqexpress.com
http://www.labjack.com

2 Installing and Starting 15

© 2008 AzeoTech®, Inc.

4) Once found, click on the device.

This will display current information about the device and an option to run a test panel. You may want to click
on the test panel just to see that you are receiving signals

5) Set the ID: you should set the ID of your device to a non-zero value.

If you are using multiple LabJacks, the ID will need to be unique. Zero is used by DAQFactory to indicate “First
Found” and so cannot be used as LabJack ID. If you are using Ethernet, the ID is not required, but we still
recommend using unique non-zero ID’s just in case you plug it in to the USB port.

6) Save your settings and close the application.

2.3 Starting DAQFactory

Now you can start DAQFactory and start taking some data:

From your Start menu, select Programs => DAQFactory Express => DAQFactory Express. A splash window will
appear, followed by the application:

The DAQFactory application is setup like most windows applications with a title bar at the top, a menu underneath, a
toolbar underneath that and a status bar at the bottom. In addition there are a number of docking windows. A
docking window means a window that can be “docked” or attached to the one side of the main application window.
At this point, there are three important docking windows. Along the right is the Workspace. The Workspace is a
listing of various elements of DAQFactory you will work with, such as channels, scripts, logging sets and pages. Also
along the right, but initially tabbed, is the help window. Click on the Help tab to display the help window.

Along the bottom is the Command / Alert window. Normally it is rolled up, but if you click on the Command / Alert
tab, it will appear. To have it stay visible, click on the thumb tack at the top right corner of the window.

The Command / Alert window allows you to manually type in commands. More importantly for the new user, this
area displays any error messages that DAQFactory or your LabJack device might generate. Unlike most applications,
DAQFactory does not popup error message windows. This is because there are many situations where you may get
a large number of continuous errors. For example, if you accidentally unplug your device while taking data. Instead
of generating a huge number of windows with repetitive messages that you have to dismiss, DAQFactory puts all the
messages into the Command / Alert window. This works well, but can sometimes be confusing, as the error
message will remain in the Command / Alert window until it gets scrolled off the screen. To ensure that you don’t

DAQFactory - LabJack Application Guide16

© 2008 AzeoTech®, Inc.

confuse an old error message for a new one, you can right click on the command / alert window and clear the
display.

If for some reason you can’t see any of these windows, go to the View menu and select the desired window.

Note: we strongly recommend keeping the Command / Alert window visible when you are starting, even though it
takes up screen space. If you hide it, you may miss important alerts. The window will flash when an alert occurs,
but this is not as apparent as a real message.

2.4 Ethernet setup

The LabJack UE9 offers both USB and Ethernet connectivity. So far, we have discussed communicating with
LabJacks over USB. To connect to an Ethernet LabJack requires an extra few simple steps as the D# column of a
DAQFactory channel only accepts numbers and not IP addresses:

1) Click on Quick - Device Configuration from the DAQFactory main menu. A new window will popup.

2) Select LabJack from the list of available devices. A new window will appear.

3) Click on the Add button to add a new LabJack device.

4) In the new window, select a unique device number to assign to this device.

This number should be unique among any other LabJack devices, even USB ones, as this is the number
DAQFactory uses to identify the device.

5) Select UE9 and Ethernet interface, and put the IP address of your device in the Address space.

2 Installing and Starting 17

© 2008 AzeoTech®, Inc.

6) Click OK.

The new device will be listed in the window. Depending on your DAQFactory installation, you may see a
"Configuration" button. We do not recommend using this button to configure your LabJack, and it is considered
depreciated. Instead, use the techniques described later in this guide.

7) Click OK to close this window.

At this point, the LabJack with the given IP address has now been assigned a device number that you can use
everywhere you'd use the LabJack ID in DAQFactory. We have mapped the IP address to a device number. Do not
use the LabJack's ID, but the device number instead.

3 Basic I/O, read/write
analog/digital

III

3 Basic I/O, read/write analog/digital 19

© 2008 AzeoTech®, Inc.

3 Basic I/O, read/write analog/digital

3.1 Reading inputs

Performing basic analog and digital input and output with DAQFactory and a LabJack is quite simple. This is done by
creating a channel for each desired I/O point.

Analog Input:

To create an analog input channel:

1) Click on the word CHANNELS: in the Workspace under Local. This will bring up the channel table.

Unless otherwise specified, when we say click on CHANNELS: we mean the one under Local and not under V:.

2) Click on Add to add a new row to the table

3) In the Channel Name column, put a name, say Pressure.

The channel name can be anything you’d like as long as it starts with a letter and contains only letters, numbers
and the underscore.

4) In the Device Type column, select LabJack.

All your LabJack channels will use this Device. Make sure not to select LabJack_U12 as this is for the U12 only.

5) In the D# column, enter the ID of your LabJack.

If you don't know the ID of your LabJack, please read the section on setting up your device in the last chapter.
If you only have one LabJack and never expect to use any more, you can use 0 (zero) to have DAQFactory use
the first found LabJack on USB. Please see the Ethernet setup section if you are using an Ethernet connection to
your LabJack (UE9 only).

6) In the I/O Type column, select A to D.

7) In the Channel column, enter 0 to read the first analog input channel on your device.

8) The next column, Timing, determines how often the LabJack is queried for a new value in seconds. The default is
once a second, and we can leave it at this setting.

9) Leave all the other settings as is and click Apply. As soon as you click Apply, acquisition will start.

10) To quickly see your data coming in, click on the + next to CHANNELS: in the workspace to expand the tree, then
click on your Pressure channel to display the channel view for this channel.

11) The channel view has multiple tabs. The first two repeat the settings in the channel table. Click on the last tab,
Table to see your values coming in from the device.

This is not the primary way to view your data, but provides a quick indication that you are getting data. If you
have nothing wired into your LabJack, you are most likely going to see a non-zero floating voltage reading.

On some LabJack devices, the pins can be either analog or digital input or output. DAQFactory automatically
configures it to the appropriate setting, in this case an analog input.

To create a digital input, simply repeat the same procedure, using a different Channel Name, and selecting Dig In

DAQFactory - LabJack Application Guide20

© 2008 AzeoTech®, Inc.

for the I/O Type. If you are using the U3, which uses the same pins for analog and digital signals, select a different
Channel Number than the one we used for analog (zero) to use a different pin. If using the U3-HV, you will have to
choose a Channel number that is greater than 3 as the first 4 pins (0-3) are analog input only.

Sample file: LJGuideSamples\InputsSimple.ctl

3.2 Differential analog inputs

On the U3, you can perform differential inputs assigning any other input channel as the negative input. To do so,
put the channel number for the negative side of the input in the Quick Note / Special / OPC column. For the special 0-
3.6 volt range, put channel number 32 in the Quick Note / Special / OPC column.

Sample file: LJGuideSamples\InputsSimpleU3Diff.ctl

3.3 Channel Pinouts

DAQFactory uses sequential channel numbers. The various LabJack devices group their I/O pins. Here is how they
correspond:

U3:

The U3 uses flex pins, meaning a pin can be either an analog input, digital input or digital output. They can also be
counters or timers depending on configuration. For analog input, and digital I/O the pin mapping is:

I/O Pin: Ch: I/O Pin: Ch: I/O Pin: Ch:

FIO0 (AIN0) 0 EIO0 (AIN8) 8 CIO0 16

FIO1 (AIN1) 1 EIO1 (AIN9) 9 CIO1 17

FIO2 (AIN2) 2 EIO2 (AIN10) 10 CIO2 18

FIO3 (AIN3) 3 EIO3 (AIN11) 11 CIO3 19

FIO4 (AIN4) 4 EIO4 (AIN12) 12

FIO5 (AIN5) 5 EIO5 (AIN13) 13

FIO6 (AIN6) 6 EIO6 (AIN14) 14

FIO7 (AIN7) 7 EIO7 (AIN15) 15

Note that the CIO pins are digital only. You should only use a pin for one of the three uses, so be careful not to use
the same channel number for separate analog input, digital input or digital output channels.

If you enable timers or counters, they will use up the appropriate number of pins starting with FIO0. This does not
change the rest of the channel numbers. So, if you have two timers enabled, they will be on FIO0 and FIO1. FIO2
remains channel 2 to DAQFactory. Of course if you use the pin offset option for timers and counters, the timers

3 Basic I/O, read/write analog/digital 21

© 2008 AzeoTech®, Inc.

might be on different pins, but even the mapping of DAQFactory channel numbers to pins remains the same.

UE9:

The UE9 has separate pins for analog and digital I/O. The analog input pins correspond directly to channel numbers,
so AIN0 is channel 0, AIN1 is channel1, etc. For digital I/O, the mapping is:

Channel: I/O pin:
0-7 FIO0-FIO7
8-15 EIO0-EIO7
16-19 CIO0-CIO3
20-22 MIO0-MIO2

If you enable timers or counters, they will use up the appropriate number of pins starting with FIO0. This does not
change the rest of the channel numbers. So, if you have two timers enabled, they will be on FIO0 and FIO1. FIO2
remains channel 2 to DAQFactory. Of course if you use the pin offset option for timers and counters, the timers
might be on different pins, but even the mapping of DAQFactory channel numbers to pins remains the same.

3.4 Setting outputs

Creating output channels is identical to creating input channels with one important difference. Since they are output,
there is no Timing parameter. In fact, if you select Analog Output or Digital Output as an I/O type, you will not be
able to edit the channel's timing parameter. So, to create an output channel, we follow the same steps as an input:

1) Click on the CHANNELS: in the Workspace under Local.

This will bring up the channel table.

2) Click on Add to add a new row to the table.

3) In the Channel Name column, put a name, say Output.

The channel name can be anything you’d like as long as it starts with a letter and contains only letters, numbers
and the underscore.

4) In the Device Type column, select LabJack.

All your LabJack channels will use this Device. Make sure not to select LabJack_U12 as this is for the U12 only.

5) In the D# column, enter the ID of your LabJack.

If you don't know the ID of your LabJack, please read the section on setting up your device in the last chapter.
If you only have one LabJack and never expect to use any more, you can use 0 (zero) to have DAQFactory use
the first found LabJack on USB. Please see the Ethernet setup section if you are using an Ethernet connection to
your LabJack (UE9 only).

6) In the I/O Type column, select D to A.

7) In the Channel column, select 0 to set the first analog output channel on your device.

8) As mentioned, the next column, Timing, is not used for outputs.

9) Leave all the other settings as is and click Apply.

Unlike inputs where acquisition starts immediately on Apply, creating an output channel does not actually set it
to a value.

DAQFactory - LabJack Application Guide22

© 2008 AzeoTech®, Inc.

10) To quickly set the output to a value we can use the Command / Alert window. This is not the primary method of
setting an output, but a quick way to test your settings. We'll show a better way in the next chapter. The Command
/ Alert window may be rolled up at the bottom of the screen. Click on the Command / Alert tab to display it:

If you can't see the Command / Alert tab, try going to View - Command / Alert

The Command / Alert window is made up of two parts, the status / alert display, which takes up most of the window,
and the command line, which is at the bottom and takes up one line. You can type in one line commands here and
see the results in the status display. You can also do commands that have no display, but change things, such as
outputs. So, to set our new channel to a value of 3 volts, we type:

Output = 3

and hit Enter. There will be no confirmation other than the command itself being displayed in the status / alert area,
and no error displayed. Your output will also be at 3 volts.

Like the input channels, DAQFactory will automatically set your device into the proper settings for pins with multiple
duties. So, for digital pins, for example, DAQFactory will automatically set them into output mode.

Sample file: LJGuideSamples\InputsSimpleWithDA.ctl

4 Display the data

IV

DAQFactory - LabJack Application Guide24

© 2008 AzeoTech®, Inc.

4 Display the data

4.1 Manipulating screen components

Before we explain how to display your data, we should quickly explain how to manipulate screen components in
DAQFactory. Because DAQFactory is a dynamic application, meaning you can make edits while your application is
actually running, DAQFactory does not use the typical Windows click-and-drag style screen component manipulation.
 Instead, you must hold down the Ctrl key. While the Ctrl key is pressed, you can click on components to select
them, click-and-drag to move them around, and click-and-drag their corners to resize (for resizable components).

If you don't like this, you can put the system into edit mode by selecting Edit - Edit Mode from the DAQFactory main
menu. This will reverse the functionality of the control key when working with components (except keyboard
nudging). You can simply click and drag components, but if you want to click on a button to do an action you will
have to hold the Ctrl key down. We strongly recommend against using Edit Mode except for when you have a lot of
repetitive edits to make on a large number of components.

For those that skim and didn't read the previous paragraphs:

In order to manipulate screen components, you must hold down the Ctrl key.

4.2 Variable value components for numeric display

The Channel View certainly provides a quick look at your data, but is not the most convenient or flexible way to
display your data, especially once you have more than one channel. In this section we'll add a component to a page
that will display data from the Pressure channel. This assumes, of course, that you created an analog Pressure
channel in the basic I/O chapter. If you didn't, load the document LJGuideSamples\InputsSimpleWithDA.ctl and start
from there.

1) Click on Page_0 in the Workspace under PAGES:.

This will display a blank white page unless you are working off InputsSimpleWithDA. When DAQFactory Express
starts, 2 blank pages are generated automatically with default names. With Express you are limited to 2 pages,
but with all the other versions of DAQFactory you can create as many pages as you need.

2) Right-click somewhere in the middle of the blank area and select Displays - Variable Value.

This will place a new page component on the screen. There are many different components available that allow
you to create custom screens. This particular component simply displays a changing value in text form.

3) Right click on the new component and select Properties...

All of the screen components have different properties windows for configuring the look of the component and
telling the component what data to display.

4) Next to Caption: enter Pressure.

The caption is what is displayed in front of your value. A colon is automatically added when displayed.

5) Next to Expression: enter Pressure[0].

Expressions are actually formulas that you can enter to display calculated data. In this case, the formula simply
requests the most recent data point of the channel pressure. The [0] indicates the most recent data point. If,
for example, we wanted to convert the pressure voltage into actually pressure units, we could put something
like Pressure[0] / 5 * 500.

4 Display the data 25

© 2008 AzeoTech®, Inc.

6) Click OK.

Now the screen should display Pressure: 0.42 V with a changing number. This is the current value in the pressure
channel we created earlier. Feel free to open the properties window again and play with the units, font and other
settings. When you are done, load the sample file listed below as we'll build on it in the next section.

Sample file: LJGuideSamples\VariableValue.ctl

4.3 Conversions vs direct expressions

In the previous section we displayed the voltage reading from our analog input channel. However, in most cases
you really want to view your data in more appropriate units than volts. With pressure, for example, you might want
PSI or millibar. There are two ways you can convert your data into different units.

The first way is to simply put the desired formula in the Expression area of the component properties. So, if you had
a 0-5V pressure sensor with a range of 0-500 psi, you would put:

Pressure[0] * 100

to convert your voltage signal to PSI. You would also, of course, probably want to change the unit display. You can
put much more complicated calculations as well, even ones based on multiple channels. DAQFactory supports a wide
variety of operators and mathematical functions to make this easy. They are all listed in the Expressions chapter of
the DAQFactory help.

Entering formulas directly into the Expression area of a component is handy because you can create another
component to display the same input reading in different units. If, however, you always want your reading in
particular units, you can instead use Conversions. This has the added benefit of allowing you to log your data in
these units. Using our pressure example and a 0-5V : 0-500psi sensor, here is how you would create a conversion
to put the readings into PSI:

1) Click on CONVERSIONS: in the Workspace.

This will display the conversion table.

2) Click Add to add a new row.

3) Give the conversion a name, say VoltsToPSI

4) In the Expression column put:

Value * 100

DAQFactory - LabJack Application Guide26

© 2008 AzeoTech®, Inc.

You'll notice that we used the word Value instead of the channel name in the conversion's expression. This

allows a single conversion to be used on multiple channels. The actual channel reading is substituted wherever
Value appears in the formula.

5) Click Apply to save the new conversion.

6) Click on CHANNELS: in the Workspace to bring up your list of channels.

7) In the row with you Pressure channel, go over to the column labeled Conversion and select VoltsToPSI.

8) Click Apply to save your changes.

If you then go back to Page_0 you will see that your values are now 100 times their previous size.

Note: just to reinforce this: Value is a keyword and not the name of a channel or variable. When you apply the

conversion to the channel, that channel's current reading is substituted where Value is found in the conversion.

Sample file: LJGuideSamples\Conversions.ctl

4.4 Descriptive text components for textual display

The variable value component is great for analog data, but less so for digital data where the only values are 0 and 1.
 For this, the Descriptive Text Component is useful to allow you to display a word or message for 0 and 1 instead.

To show this, let's use the "Output" D to A channel we created in the last chapter and pretend it is a digital channel.

1) On a page, right click and select Displays - Descriptive Text.

2) Once the new component is on the screen, right click on it and select Properties....

3) For the Expression type: Output[0]

4) By default, the component already will display the word "Text". Double-click on the word yellow highlighted word
Text in the table at the bottom left of the properties to select it and replace it with the word Off.

This will cause the component to display the word Off when Output is 0.

5) Next, click on the Add button to create a new row in the table, and put 1 for the Threshold and On for the Text.

This will cause the component to display the word On when Output is 1. It doesn't matter what the order of the
rows are in the table. DAQFactory will sort them once you close the window.

4 Display the data 27

© 2008 AzeoTech®, Inc.

6) Click OK. Then go to the command / alert window and type Output = 0 and hit Enter and watch the new

component display Off. Type Output = 1 and hit Enter and the component will change to On.

DAQFactory actually provides a quicker way to set this up.

7) Right click on our text component and select Properties....

8) Click on the button towards the bottom right labeled Digital In. This will popup a window requesting a channel.
Type Output and click OK. Then click OK to close the properties.

This button essentially did steps 3 through 5 in one step. It also setup the colors so that Off displays in red, and
On displays in green. Go ahead and type Output = 0 and Output = 1 in the Command / Alert window to watch
it change.

As you may have noticed, there is also a button labeled Digital Out, which does almost the exact same thing as the
Digital In button, except that it makes the descriptive text component into a clickable component that will toggle the
output between 0 and 1. It does this by changing the component's Action. You can see this by clicking on the
Action tab of the components properties. Feel free to create a new Descriptive Text component then go into the
component's properties, click Digital Out, enter Output, then on closing simply click on the component to toggle

Output instead of going to the command alert window.

Sample file: LJGuideSamples\DescriptiveText.ctl

4.5 Graphing

Displaying scalar values in text form is certainly useful, but nothing is better than a graph to give you a handle on
what is happening with your system. DAQFactory offers many advanced graphing capabilities to help you better
understand your system. In this section we will make a simple Y vs time or trend graph.

1) If you are still displaying the page with the value on it, hit the 1 key to switch to Page_1. If you are in a different
view, click on Page_1 in the workspace.

The workspace is only one way to switch among pages. Another is using speed keys which can be assigned to a
page by right clicking on the page name in the workspace and selecting Page Properties....

2) Right click somewhere on the blank page and select Graphs - 2D Graph. Move and resize the graph so it takes up
most of the screen by holding down the Ctrl key and dragging the component. Drag the small black square boxes at
the corners of the selected graph to resize. Next, open the properties window for the graph by right clicking on the
graph and selecting Properties....

3) Next to Y Expression: type Pressure.

The Y expression is an expression just like the others we have seen so far. The difference is that a graph
expects a list (or array) of values to plot, where in the previous components we have only wanted the most
recent value. By simply naming the channel in the Y expression and not putting a [0] after it, we are telling the

DAQFactory - LabJack Application Guide28

© 2008 AzeoTech®, Inc.

graph we want the entire history of values stored in memory for the channel. The history length, which
determines how many values are kept in memory and therefore how far back in time we can plot is one of the
parameters of each channel that we left in its default setting of 3600.

4) Leave all the rest in their default settings and click OK.

You should now see the graph moving. The data will move from right to left as more data is acquired for the
pressure channel. However, we currently are multiplying our Pressure channel reading by 100 using the
Conversion we created a few sections ago, so the trace is completely off scale and not visible. To display the
data, we need to change the Y axis scaling.

5) Double click on the left axis of the graph.

Unlike other components, you can double click on different areas of the graph to open the properties window for
the graph to different pages. Double clicking on the left axis brings up the axis page with the left axis selected.
You can also just open the properties window for the graph and select the Axes tab, then Left Axis 1.

6) Next to Scale From enter 0, next to Scale To enter 100, then click OK.

This will scale the graph from 0 to 100. Depending on what you have plugged into your LabJack input, or what
voltage the LabJack is floating at, this may or may not be a big enough scale. You can always click on Page_0 in
the workspace to see what the current Pressure reading is and change the scaling of the graph appropriately.

Now we'll try another method to scale the graph.

7) Open the graph properties box again and go to the Traces page. Change the Y Expression to Pressure / 100 and

hit OK.

Like the other screen components, the expressions in graphs can be calculations as well as simple channels. In
this case, we are dividing each of the values of Pressure's history by 100 and plotting them. This is essentially

4 Display the data 29

© 2008 AzeoTech®, Inc.

removing the conversion we applied to Pressure in the previous section since it multiplied our reading by 100.

8) Deselect the graph by clicking on the page outside of the graph. The shaded rectangle around the graph should
disappear. Next, right click on the graph and select AutoScale - Y Axis.

The graph component has two different right click popup menus. When selected, the graph displays the same
popup menu as the rest of the components. When it is unselected, it displays a completely different popup for
manipulating the special features of the graph.

After autoscaling, you should see the graph properly scaled to display your signal zoomed in. Notice the rectangle
around the graph. The left and right sides are green, while the top and bottom are purple. The purple lines indicate
that the Y axis of the graph is "frozen". A frozen axis ignores the scaling parameters set in the properties window
(like we did in step 6 above) and uses the scaling from an autoscale, pan, or zoom.

9) To "thaw" the frozen axis, right click on the graph and select Freeze/Thaw - Thaw Y Axis

Once thawed, the graph will revert to the 0 to 100 scaling indicated in the properties box and the box
surrounding the graph will be drawn entirely in green. At this point you may wish to change the scaling to 0 to
5 using steps 5 and 6 above since we have divided Pressure by 100.

10) Double click on the bottom axis to open the properties to the axis page with the bottom axis selected. Next to
Time Width:, enter 120 and click OK

If the double click method does not work, you can always open the properties window for the graph using
normal methods, select the Axes page and click on Bottom Axis.

In a vs. time graph, the bottom axis does not have a fixed scale. It changes as new data comes in so that the
new data always appears at the very right of the graph. The time width parameter determines how far back in
time from the most recent data point is displayed. By changing it from the default 60 to 120 we have told the
graph to plot the last 2 minutes of data.

Once again, if you zoom, autoscale, or pan the graph along the x axis, it will freeze the x axis and the graph will no
longer update with newly acquired values. You must then thaw the axis to have the graph display the trace as
normal.

Sample file: LJGuideSamples\Graphing.ctl

4.6 Outputting with variable value and descriptive text
components

In addition to taking data, most systems also control outputs. Here we will create an output channel and control it
manually from a page component. We'll assume you still have that Output channel we created earlier.

1) Click on Page_0 in the Workspace to go to our first page.

2) Right-click in a blank area of the page and select Displays-Variable Value to create another variable value
component.

3) Right click on the new component and select Properties... to open the properties window.

4) For the expression, enter Output[0]

Like before, this will simply display the most recent value of the out channel. Feel free to set the caption as
well.

5) Click on Action tab.

This tab exists on several different components including the static ones and works the same way with all of
them.

6) From the Action drop down, select Set To

There are many different options for the Action described in the DAQFactory help. The Set To action will prompt
the user for a new value when the component is clicked and apply the entered value to the channel or variable.

7) Next go to Action Channel: type Output

DAQFactory - LabJack Application Guide30

© 2008 AzeoTech®, Inc.

8) Leave the Range blank and click OK.

The range allows you to constrain the inputs to particular values. By leaving these properties blank, we are
indicating that we do not want a range limitation. The page will now display your caption and either the most
recent setting for Output, or a 0 with a big red X through it if you started from the last sample document. The
red X indicates that Output does not have a valid value yet. This is because we haven't set it to anything.

9) Click on the component. A new window will appear requesting a new value. Enter a voltage value within the DAC
range, such as 2, and click OK.

Output will now be set to the value you entered. The component will now display your new value without the big
red X. If you tie a wire between DAC0 and FIO0 (U3) or AIN0 (UE9) you will see the Pressure reading track with
the DAC output, though multiplied by 100.

Note, if you’d like to be able to enter an output value in units other then volts, you need to create a Conversion and
apply it to your output channel. We talked about conversions a little earlier. Conversions on output channels work
in reverse. With regular input conversions, the formula is used to convert the devices units, usually volts, to your
units. With output conversions, the formula is used to convert your units into the device units. So, if you had a
variable pressure controller that controlled from 0 to 500 psi and took a 0 to 5V output, the conversion would be:

Value / 100

Sample file: LJGuideSamples\AnalogOut.ctl

5 Logging

V

DAQFactory - LabJack Application Guide32

© 2008 AzeoTech®, Inc.

5 Logging

5.1 Logging to ASCII files

Next we will learn how to store this data to disk so that it can be opened with another program for analysis. In this
example we will create a simple comma delimited file with our pressure data.

1. Click on LOGGING: in the workspace.

This will display the logging set summary view. Here you can see all your logging sets displayed and their
running status. A logging set is a group of data values being logged in a particular way to a particular file. You
can have as many logging sets as you need, and they can run concurrently.

2. Click on the Add button in the logging set and when prompted for the new name, type in MyLog and click OK.

Like channels and all other DAQFactory names, the logging set name must start with a letter and only contain
letters, numbers or the underscore. Once you click OK, the logging set view will be displayed for the new
logging set. You can also get to this view by clicking on the logging set name listed under LOGGING: in the
workspace. You may have to click on the + sign next to LOGGING to see your logging sets listed in the
workspace.

3. Next to Logging Method, select ASCII Delimited, which is actually the default.

ASCII Delimited is probably the most common method for data logging as it can be read by most other
programs such as Excel. Unfortunately, it is not as space efficient or fast as the binary methods. But unless you
have strict space constraints or you are logging more than about 50,000 points per second (depending also on
your computer / hard drive speed), we suggest ASCII.

4. Next to File Name enter c:\mylogfile.csv

It is usually best to fully specify the path to your file, otherwise the data will be stored in your DAQFactory
directory. The .csv is a windows standard designation for comma delimited values, which, unless you change

the delimiter on the details page, is the type of file that will be created.

5. In the Channels Available table, click on the row with Pressure, then click on the >> button to move it to the
Channels to Log table.

Each logging set can log any combination of channels. In this case, we will just log the input channel.

6. Click on Apply to save the changes.

7. To start logging, click on the + next to LOGGING to display the new logging set, then right click on the logging set
MyLog and select Begin Logging Set.

5 Logging 33

© 2008 AzeoTech®, Inc.

Once started, the icon next to MyLog will change and the red stop sign will be removed to indicate that this
logging set is running.

8. Wait at least 10 or 15 seconds to log some data and then right click on the logging set again and select End
Logging Set to stop logging.

There are other ways to start and stop logging sets, including the Action page of some components such as the
variable value component that we used earlier.

9. Now start Excel or Notepad and open the file c:\mylogfile.csv.

You will see two columns, time and data. By default the time is given in Excel / Access format which is decimal days
since 1900. You can also have DAQFactory log in its standard format of seconds since 1970. If you are using Excel
and logging the time in Excel format, you can format the first column as date / time and the numbers displayed will
be properly displayed as date and time.

Hint: if you cannot find the mylogfile.csv file, check to make sure that you selected Pressure to log and not Output.
Since Output is an output channel, it only gets new values to log when you actually set it to something.

Sample file: LJGuideSamples\LogASCII.ctl

5.2 Batch logging

The method we just used can also be used for batch logging. Batch logging is used when you are doing multiple
groups of measurements and you wish to log each group into a separate file. We already know how to create a
logging set, so to do batch logging requires two more things:

a) a way to start and stop the batch

b) a way to change the file name, or, automatically assign the filename

Starting and stopping the batch log:

Really this is just starting and stopping a logging set. The easiest way is to simply use a button:

1) On a page, right click and select Buttons-Button.

2) Right click on your new button component and select Properties.... Change the caption to Start / Stop.

3) Click on the Action tab and select Start / Stop Logging Set, then in the combo, select our MyLog logging set, then

click OK.

At this point we have a button that will start and stop the logging set. But, it doesn't tell us if the logging set is
actually running. For this, we'll use a descriptive text component. We can treat the status of the logging set, which
is either running or not running, as a digital input:

4) Right click on the page again and select Displays - Descriptive Text.

DAQFactory - LabJack Application Guide34

© 2008 AzeoTech®, Inc.

5) Right click on this new component and select Properties....

6) For the Expression type:

logging.mylog.running

7) Change the word Text in the Text table to Not Logging, and then click Add to add a new row, putting 1 in the new

row under Threshold, and Logging for the Text. Click OK to close the window.

The logging.mylog.running is a variable of the our "mylog" logging set which will equal 0 if the logging set is not
logging, and 1 if it is. To differentiate between the "running" variable of the "mylog" logging set and the running
variable of other logging sets, sequences, etc. we have to specify exactly what we want. "logging." means we
want a logging set. "mylog." means we want the logging set called "mylog", and "running" is a variable of the
logging set mylog.

Now, if you click on the button you will see the descriptive text component change from Not Logging to Logging and
back. The logging set is also starting and stopping.

Changing the logging file name:

Now that we can start and stop the logging set, we need to create a way to change the file name of our logging set.
The file name is just another variable of the logging set: "strFileName", so we'll access it using logging.mylog.
strFileName:

1) Right click somewhere on the page and select Displays - Variable Value

2) Right click on the new component and select Properties....

3) Change the Caption to Logging Path, set the Expression to: logging.mylog.strFileName, and clear out the Units

. This sets up the display.

4) Click on the Action tab, and then select Set To from the available actions.

5) For Set To Channel, put logging.mylog.strFileName. Click OK.

At this point, you can click on the display of the logging path and it will prompt you for the file path. But, it'd be
nicer if it displayed a standard windows File Save Window instead so the user could browse for the file:

6) Right click on our variable value component again and select Properties....

7) Go back to the Action tab and select Quick Sequence

8) In the white space that appears, enter the following script:

private string path = File.FileSaveDialog(logging.mylog.strFileName)
if (!IsEmpty(path))
 logging.mylog.strFileName = path
endif

5 Logging 35

© 2008 AzeoTech®, Inc.

9) Click OK to close, then click on the path again to see it work.

To explain the script:

In the first line, we declare a string variable called path. It gets the result of the FileSaveDialog() function which

is part of a group of functions which are always prefixed with File. . The FileSaveDialog() displays the standard
Windows File Save window.

In the second line, we look to see if the path variable is empty. This would occur if the user hit Cancel from the Save
window.

If the user didn't hit Cancel, then we get to the third line, which assigns the path they selected to the logging set.

Automatically setting the file name:

Finally, lets quickly demonstrate how to automatically set the file name based on the time and date. What we need
to do is change the start / stop logging button to change the file name to include the current time whenever the
logging set is started:

1) Right click on the Start / Stop Logging button we created at the beginning of this section, and select Properties....

2) Go to the Action tab and change the Action to Quick Sequence. Enter the following script:

if (logging.mylog.running)
 endlogging(mylog)
else
 logging.mylog.strFileName = "c:\mydata_" + formatdatetime("%y%m%d_%H%M%S",systime()) + ".csv"
 beginlogging(mylog)
endif

3) Click OK and give the button a try. You should see the variable value component update with a new filename
every time the logging set starts up. Note that clicking on the variable value component to change the filename has
been rendered moot as the start / stop button will reset the filename.

To explain the script above:

In the first line we see if the logging set is running.

If it is running, then in the second line we stop the logging set.

Otherwise, in the fourth line, we set the filename. The filename is made up of three strings combined together. The
first and last parts are static, "c:\mydata_" and ".csv". The middle part contains the date. The FormatDateTime()
function takes what is called a specifier that determines how you would like the date and time displayed. In this
case it will be Year Month Day_Hour Minute Second with no spaces. Please see the DAQFactory help for more details
on possible specifiers. The second part of the FormatDateTime() function takes the time you want to format. In this
case, we use SysTime() which is the current system time.

Sample file: LJGuideSamples\LogBatch.ctl

5.3 Doing daily logs

Another form of batch logging is daily logging. This is when you create a new logging file every day (or week, hour,
or whatever interval). This can easily be done with a simple sequence script. Assuming we still have the MyLog
logging set:

1) Right click on SEQUENCES: in the Workspace and select Add Sequence. Call it DailyLog.

2) Once the sequence editor appears, check the box labeled AutoStart.

3) Enter the following script:

while(1)
 logging.log.strFileName = "c:\mydata_" + formatdatetime("%y%m%d",systime()) + ".csv"
 delay(1)
endwhile

4) Click Apply, then go to Debug - Run this Sequence from the DAQFactory main menu to start the sequence.

DAQFactory - LabJack Application Guide36

© 2008 AzeoTech®, Inc.

All the sequence does is every second reset the file name. The new file name has the date in it. 86399 times
out of 86400 it basically does nothing, but at midnight, it will actually change the file to a new name. The
logging set will see this and automatically close yesterday's file and start a new one with the new name.

Since the sequence is marked AutoStart, when your document is loaded into DAQFactory, the sequence will start
automatically.

Sample file: LJGuideSamples\LogDaily.ctl

5.4 Conditional logging and the export set

Logging sets work well with normal logging and batch logging since they typically run for longer periods of time. If,
however, you need to log only when certain criteria are met, then you will need to use an Export Set instead.
Continuing our examples, let us have the system log our channels whenever the Pressure goes above 90.

1) Right click on EXPORT: in the Workspace and select Add Export Set. Call it OneLine.

2) When the export set area appears, enter a File Name, such as C:\mydata.csv

3) Click on the Fill w/ Chans button.

This button automatically fills the export set columns with each of your channels, setup to log the most recent
reading only (notice the [0] after each expression in the table). This is the typical setup for conditional logging.
Unlike logging sets, export sets can also log calculations and anything else you can describe in a DAQFactory
Expression.

4) Click on the Details tab.

5) Select Fixed Interval, and then to the right under the Fixed Interval block, select Snapshot.

Fixed interval mode with Snapshot causes the export set to take a single snapshot of the current data
irrespective of the time the data is acquired. This means that output channels, which are only updated in their
history when they change values, will still appear on every logged data line.

5 Logging 37

© 2008 AzeoTech®, Inc.

6) Click Apply.

7) If not already expanded, click on the + next to CHANNELS: in the Workspace. Select the Pressure channel.

8) Click on the Event tab of the channel view. An event is script that is run whenever a new value arrives at the
channel. Enter the following script:

if (Pressure[0] > 90)
 beginexport(OneLine)
endif

9) Click Apply.

That is all that is needed. The event code looks at the most recent reading of Pressure and if its over 90, it will start
the export set. The export set will then log a single line of data.

Sample file: LJGuideSamples\LogCondition.ctl

5.5 Loading logged data into Excel

Assuming you didn't change the default delimiter, the logging files that we've created so far will all be in CSV or
comma separated value format. This means that for a particular time, each channel value in the logging set will be
listed, separated by commas, on a single line of text. The nice part about this is that Excel will directly load in a CSV
file if you put a .csv extension on your file name. If you didn't, Excel will most likely display an import wizard. This
is no worry, just make sure and select Comma as the delimiter instead of the default of Tab.

Once the file is loaded into Excel you will see all your data starting in the B column. The A column will always have
the time. Assuming you didn't uncheck the Use Excel Time? option on the details page of the logging set, the A
column will be numbers in the upper 30,000 range, or low 40,000 range if it is after July 2009. This is decimal days
since 1900 and not terribly useful to us humans. To display the date and time in something we can read, right click
on the A column header to select the entire column and select Format Cells. Then select any of the date / time
formats available. Once this is done, you will probably have to resize the A column to see the complete date and
time.

If you are doing reasonably fast data, the default date/time formats won't show values smaller than a second. To
see millisecond values you will need to select the Custom format section, then select one of the date / time formats
and add ".000" at the end:

DAQFactory - LabJack Application Guide38

© 2008 AzeoTech®, Inc.

6 Intro to scripting

VI

DAQFactory - LabJack Application Guide40

© 2008 AzeoTech®, Inc.

6 Intro to scripting

6.1 Creating sequences

Much of what you can do in DAQFactory, such as acquiring data, logging it, and displaying it on the screen can be
done without writing any script. However, to enjoy the full flexibility of DAQFactory, you will need to do at least a
little basic scripting. You may think scripting is bad, but trust us: its the best way to get a computer to do exactly
what you want. We could have made DAQFactory not have any scripting, but then every properties window for
every feature would have thousands of choices, which would be much more cumbersome to use, and you still
wouldn't have the flexibility of scripting. Fortunately, you can step into it slowly, using many of the built in features
we've shown so far, but mixing in an occasional short script to do something unique.

We've seen some scripting already when we talked about conditional logging. This section will go over a few more of
the basics of DAQFactory scripting so you'll understand the examples in the rest of this guide. It is not designed to
be a complete overview of Sequences. For that you should read the DAQFactory User's Guide chapter on
Sequences.

Script is used in a number of different places. In the conditional logging section we used script in Channel Events.
In the batch logging section we had script in the Action for a screen component. The primary place for script,
however, is in a sequence. A sequence is script that either executes standalone in the background, or as a function
to another piece of script. Because sequences can run in the background while the rest of DAQFactory does its
thing, you can create a separate sequence for each different function of your application and have them all run at
the same time. For example, if you want a loop that switches a valve every 30 seconds, and another loop that
sends an email every day, you would create two separate sequences and run them both at the same time.

Creating a new sequence is as simple as creating a new logging set. Right click on SEQUENCES: in the Workspace
and select Add Sequence. Enter a name for your sequence. Like every other name in DAQFactory, your sequence
name must start with a letter and contain only letters, numbers and the underscore. Click OK and the new sequence
is created and the sequence editor window displayed.

The sequence editor window is a simple text editor with some special features, like auto-indenting, that make it
easier to write script. Before we jump into some of the script basics, a few important pointers. Our apologizes if we
sound like we are preaching, but these are important points and will save you headaches down the road no matter
whether you are scripting in DAQFactory, making webpages in PhP, or coding in Visual Basic. You'd be amazed at
how many support calls we get because people didn't properly indent, can't figure out code they wrote a year ago,
or don't see their decimal points:

Indenting:

Proper indenting of your script is very important. You should indent in 3 spaces on the line after any block level
command (such as "if", "while", "for", "try", or "switch"), and indent out 3 spaces before the end of block commands
(such as "endif", "endwhile", "endfor", or "endcatch"). Some lines do both, such as "else" and "catch". Here's a
simple example of proper indenting. Don't worry about the script itself, just look at the indenting:

while(1)
 try
 if (x > 3)
 y = 1
 else
 y = 2
 endif
 catch()
 y = 4
 endcatch
 delay(1)
endwhile

Even if you don't understand any of the script above, you have to admit that this is easier to read than:

6 Intro to scripting 41

© 2008 AzeoTech®, Inc.

while(1)
try
if (x > 3)
y = 1
else
y = 2
endif
catch()
y = 4
endcatch
delay(1)
endwhile

OK, perhaps both are just unintelligible geek talk to you, but soon you will understand, and you should get into the
habit of indenting properly from the start. There really are no excuses not to indent, unless, of course, your
keyboard lacks a space bar.

Commenting:

We strongly recommend you put comments in your code. A comment is simply two slashes followed by whatever
you'd like to say:

// this is a comment
global x // x is an important variable because...

You may think that you'll remember how your script works a year from now, but without good comments, it is very
unlikely. The DAQFactory source is probably one half code and one half comments.

Decimals:

Whenever you need to type a value that is less than 1 and greater than -1, you should always put a zero in front of
the decimal point. In other words:

0.325 Correct

.325 Incorrect

-0.325 Correct

-.325 Incorrect

The reason for this is that when you have a page full of script the decimal place can easily be lost if there isn't that 0
in front. It may seem minor, but when its 2am and you can't figure out why your calculations are off because you
confused 325 with .325 you'll wish you had gotten into this habit. Just look at this last sentence. If it was written
properly as "confused with 325 with 0.325 you'll wish", it would be very obvious that the two numbers are not the
same.

6.2 Scripting basics

6.2.1 Assignment

The most basic useful sequence is probably one that sets a few output channels to different values. Assignment is
done by simply specifying the object to assign a value to, an equal sign, and the value to assign. For example:

MyOutputChannel = 3
AnotherOutput = 4 * 3 / 2
YetAnotherOutput = 5 / InputChannel[0]

The part to the left of the equal sign must be something that can take a value and cannot be an expression. This can
typically be a channel or a variable. The part to the right of the equal sign can be any valid expression. If a sequence
was created with just these three lines and run, the sequence would set MyOutputChannel to 3, AnotherOutput to 6
and YetAnotherOutput to 5 divided by the most recent value of InputChannel. The sequence would then stop.

DAQFactory - LabJack Application Guide42

© 2008 AzeoTech®, Inc.

6.2.2 Variables

Channels provide a place to store input and output readings and their associated histories. Often you'll need other
places to store other values, such as calibration constants, counters, and flags. For this DAQFactory has variables.
There are five types of variables in DAQFactory: global, local, private, registry, and static. Each variable type can
be either a string or a number. DAQFactory also supports arrays of values. To use a variable you must create it
first by declaring it. Declaring a variable is done in script by specifying the type of variable and the variable name.
Like all other names in DAQFactory, a variable name must start with a letter and contain only letters, numbers and
the underscore. For example, to declare a global variable called "Slope":

global slope

Or a private variable called "count":

private count

For string variables, we add the word string:

global string UserName

You can also do assignment while declaring the variable:

global slope = 3.92

In the examples that follow, will use a global variable called ID to store the LabJack ID, and then use this in place of
a constant in all our script. Then, if we change the ID of the LabJack, we'll only have to change the script in one
place.

So what do the data types mean?

global: these variables are accessible everywhere in DAQFactory, much like Channels.

private: these variables are only visible in the script that declared them. Use privates whenever possible, especially
for counters used in for loops, etc.

local: these variables are used in custom devices, protocols, and user components. They are a bit more advanced
and covered in the regular DAQFactory User's Guide

static: these variables are like privates, but unlike privates maintain their values when the sequence that declared
them restarts. This is a rather advanced variable type.

registry: these variables are globals, but are actually stored in the Window's registry and so maintain their values
when DAQFactory restarts. There are limitations. Numeric registry variables are signed 32 bit values so must be
between -2147483647 and +2147483647. Registry variables also don't support arrays. Finally, registry variables
are declared and accessed differently. Please see the DAQFactory User's Guide for more information.

6.2.3 Calling functions

There are a wide variety of functions available in DAQFactory scripting to allow you to do many advanced things like
send email, FTP documents, popup windows, and of course perform basic math functions like Sin, Cos and Tan.
Calling a function in DAQFactory is pretty much like every other scripting language, math tool, or even Excel. For
example to get the Sin of 0.92 we would do:

sin(0.92)

This is a function that returns a value, in this case 0.7956016200364. There are also functions that perform an
action, but don't return a value:

email.send()

Functions can take a varying number of parameters. The Sin() example has one parameter, 0.92, while the email.
send() example has none. To specify more than one parameter in a function, you should separate each parameter
by a comma:

smooth(mydata,10)

DAQFactory also allows you to create your own functions using Sequences. In fact, a sequence that you create in
the Workspace can either be started on its own to run concurrently with other script, or called as a function from

6 Intro to scripting 43

© 2008 AzeoTech®, Inc.

other script. If it is started on its own, it cannot have any parameters and it will not return a value. When called as
a function you can pass in up to 20 parameters and return a value. So, for example, if you decided you don't like
the fact that sin() takes angles in radians and want to create a function called MySin() that takes degrees instead:

1) Right click on SEQUENCES: in the Workspace and select Add Sequence

2) Enter the name MySin and click OK.

3) In the script editor that appears, enter the following code:

function MySin(degs)
 private result = sin(degs * pi() / 180)
 return(result)

4) Click Apply and Compile, then click in the command part of the Command / Alert window (the bottom part) and
put:

? MySin(90)

and hit Enter. You'll see it will display 1, the sin of 90 degrees.

A few points:

a) you don't have to do the function declaration as shown in the first line of the MySin script, but doing so allows you
to name your parameters and thus makes your code cleaner.

b) we could easily have combined the 2nd and 3rd lines of the script and skipped creating a private variable, but we
wanted to show variable declaration in action.

6.2.4 Conditional statements

Probably the most commonly used scripting statement is the if statement. The if statement allows you to check for a
particular condition and perform a different action depending on whether that condition is true or not. For example,
to set the Out channel to 3 if Pressure > 5 we would do:

if (Pressure[0] > 5)
 Out = 3
endif

We use [0] after Pressure because Pressure is a channel with history and we only want to look at the most recent reading of Pressure.
We can also add an else statement to perform a different action if the condition is not true. So, if we want to set
Out to 4 if Pressure isn't > 5, we would do:

if (Pressure[0] > 5)
 Out = 3
else
 Out = 4
endif

We can perform more than one statement inside an if too:

if (Pressure[0] > 5)
 Out = 3
 Valve = 1
endif

We can also nest if statements:

if (Pressure[0] > 5)
 Out = 3
 if (Temperature[0] < 80)
 Valve = 1
 else
 Valve = 0
 endif
else
 Out = 4
endif

DAQFactory - LabJack Application Guide44

© 2008 AzeoTech®, Inc.

This last example will set Out to 3 if Pressure > 5, and to 4 if Pressure <= 5. If, and only if, Pressure > 5, it will
also set Valve to 1 if Temperature < 80, and to 0 if Temperature >= 80. If Pressure <= 5, Valve will not be
changed. You have to admit its easier to understand in script than in the last 3 sentences! (but only because the
script is properly indented...)

6.2.5 Loops and Delay

Another common scripting element is the loop. There are several ways to do a loop in DAQFactory, but the most
common is probably the while statement, especially while(1). The while / endwhile block will execute a group of
statements as long as the while statement is true. So:

while (Pressure[0] > 5)
 ? "Pressure High!!!!"
 delay(1)
endwhile

This loop will, as long as Pressure > 5, print out a statement every second. Once Pressure goes <= 5, the code
after the endwhile (if any) will execute.

The most common while loop is while(1). Since 1 is the same as true, this loop will execute forever, or at least until
the sequence that contains it is stopped from outside. Because it executes forever, you should really only use while
(1) inside of a sequence and not inside of a component action or an event. That said, its great for doing things like
calibration loops:

while (1)
 CalValve = 0
 delay(600)
 CalValve = 1
 delay(60)
endwhile

The above loop will set the CalValve off for 10 minutes, then on for 1 minute and repeat this as long as the sequence
runs.

Its important to notice that we pretty much always put a delay() inside of our loops. Delay() will pause the
execution of the script for the specified number of seconds. Without the delay() the loop would run as fast as your
computer will allow and probably starve out Windows, making it look like DAQFactory has hung.

7 Some Common Tasks

VII

DAQFactory - LabJack Application Guide46

© 2008 AzeoTech®, Inc.

7 Some Common Tasks

7.1 Doing things based on an input

Often one will want to monitor an input and then perform an action depending on what that input reading is. For
example, we could be monitoring the temperature of a greenhouse and want to turn a heater on when it gets cold,
and off when it gets hot. This is a basic thermostat. Assuming we had two channels, "Temperature", an analog
input which has been converted to degrees C, and "HeaterPower" which is a digital output, to create a simple
thermostat that turns on the heater at 15C and off at 22C we'd do this:

1) Click on the + next to CHANNELS: in the Workspace to expand this item and show all the channels.

2) Click on the Temperature channel.

3) Select the Event tab. Here we can enter script that executes every time a new reading occurs on the Temperature
channel. Since this script can delay the readings, we need to make sure its short and fast.

4) Enter the following script:

if ((Temperature[0] < 15) && (Temperature[1] >= 15))
 HeaterPower = 1
endif
if ((Temperature[0] > 22) && (Temperature[1] <= 22))
 HeaterPower = 0
endif

5) Click Apply. The thermostat will start working immediately, though it won't actually change the state of the
heater until the temperature passes through one of the thresholds.

This example shows a couple things that are a least important to thermostat applications:

· Hysteresis: we could just have the heater go on if the temperature is below 15 and off it is above, but this usually
does not work well. Your analog inputs will likely have at least a little noise, and so when the temperature is right
around 15, the readings will tend to jump above and below the 15 threshold causing the heater to rapidly turn on
and off. To avoid this, we use something called hysteresis. The heater comes on at 15 degrees, but doesn't shut
off until 22. Unless your noise is 7 degrees, the heater will respond much better.

· Thresholding: another way to write this script would be:

if (Temperature[0] < 15)
 HeaterPower = 1
endif
if (Temperature[0] > 22)
 HeaterPower = 0
endif

The difference is that in this second, shorter script, the heater power digital output is set every time Temperature
is read and is above or below the given threshold. This may create quite a bit of overhead on the device. Even
the UE9 takes a few milliseconds to perform each action and if you are doing a lot of different things with the
device, this can add up.

So, in the original script, we look at the most recent point, [0], and the next most recent point, [1], and only
adjust the HeaterPower output if they are on opposite sides of the threshold, meaning the temperature has just
dropped below, or risen above the threshold. Once this occurs, the HeaterPower output won't be reset until the
other threshold is crossed.

Sample file: LJGuideSamples\Thermostat.ctl

7.2 Sending email out of DAQFactory

Sending email out of DAQFactory is quite simple. You have to set a couple system variables and then call Email.
Send(). First, however, you need to know your SMTP server's address, username and password. This can usually
be pulled out of your normal email program. Before we get into it, though, please note that DAQFactory does not

7 Some Common Tasks 47

© 2008 AzeoTech®, Inc.

support SSL, so won't work with gmail accounts since they require an SSL connection.

Since most of the email settings are the same for every email, we recommend putting that code in a sequence
marked Auto-Start instead of calling it every time. It doesn't really matter, but it makes things more efficient. So:

1) Right click on SEQUENCES: in the Workspace and select Add Sequence. Give it the name StartUp and click OK.

2) In the sequence editor, check the box labeled Auto-Start, then put the following in the script, adjusting for your
server settings:

email.strHost = "mail.myISP.com"
email.strUserName = "bob@myISP.com"
email.strPassword = "password"
email.strReplyAddress = "bob@myISP.com"
email.strAuthenticate = "AuthLogin"

You may need to tweak this last item. Depending on your server, it could be "NoLogin", "AuthLogin" or "LoginPlain".
 Also, most servers require a ReplyAddress, so make sure and set this one as well.

3) Click Apply, then go to Debug - Run this Sequence from the DAQFactory menu to actually set these settings.

Now that the basics are set, you can create code to actually send the email. Unless you are only going to send a
message from one place, you may want to create a little Sequence function you can call to send an email with a
given message. For example, if you are sending messages for alarms:

4) Right click on SEQUENCES: in the Workspace and select Add Sequence. Give it the name SendEmail and click OK

.

Note we can't use "Email" as a name because it is used by DAQFactory.

5) In the sequence editor, put the following script, adjusting as needed:

function SendEmail(string Message)
 email.strTo = "my@myhome.com"
 email.strCC = "theboss@hishome.com"
 email.strSubject = "ALARM!!!!!"
 email.strBody = message
 email.Send()

Now that you have that function you can call it from elsewhere in DAQFactory. For example, lets say we want to
send an email whenever our Pressure channel goes above 80 (from our earlier examples):

6) Click on Pressure in the workspace under CHANNELS: (this assumes you still have the Pressure channel from a few
chapters ago).

7) Select the Event tab and enter this script:

if ((Pressure[0] > 80) && (Pressure[1] <= 80))
 SendEmail("Pressure is greater than 80. Its going to blow!!!!")
endif

8) Click Apply. Now if the pressure goes above 80, an email will be sent.

Now you may be wondering about the if() statement we used. If we had done: "if (Pressure[0] > 80)" instead, then
DAQFactory would fire off an email for every reading of pressure that is over 80. Instead, we are only sending an
email as the pressure goes over 80. Pressure[0] is the most recent reading, and Pressure[1] is the next most recent
reading. && means "AND", so only if the most recent reading is > 80, AND the next most recent reading is <= 80
will an email be generated.

Note: email takes a finite amount of time and is done asynchronously, meaning when you do email.send() to send
the email, the email is sent in the background and the function returns immediately. Because of this, you should be
careful not to consecutively call email.send() too quickly. Although it depends on your server, at least 5 seconds
between sends is recommended.

Attaching files:

DAQFactory email also supports attaching of files. This is great if you want to be able to send the daily logs every
night. We talked about how to create daily files in the Logging chapter. To attach the daily log to an email requires

DAQFactory - LabJack Application Guide48

© 2008 AzeoTech®, Inc.

us to expand the script we made to change the logging file. Here's the modified script, with the assumption that
you've set the To, Subject and Body elsewhere:

logging.mylog.strFileName = "c:\mydata_" + formatdatetime("%y%m%d",systime()) + ".csv"
private string lastdate = formatdatetime("%d",systime())
while(1)
 if (formatdatetime("%d",systime() != lastdate))
 // save the attachment file BEFORE we change the logging set name
 email.strFile = logging.mylog.strFileName
 logging.mylog.strFileName = "c:\mydata_" + formatdatetime("%y%m%d",systime()) + ".csv"
 // give the logging set time to close yesterday's file before we send the email
 delay(10)
 email.send()
 endif
 delay(1)
endwhile

7.3 Uploading data using FTP

Uploading data using DAQFactory FTP is very similar to Email. The variables are slightly different and all start with
FTP, but the general concept is the same. You'll obviously need to know your FTP server address, user name and
password. To demonstrate, we'll use the email attachment example we did at the end of the last section and change
it to do FTP instead, including all the initialization code too:

ftp.strServer = "ftp.myServer.com"
ftp.strUserName = "ftpUser"
ftp.strPassword = "password"
logging.mylog.strFileName = "c:\mydata_" + formatdatetime("%y%m%d",systime()) + ".csv"
private string lastdate = formatdatetime("%d",systime())
while(1)
 if (formatdatetime("%d",systime() != lastdate))
 // save the attachment file BEFORE we change the logging set name
 ftp.strLocalFile = logging.mylog.strFileName
 ftp.strRemoteFile = logging.mylog.strFileName // you may need to change this if your server doesn't like c:\ in its filenames
 logging.mylog.strFileName = "c:\mydata_" + formatdatetime("%y%m%d",systime()) + ".csv"
 // give the logging set time to close yesterday's file before we send the email
 delay(10)
 ftp.Upload()
 endif
 delay(1)
endwhile

7.4 Performing a ramped output

We've talked a little about setting an output from a screen control in section 4.6, but this requires user input. We
also talked about setting an output based on an input in section 7.1. In this section we learned that you can easily
set an output channel by simply assigning a value to it. So, to set a DAC channel named ValvePosition to 3 volts
(assuming no Conversion exists on the channel), we would simply do:

ValvePosition = 3

You can also apply conversions to outputs like we did with inputs in section 4.3, however, the conversions work in
reverse. For inputs, the conversion takes the raw voltage (counts or other units) from the LabJack and converts it
into engineering units like temperature or pressure. For outputs, the conversion takes the engineering units and
converts into voltage. So, for if we had a proportional valve that takes a 0 to 5V signal and we want to be able to
specify the percentage open, where 0% = 0V and 100% = 5V, the conversion would be:

Value / 20

Then, to open the valve to 60% we could just do:

ValvePosition = 60

and 3 volts would be outputted from the DAC of the LabJack.

7 Some Common Tasks 49

© 2008 AzeoTech®, Inc.

8 Calling the LabJackUD

VIII

8 Calling the LabJackUD 51

© 2008 AzeoTech®, Inc.

8 Calling the LabJackUD

8.1 Using() and include() for LabJack

There are two important commands to make communicating with a LabJack using script easier. With these
commands, script in DAQFactory for communicating with a LabJack will look almost identical to the psuedo-code that
is in the LabJack User's Guide, and any C examples provided by LabJack. We recommend putting these two
functions at the top of a sequence setup as AutoStart, so that it runs when your document is loaded. All subsequent
samples assume this has been done. To do this:

1) Right click on SEQUENCES: in the workspace and select Add Sequence

2) Type in a name, say StartUp for the new sequence and click OK

3) The sequence editor will appear. Click in it and type the following two lines:

using("device.labjack.")
include("c:\program files\labjack\drivers\labjackud.h")

You may need to change the path in the second line to match the location of your labjackud.h file if you did not
install the LabJack drivers in their default location.

4) Check the box just above the editor that says Auto-Start, then click Apply to save your changes.

5) If you are going to continue to work on the document without reloading it, you'll need to manually run this
sequence, so right click on the sequence name, StartUp, in the Workspace and select Begin Sequence. The sequence
will run instantly, so you won't really be able to tell that it ran.

Next time you load this document, the sequence will run and you are ready to go.

Now an explanation:

using("device.labjack.")

DAQFactory supports a wide variety of devices. Each device has different functions available to it. In LabJack's
case, some of the functions are AddRequest, GoOne, etc. Because it is possible for two different devices to use the
same function names, you normally have to prefix all your LabJack function calls with device.labjack. For example:

device.labjack.GoOne(1)

If you are only using a LabJack, this extra typing can be a pain, and makes code harder to read, so we allow you to
specify different objects that don't require the object designation. Technically speaking this is bringing the function
into the global namespace, but you don't have to worry about that. Just know that once you do the command in a
document:

using("device.labjack.")

You don't have to put device.labjack. in front of the LabJack functions.

This resets when you load a new document, so you'll need to put this function call in an AutoStart sequence for each
of your documents.

include("c:\program files\labjack\drivers\labjackud.h")

The LabJack Universal Driver uses a large number of constants to allow you access to the rather large number of
features in these devices. To get access to these constants, we could hard code them into DAQFactory, but the folks
at LabJack are constantly improving their devices and adding more features. With more features comes more
constants and we simply can't keep up. So, with this include() call you are loading all the constants from the
LabJack supplied file. That way, you always get the latest LabJack capabilities, without having to upgrade
DAQFactory. This function works just like a C include, except that it only pulls out numeric constants.

Once the command has run, you can go to the Command / Alert window and in the bottom command area type:

? LJ_ioADD_STREAM_CHANNEL

DAQFactory - LabJack Application Guide52

© 2008 AzeoTech®, Inc.

hit Enter, and it will display 200, the value of this constant.

It should be noted that while C is a case sensitive language, DAQFactory is not, so ? lj_ioadd_stream_channel will

work just as well. That said, it will probably make your code more readable if you keep the case used in the
constants.

8.2 Doing configuration steps

As we showed in the chapter Basic I/O, there is a lot you can do with DAQFactory and your LabJack without having
to do any scripting. More than likely you will move into a little scripting when you want to tweak the configuration of
your LabJack. This is often done in a sequence marked Auto-Start so the configuration is done automatically when
your DAQFactory document loads. The format of these configuration commands are almost identical to the code
shown in the LabJack User's Manual, as long as you use the using() and include() functions we described in the last
section. So if we wanted to configure the UE9 analog inputs for 14 bit and channels 2 and 3 to bipolar 5V range:

1) Right click on SEQUENCES: in the Workspace and select Add Sequence. Give it the name StartUp

2) The sequence editor window will appear. Check the AutoStart at the top, and then in the window type in the
following script:

using("device.labjack.")
include("c:\program files\labjack\drivers\labjackud.h")
AddRequest(0, LJ_ioPIN_CONFIGURATION_RESET, 0, 0, 0)
AddRequest(0, LJ_ioPUT_CONFIG, LJ_chAIN_RESOLUTION, 14, 0, 0)
AddRequest(0, LJ_ioPUT_AIN_RANGE, 2, LJ_rgBIP5V, 0, 0)
AddRequest(0, LJ_ioPUT_AIN_RANGE, 3, LJ_rgBIP5V, 0, 0)
GoOne(0)

3) Click on Apply and Compile to save your changes.

When you specify AutoStart, the sequence is run when the document is loaded. It is not rerun every time you
save changes, so you'll need to run the sequence at this point.

4) Right click on the sequence name StartUp in the workspace and select Begin Sequence. This will run the sequence
and configure the LabJack. If you change this sequence, for example, to set the resolution to 16 bit, you will need to
rerun the sequence to actually send the commands to the LabJack.

A few comments:

· This code uses ID 0, which means First Found in DAQFactory. If you have multiple LabJacks, you'll need to
replace the 0 in the AddRequest() and GoOne() functions with your ID. Unlike the code in the LabJack User's
Manual, you do not need to perform an Open() on the LabJack as DAQFactory will automatically open and find the
desired LabJack as long as its connected via USB. If connected over Ethernet, please see the section on Ethernet
setup.

· You may need to change the path in the second line to match the location of your labjackud.h file if you did not
install the LabJack drivers in their default location.

· The LJ_ioPIN_CONFIGURATION_RESET ensures that the LabJack is in its original state before we configure it. This
is a good precaution and should be included after your include() line even if you aren't going to do any other
configuration in your AutoStart sequence. You can use ePut instead in this case since you are only doing one
command:

ePut(0, LJ_ioPIN_CONFIGURATION_RESET, 0, 0, 0)

· You could also use the ePut() function, but its generally better to use AddRequest() and GoOne() when you need
to perform more than one command at a time.

· Please review the LabJack User's Manual and the LabJackUD.h file for information on all the constants and
configuration commands possible. There are also examples in the appropriate sections later in this document.

8 Calling the LabJackUD 53

© 2008 AzeoTech®, Inc.

8.3 Error handling with OnAlert

There are several ways to handle LabJack errors from within DAQFactory. The correct way depends a bit on what
you are doing and whether you actually want to do something if an error occurs.

If you are just performing basic I/O using Channels without any scripting, then any LabJack errors will appear in the
Command / Alert window. Streaming errors also appear this way. If you cannot see the Command / Alert window,
go to View - Command / Alert from the DAQFactory main menu. This allows you to see the errors, but you can't
perform any automated action if an error occurs.

If you need to monitor errors automatically and perform an action when one occurs, then you should use the OnAlert
DAQFactory event. As an example, here is how you would make the background of Page_0 turn red if a LabJack
error occurs, resetting to white with a button press acknowledgement:

1) Right click on SEQUENCES: in the Workspace and select Add Sequence. Call the new sequence OnAlert

2) In the sequence editor that appears, enter the following script:

if (find(strAlert,"D0050:",0) != -1)
 page.page_0.backcolor = rgb(255,0,0)
endif

3) Click on Apply and Compile to save your changes

Now, to acknowledge the error and make the screen white again, we need a button:

4) Click on Page_0 in the Workspace under PAGES:

5) Right click on the page somewhere and select Buttons & Switches and then Button

6) Right click on the new button and select Properties.... Type Acknowledge for the Caption

7) Click on the Action tab, then select Quick Sequence for the action.

8) In the sequence editor under Quick Sequence enter:

page.page_1.backcolor = rgb(255,255,255)

9) Click OK to save your changes.

Now if you have a few channels reading from the LabJack and an error occurs, Page_0 will turn red until the error
stops and you click on the Acknowledge button you created. The easiest way to see this is to simply unplug the
LabJack, then plug it back in.

Sample file: LJGuideSamples\OnAlert.ctl

How it works:

If you create a sequence called OnAlert, it will be called whenever a new alert is generated by DAQFactory and
passes in strAlert as a private variable, which is the actual error message. Alerts almost always start with a letter
and 4 digit code. For device alerts, the letter is always "D" and the 4 digit code is unique to the particular device. In
the case of the U3 / UE9 driver, it is always 0050. The rest of the message can vary, but for the LabJack, you will
get an error code afterwards which can be used to further parse for a particular code. The format of LabJack errors
is:

D0050:yy:xxxx: Message

where xxxx is a 4 digit error code, and y is the device ID / number that caused the error, or 99 if its a generic, non-
device specific error.

The exception to this are errors that occur from Channel Timing. These errors have the timing information in front.

So, in our OnAlert sequence, we look for the string "D0050:" and if it is found, then we know its a LabJack error.
Find() returns -1 if not found and a positive number otherwise. Then we simply set the background color of Page_0
to red using the RGB() function. The RGB() function takes three parameters, the amount of red, the amount of
green and amount of blue, each from 0 - 255, and returns the full color value.

When using Channels to read values from your LabJack, DAQFactory will continually retry the read at the Timing
interval you specified in the channel even if an error occurs. Because of this, you can end up with the same error

DAQFactory - LabJack Application Guide54

© 2008 AzeoTech®, Inc.

over and over again. This is why DAQFactory displays errors in the alert window and doesn't popup a separate
window as many applications would. When you are doing error handling with OnAlert, you have to keep this in
mind. You would not, for example, want to fire off an email with every error. If you were reading an input once a
second and the LabJack was unplugged accidentally for 3 minutes, DAQFactory would send 180 emails, one for each
failed read.

Since sending emails on error is a common task, here is probably the best way to solve the repetitive email
dilemma: instead of firing off an email with every alert, add each new alert to the body and have a second sequence
send out the email every so often if alerts have occurred. The details of sending email from DAQFactory are
described in the next chapter, but to build up the email body you'd do this in the OnAlert:

if (find(strAlert,"D0050:",0) != -1)
 strEmailBody += strAlert + chr(13) + chr(10)
endif

The chr(13)+chr(10) add a carriage return / line feed to the end of each alert so that you don't get all your alerts
strung out on a single line in your email.

Now you just need a sequence to fire off the email every so often, say 30 minutes. To do so, create a new
sequence, probably marked AutoStart, with the following script:

global string strEmailBody = "" // initialize the variable for accumulating errors
// put common email configuration stuff here:
email.strHost = "mail.mymail.com"
email.strUser = "me@mymail.com"
email.strPassword = "password"
email.strTo = "me@myhome.com
email.strFrom = "me@mymail.com"
// initial configuration done, so loop forever
while(1)
 // check if an alert has occurred
 if (strEmailBody != "")
 // if so, copy alerts into email body
 email.strBody = strEmailBody
 // reset variable for new alerts
 strEmailBody = ""
 // and send email
 email.Send()
 endif
 // wait 30 minutes and try again
 delay(1800)
endwhile

Note that our OnAlert script will probably generate its own errors until you run our email sending sequence. This is
because the email sending sequence declares the strEmailBody variable, which until then doesn't exist and so we get
errors in OnAlert.

8.4 Handling Disconnect / Reconnect

The most useful thing to catch in OnAlert is the pseudo-error codes LJE_DISCONNECT and LJE_RECONNECT.
LJE_DISCONNECT is probably more useful as an alarm type alert to tell you that you accidentally unplugged the
LabJack, and should maybe make the screen red or something similar. LJE_RECONNECT, however, provides a way
for you to ensure that the LabJack is reset to a known state on power-up. Yes, the LabJack has the ability to set
power-on defaults, but you may want different defaults depending on what document you are running. The best
way to do this is to create a sequence will all the commands to set your default LabJack settings. You'll want to call
this from a sequence marked AutoStart so the LabJack gets configured when you load the document. You'll then
also want to add code like this to the OnAlert sequence / system event to call that configuration code when a
reconnect occurs:

if (left(strAlert,13) == "D0050:00:2001") // 2001 is LJE_RECONNECT
 ConfigureLJ()
endif

This of course assumes that your configuration sequence is called ConfigureLJ. We can use Left() instead of Find()
because Disconnect and Reconnect errors never come from Channel Timing loops.

mailto:me@mymail.com
mailto:me@myhome.com
mailto:email
mailto:me@mymail.com

8 Calling the LabJackUD 55

© 2008 AzeoTech®, Inc.

Now, if you have multiple LabJacks, you'll also need to look at which LabJack got reconnected. In the example
above, we assumed a D# / ID of 0, meaning first found. To further parse it:

if (left(strAlert,6) == "D0050:") // we have a labjack error
 private ID = strtodouble(mid(strAlert,6,2)) // retrieve ID
 if (mid(strAlert,9,4) == "2001") // reconnect
 ConfigureLJ(ID)
 endif
endif

This assumes that ConfigureLJ is setup to take the desired ID as the parameter. You might instead want to use a
separate sequence for each ID.

This code just uses basic string manipulation functions to pull out the appropriate information:

left(s, n) returns the first n characters from the string s.

mid(s, i, n) returns n characters from character number i in the string s. Like everything else in DAQFactory, i

is zero indexed, so the first character of the string is i = 0.

strtodouble(s) converts the given string s into a number.

8.5 Error handling in script

OnAlert works great for errors triggered by Channel Timing, by streaming, and to handle disconnects. If, however,
you are using the various LabJack functions like AddRequest(), GoOne(), eGet(), and others in script, then an alert
won't appears in the Command / Alert window, and OnAlert won't be called. When working in script, then, you have
two other choices. The first is to simply look at the return value for each call to AddRequest(), GoOne(), GetResult
(), etc. If an error occurred in calling the function, the error code is returned. Since 0 is LJE_NOERROR, which also
means "false" in DAQFactory, we can simply look for a non-zero (or "true" in DAQFactory) value:

private err
err = AddRequest(...)
if (err)
 // error occurred!
endif

This method is OK for single functions like eGet and ePut, but can get real cumbersome if you have a lot of function
calls. Fortunately, you can use the GetNextError() function instead. This function allows you to cycle through any
errors in a block of LabJack function calls. A block is a group of AddRequest() followed by a single GoOne() and
optionally any GetResult() calls. With each successive call to GetNextError(), the next error from the list of errors
that occurred in the block is returned along with some details. Once the function returns LJE_NOERROR (which is
just 0), then we know that there are no more errors. Here's an example:

AddRequest(0, LJ_ioPUT_CONFIG, LJ_chAIN_RESOLUTION, 14, 0, 0)
AddRequest(0, LJ_ioPUT_AIN_RANGE, 2, LJ_rgBIP5V, 0, 0)
AddRequest(0, LJ_ioPUT_AIN_RANGE, 3, LJ_rgBIP5V, 0, 0)
GoOne(0)
private err
private ch
private io
while(GetNextError(0,@io,@ch,@err))
 ? Format("Error occurred on channel type: %d, io type: %d, code: %d",ch,io,err)
endwhile

The first three lines are the calls to the LabJack driver to configure the first found LabJack. We then declare three
private variables to hold our error information. The GetNextError() function shows our first example of passing
variables by reference in DAQFactory, which is used in many of the LabJack functions. Putting the @ in front of the
parameter when calling GetNextError() indicates that the reference to that variable is being passed to the function,
allowing the function to actually change the value of that variable. GetNextError() is a little unique in that it both
returns the error code and sets a variable to the error code in a single call. This allows us to look for LJE_NOERROR
in our loop, while still retrieving the error code.

while(GetNextError(0,@ch,@io,@err))

This line loops for as long as GetNextError() returns a non-zero value, meaning there are errors. If no errors
occurred, the code inside the loop will not execute. If an error did occur, the I/O type (for example,

DAQFactory - LabJack Application Guide56

© 2008 AzeoTech®, Inc.

LJ_ioPUT_AIN_RANGE), the channel (for example 2), and the error code are put in our private variables. The next
line:

 ? Format("Error occurred on channel type: %d, io type: %d, code: %d",ch,io,err)

Simply prints a formatted message with those values. Please see the DAQFactory User's Guide on using the Format
() function. You may want to perform something more sophisticated when an error occurs.

If you want to the same error handling for all your script, you can put the error handling code in a separate function.
 To do so, create a new sequence and put the error handling code there:

private err
private ch
private io
while(GetNextError(0,@io,@ch,@err))
 ? Format("Error occurred on channel type: %d, io type: %d, code: %d",ch,io,err)
endwhile

Then, when you want to check for errors, simply call the sequence as a function. For example, if we called our new
sequence "ErrorHandler", our original script would become:

AddRequest(0, LJ_ioPUT_CONFIG, LJ_chAIN_RESOLUTION, 14, 0, 0)
AddRequest(0, LJ_ioPUT_AIN_RANGE, 2, LJ_rgBIP5V, 0, 0)
AddRequest(0, LJ_ioPUT_AIN_RANGE, 3, LJ_rgBIP5V, 0, 0)
GoOne(0)
ErrorHandler()

Note: A single call to eGet() or ePut() or any of the other e functions is a block, so you should stick with looking at
the return value of these functions to determine if an error occurred.

This type of error handling is demonstrated in the example files for all the LabJack specific examples in the following
sections.

9 Analog and Digital I/O

IX

DAQFactory - LabJack Application Guide58

© 2008 AzeoTech®, Inc.

9 Analog and Digital I/O

9.1 Low speed acquisition < 100hz

9.1.1 Introduction

Because Windows needs to occasionally use the CPU in your computer to redraw the screen, process the mouse, and
perform other tasks, you generally cannot read inputs or control outputs faster than 100hz using the computer as
the timer. Of course with the new multicore CPU's, you may be able to tweak extra speed out DAQFactory's polling
loops, essentially putting the acquisition on one core, and letting Windows use the other core for display. Doing this
sort of thing requires more advanced techniques described in the last chapter. This section describes how to do
software (i.e. DAQFactory) polled reading and writing of analog and digital inputs and outputs. The techniques are
essentially the same for both analog and digital inputs and outputs.

9.1.2 The easy way - with channels

The easiest way to read analog and digital inputs at low speeds (i.e. < 100hz) or set analog and digital outputs is to
use channels as we did in the Basic I/O chapter. No scripting is required, you can easily convert the readings using
Conversions, and log it using Logging sets. For the U3, which allows the specification of the differential channel, you
can simply put the channel number for the negative side in the Quick Note / Special / OPC column of the channel. If
you need more advanced configuration, you can still use channels, combined with some basic scripting to send the
configuration commands to the LabJack. For example, to set the UE9 resolution to 14 bit and the range on channels
2 and 3 to +/-5V:

using("device.labjack.")
include("c:\program files\labjack\drivers\labjackud.h")
AddRequest(0, LJ_ioPUT_CONFIG, LJ_chAIN_RESOLUTION, 14, 0, 0)
AddRequest(0, LJ_ioPUT_AIN_RANGE, 2, LJ_rgBIP5V, 0, 0)
AddRequest(0, LJ_ioPUT_AIN_RANGE, 3, LJ_rgBIP5V, 0, 0)
GoOne(0)

This was explained earlier in the chapter on scripting.

9.1.3 Basic scripting using eGet

Channels, however, aren't always the best choice, and sometimes you need script. The next step up from channels
is to use basic scripting and the eGet() function to retrieve a single value, or ePut() to set a single value. For
example, to read channel 1 and then put the result into a channel called MyChannel we would do:

private err
private val
private string message
while(1)
 err = eGet(0, LJ_ioGET_AIN, 1, @val, 0)
 if (err)
 ErrorToString(err, @message)
 ? message
 else
 MyChannel.AddValue(val)
 endif
 delay(1)
endwhile

Now truthfully, this next code snippet does the exact same thing, provided MyChannel is setup to read channel 1:

9 Analog and Digital I/O 59

© 2008 AzeoTech®, Inc.

while(1)
 read(MyChannel)
 delay(1)
endwhile

The read() function allows you to trigger the reading of a channel from script instead of using the Channel's Timing
parameter. But, this code does not allow for any direct error handling, and of course doesn't demonstrate the eGet
function! eGet is also more useful when you don't know your channel numbers at runtime. In the first example, we
used scalar values in our eGet() function call, but there is no reason why you couldn't use variables that could then
be changed from elsewhere:

err = eGet(ID, LJ_ioGET_AIN, chan, @val, 0)

Another thing the first example shows is the AddValue() function of the channel MyChannel. This function essentially
stuffs a value into a channel. This allows you to utilize the benefits of a channel (history, easy logging, etc), without
actually using the channel Timing to trigger the reads. In this case, we are putting the result of the eGet call into
MyChannel. MyChannel does not have to have the same channel number, I/O type, or even be Device Type
"LabJack".

Note: if using the U3, you will need to configure the pins as analog inputs. With Channels, this is done automatically
for you, but when scripting you have to do it yourself. It only takes one line to enable a channel:

ePut(ID, LJ_ioPUT_ANALOG_ENABLE_BIT, 1, 1, 0)

Sample file: LJGuideSamples\eGet.ctl

9.1.4 More advanced using Add / Go / Get

eGet can be handy for very simple scripts, but when doing a number of different requests, it is much better to use
the AddRequest() / GoOne() / GetResult() functions. So, if we wanted to read channels 1 through 3 we could do:

eGet(0, LJ_ioGET_AIN, 1, @val1, 0)
eGet(0, LJ_ioGET_AIN, 2, @val2, 0)
eGet(0, LJ_ioGET_AIN, 3, @val3, 0)

or we could do:

AddRequest(0, LJ_ioGET_AIN, 1, 0, 0, 0)
AddRequest(0, LJ_ioGET_AIN, 2, 0, 0, 0)
AddRequest(0, LJ_ioGET_AIN, 3, 0, 0, 0)
GoOne(0)
GetResult(0, LJ_ioGET_AIN, 1, @val1)
GetResult(0, LJ_ioGET_AIN, 2, @val2)
GetResult(0, LJ_ioGET_AIN, 3, @val3)

OK, you may think that eGet looks much easier since its only three lines of code vs. seven, and it is easier on a basic
level, but with ease you lose flexibility and efficiency. Using the second method is more efficient internally. The
second method also allows you to do error handling easier using the GetNextError() function. With error handling,
the eGet code ends up looking like this:

err = eGet(0, LJ_ioGET_AIN, 1, @val1, 0)
if (err)
 ... error!
endif
err = eGet(0, LJ_ioGET_AIN, 2, @val2, 0)
if (err)
 ... error!
endif
err = eGet(0, LJ_ioGET_AIN, 3, @val3, 0)
if (err)
 ... error!
endif

But the Add / Go / Get looks like this:

AddRequest(0, LJ_ioGET_AIN, 1, 0, 0, 0)
AddRequest(0, LJ_ioGET_AIN, 2, 0, 0, 0)

DAQFactory - LabJack Application Guide60

© 2008 AzeoTech®, Inc.

AddRequest(0, LJ_ioGET_AIN, 3, 0, 0, 0)
GoOne(0)
GetResult(0, LJ_ioGET_AIN, 1, @val1)
GetResult(0, LJ_ioGET_AIN, 2, @val2)
GetResult(0, LJ_ioGET_AIN, 3, @val3)

while (GetNextError(1,@io,@ch,@err)
 ... error!
endwhile

As you can see the second method is much cleaner and easier to read. The eGet() version would get worse and
worse as you added more function calls. Using the second method also allows you to create a single error handler
for the entire block, or as shown in the section on error handling, you can create a single function to do all your error
handling for all your scripts.

Note: variable declarations are not shown in the above examples, but would be required. Likewise, ... error! would
need to be replaced with script to actually do something in the case of an error.

9.1.5 Controlling outputs

We've talked a little about setting an output from a screen control in section 4.6, but this requires user input. We
also talked about setting an output based on an input in section 7.1. In this section we saw that you can easily set
an output channel by simply assigning a value to it. So, to set a DAC channel named ValvePosition to 3 volts
(assuming no Conversion exists on the channel), we would simply do:

ValvePosition = 3

You can also apply conversions to outputs like we did with inputs in section 4.3, however, the conversions work in
reverse. For inputs, the conversion takes the raw voltage (counts or other units) from the LabJack and converts it
into engineering units like temperature or pressure. For outputs, the conversion takes the engineering units and
converts into voltage. So, for if we had a proportional valve that takes a 0 to 5V signal and we want to be able to
specify the percentage open, where 0% = 0V and 100% = 5V, the conversion would be:

Value / 20

Then, to open the valve to 60% we could just do:

ValvePosition = 60

and 3 volts would be outputted from the DAC of the LabJack.

Now as a further example, lets say we'd like to ramp the valve position from 0 to 100% over 60 seconds in steps of
1%. The script is quite simple:

// initialize valve position to 0
ValvePosition = 0
while (ValvePosition < 100)
 ValvePosition = ValvePosition + 1
 delay(0.6)
endwhile

Doing a ramp and soak is not much harder, just split out the while loops. Lets say we want to ramp to 40% in 20
seconds, soak for 10 seconds, ramp to 80% in 40 seconds, soak for 5 seconds, then ramp back down to 0 in 60
seconds:

// initialize valve position to 0
ValvePosition = 0
// ramp to 40
while (ValvePosition < 40)
 ValvePosition = ValvePosition + 1
 delay(0.5)
endwhile
delay(10) // soak
// ramp to 80
ValvePosition = 40 // this is to make the graph look good

9 Analog and Digital I/O 61

© 2008 AzeoTech®, Inc.

while (ValvePosition < 80)
 ValvePosition++ // this is the same as VP = VP + 1
 delay(1)
endwhile
delay(5) // soak again
ValvePosition = 80
// ramp down to 0
while (ValvePosition > 0)
 ValvePosition--
 delay(0.75)
endwhile

One important note: these sequences won't work if you try and ramp past the highest value of the output. If you try
and set an output to an invalid value you will get an Alert and the channel WILL NOT update, so the while() will
never exit because ValvePosition would never reach the desired point.

Sample file: LJGuideSamples\RampSample.ctl

9.2 High speed acquisition - streaming

9.2.1 Introduction

When you want to do things faster than 100hz, its usually best to let the LabJack perform the timing. The LabJack
can then send data back in blocks and relieve your CPU from constantly having to do things. The LabJacks support
streaming of both digital and analog inputs as well as timers and counters. This section explains how to setup and
performed streamed data acquisition.

9.2.2 Basic streaming

When you want to read inputs at rates faster than 100hz, or at very precise intervals, it is usually best to use the
LabJack's stream mode instead of having DAQFactory and the PC set the read rates. Anything above 100hz is
difficult for a PC to perform since it has so many other tasks to do as well. To setup streaming in DAQFactory you
will need to use a combination of Channels and sequence script. Streaming in DAQFactory is different from how the
LabJack User Manual describes, as DAQFactory handles all the callback and data collection, putting the data into the
appropriate channels. In this sample we'll stream 2 channels.

1) Start DAQFactory up with a new document.

2) Click on CHANNELS: in the Workspace to go to the channel table.

3) Add two new channels, ChannelA and ChannelB, both Device Type = LabJack, D# = 0, I/O Type = A to D, and

Channel numbers 2 and 3. Set the Timing for both channels to 0, and the History: set to 36000.

3) Click on Apply to save your changes.

4) Right click on SEQUENCES: in the Workspace and select Add Sequence. Call the new sequence StartStream

5) In the sequence editor window that appears, enter the following script:

// standard initialization:
using("device.labjack")
include("c:\program files\LabJack\Drivers\labjackud.h")

// setup stream:
// set scan rate:
AddRequest(0, LJ_ioPUT_CONFIG, LJ_chSTREAM_SCAN_FREQUENCY, 1000, 0, 0)
// setup channels to stream:
AddRequest(0, LJ_ioCLEAR_STREAM_CHANNELS, 0, 0, 0, 0)
AddRequest(0, LJ_ioADD_STREAM_CHANNEL, 2, 0, 0, 0)
AddRequest(0, LJ_ioADD_STREAM_CHANNEL, 3, 0, 0, 0)
GoOne(0)

// start the stream:
global scanrate = 0
eGet(0,LJ_ioSTART_STREAM, 0, @scanrate, 0)
// scanrate now has the actual scanrate, which you can display on the screen if you want.

DAQFactory - LabJack Application Guide62

© 2008 AzeoTech®, Inc.

6) Click on Apply and Compile to save your script.

7) Right click on SEQUENCES: in the Workspace and select Add Sequence. Call the new sequence StopStream and

enter the following script:

ePut(0,LJ_ioSTOP_STREAM, 0, 0, 0)

8) Click on Apply and Compile to save your script.

9) Click on Page_0 under PAGES: in the workspace to display a blank page.

10) On that page, right click and select Graphs- 2D Graph.

11) While holding down the Ctrl key, click and drag the graph to move it to the top left corner of the page, then click
and drag the bottom right corner of the graph to expand it to take up about 3/4 of the screen.

12) Right click on the graph and select Properties.... For the Y Expression put ChannelA. Click on New Trace and for

the Y Expression put ChannelB. Click OK to close the properties window.

13) Right click somewhere on the empty part of the page and select Buttons - Button. Right click on the new button
and select Properties....

14) For Caption, put Start, then go to the Action tab and select Start/Stop Sequence, then select your StartStream

sequence.

15) Repeat steps 13 and 14, but put Stop for the caption and StopStream for the sequence.

That is it. You should be able to click on the Start button and have streaming on channels 2 and 3 start up and be
graphed. It is possible that the values will be off the scale of the graph, so you may want to click on the graph, then
right click on the graph and select AutoScale - AutoScale Y.

One important point if you start tweaking this sample: the Channels that you created must have the same D# and
channel number as the one you specified in the LJ_ioADD_STREAM_CHANNEL request. The I/O Type must be "A to
D" as well, even if you are streaming digital inputs, timers or counters. If not then DAQFactory won't know where to
put the data that is streaming in.

Note: make sure you configure your inputs before starting the stream. For the U3, this means you have to set the
pins to analog input as shown in the example file.

Note: you should not change the LJ_chSTREAM_WAIT_MODE, as all waiting is handled internally. If you change this,
you will most likely cause streaming to stop functioning.

Sample file: LJGuideSamples\BasicStream.ctl

9.2.3 Streaming other inputs

You can stream other inputs besides the analog inputs of your LabJack. This is done by specifying special channel
numbers when doing LJ_ioADD_STREAM_CHANNEL. The important part here is that even though the LabJack is
actually streaming something other than an analog input, you MUST specify A to D for the I/O Type when creating
your DAQFactory Channels to receive the data.

The available channel numbers are slightly different for each LabJack and listed here for your reference:

U3:

193 EIO_FIO
200 Timer0
201 Timer1
210 Counter0
211 Counter1
224 TC_Capture0
225 TC_Capture1
226 TC_Capture2
227 TC_Capture3

9 Analog and Digital I/O 63

© 2008 AzeoTech®, Inc.

UE9:

193 EIO_FIO
194 MIO_CIO
200 Timer0
201 Timer1
202 Timer2
203 Timer3
204 Timer4
205 Timer5
210 Counter0
224 TC_Capture0
225 TC_Capture1
226 TC_Capture2
227 TC_Capture3
227 TC_Capture4
227 TC_Capture5
227 TC_Capture6

You may notice that in DAQFactory, we have multiple TC_Capture channel numbers, where the LabJack
documentation only lists one. This is to allow you to stream the high order word of multiple timers and counters and
keep the data separate in separate channels. Internally, they are exactly the same, so you have to specify the
appropriate TC_Capture immediately following its Timer or Counter channel #. In other words, to read the entire 32
bits of Timers 0 and 1, you'd do:

AddRequest(0, LJ_ioADD_STREAM_CHANNEL, 200, 0, 0, 0)
AddRequest(0, LJ_ioADD_STREAM_CHANNEL, 224, 0, 0, 0)
AddRequest(0, LJ_ioADD_STREAM_CHANNEL, 201, 0, 0, 0)
AddRequest(0, LJ_ioADD_STREAM_CHANNEL, 225, 0, 0, 0)

9.2.4 Triggered

Triggered streaming is currently only supported by the UE9 and UE9-Pro.

Triggered streaming is similar to regular streaming except instead of using the internal LabJack clock to determine
when a scan of the stream channels occurs, an external pulse triggers the scan. The interval between external
pulses must be less than the maximum stream rate for the current input resolution. The external pulses do not need
to occur at a constant interval. To enable external triggering, just add the following line of script before adding your
stream channels using LJ_ioADD_STREAM_CHANNEL:

AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chSTREAM_EXTERNAL_TRIGGER, 1, 0, 0)

The trigger input will be the first available FIO pin based on which timers and counters you have enabled.

The only problem with triggered streaming is that the time of each data point will be off. This is because the
LabJack buffers the scans and DAQFactory doesn't actually get the data until a full packet occurs. DAQFactory
doesn't realize this and assigns times based on an assumed interval. If you have the bandwidth, i.e. your pulses are
slow enough that you aren't close to the stream interval limit, you can use the system timer mode of the timers to
retrieve exact relative times of your scans. To do this, you need to setup a timer for system timer in, and then add
the timer to the list of channels to stream. Depending on how long your experiment runs, you may be able to get
away with only SYSTIMERLOW. For the UE9 at 750khz, the low timer will roll over every 5726 seconds. Here's how
to do it:

1) Enable two Timers:

AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chNUMBER_TIMERS_ENABLED, 2, 0, 0)

2) Set the mode:

AddRequest(ID, LJ_ioPUT_TIMER_MODE, 0, LJ_tmSYSTIMERLOW, 0, 0)
AddRequest(ID, LJ_ioPUT_TIMER_MODE, 1, LJ_tmSYSTIMERHIGH, 0, 0)
GoOne(ID)

DAQFactory - LabJack Application Guide64

© 2008 AzeoTech®, Inc.

3) Set up the stream to stream analog input 2 and 3 in external trigger mode:

AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chSTREAM_EXTERNAL_TRIGGER, 1, 0, 0)
// setup channels to stream:
AddRequest(ID, LJ_ioCLEAR_STREAM_CHANNELS, 0, 0, 0, 0)
AddRequest(ID, LJ_ioADD_STREAM_CHANNEL, 3, 0, 0, 0)
AddRequest(ID, LJ_ioADD_STREAM_CHANNEL, 4, 0, 0, 0)

4) Now we need to add our timers to the list of channels to stream. Make sure you use the order indicated:

AddRequest(ID, LJ_ioADD_STREAM_CHANNEL, 200, 0, 0, 0)
AddRequest(ID, LJ_ioADD_STREAM_CHANNEL, 224, 0, 0, 0)
AddRequest(ID, LJ_ioADD_STREAM_CHANNEL, 201, 0, 0, 0)
AddRequest(ID, LJ_ioADD_STREAM_CHANNEL, 225, 0, 0, 0)

5) Now finish up the stream setup:

GoOne(ID)

// start the stream:
global scanrate = 0
eGet(ID,LJ_ioSTART_STREAM, 0, @scanrate, 0)
// scanrate now has the actual scanrate, which you can display on the screen if you want.

6) Create 4 channels to receive this timing data in addition to the 2 you created to receive the analog input. All 6
channels are I/O type: A to D, Timing = 0. Channel #'s will be 3, 4, 200, 201, 224, and 225.

That completes it. When you run your script, the stream will start, streaming both analog inputs 2 and 3 as well as
the system timer. A scan will occur every time a trigger is detected on FIO2. FIO0 and FIO1 are used by the 2
timers. With each scan, your six channels will update. The time associated with these channels will be incorrect, but
channels 200, 224, 201, and 225 will contain the 4 words that make up the 64 bit system timer value. While this is
not absolute time, it will give you relative time between each triggered scan. Just use the difference in counts
divided by the system clock speed of 750khz for the UE9 to determine the actual number of seconds between scans.
 The best way to do this is to create a calculated V channel:

7) Right click on CHANNELS: under V: in the Workspace. Note this is note the same CHANNELS: that we've been
clicking before. Select Add V Channel

8) Call the new channel TheTime

9) Click on the new channel in the workspace. In the Expression window, put:

(TimerLowLow + TimerLowHigh*2^16 + TimerHighLow * 2^32 + TimerHighHigh * 2^48)

This assumes you named channel 200 TimerLowLow, 224 TimerLowHigh, 201 TimerHighLow, and 225
TimerHighHigh. You also may want to put a divisor at the end to convert to seconds:

UE9: (TimerLowLow + TimerLowHigh*2^16 + TimerHighLow * 2^32 + TimerHighHigh * 2^48) / 750000

10) Click Apply.

At this point, you can reference this channel like you would any other, except putting V. in front of it. Instead of
getting a channel reading, you'll get the result of the calculation. Since we didn't use any [0] notation, this is the
entire array calculated from all the readings. If you want to graph your channels, you'd put:

V.TheTime

as the X Expression in place of Time. You'll need to change the bottom axis type to Lin, undo Use Time Width, and

adjust the Scale From and Scale To:

9 Analog and Digital I/O 65

© 2008 AzeoTech®, Inc.

All of this is shown, complete, in the sample file:

Sample file: LJGuideSamples\TriggeredStream.ctl

9.2.5 Error handling for streaming

Streaming from a LabJack is what is called an asynchronous action. This means that the LabJack does its own thing
and every so often it tells DAQFactory that there is new data or there is an error. For this reason, you cannot simply
look at the error code returned by LJ_ioSTART_STREAM to catch all stream errors. This command may return a
stream configuration type error, so you'll want to check for it using the same methods as the low speed acquisition,
but will not handle errors in the actual stream. For this you have two choices:

1) You can create a simple sequence to retrieve the last stream error continuously and do something if it returns an
error. The function GetLastStreamError() will return the code for the last stream error. This is reset when you

start the stream. This, however, is not the best way to do this and will waste processor power.

2) You can use the DAQFactory OnAlert event, which only gets called when an actual error occurs. Using the event
as an error handler is described in the previous section on error handling, and catching stream errors would be done
the same way. One common error you might want to catch is if your LabJack accidentally gets unplugged while
streaming. If you wanted to automatically restart streaming when it is reconnected you could do this in your OnAlert
sequence:

if ((left(strAlert,10) == "D0050:00:2001") && (Streaming)) // 2001 is LJE_RECONNECT
 StartStream()
endif

Now, this assumes that you have a sequence called StartStream that will reconfigure the LabJack and actually
restart the stream. It also assumes that you've created a global variable called "Streaming" that you set to 1 in
StartStream, and to 0 in StopStream. This is so an accident unplug when you aren't streaming doesn't
spontaneously start the streaming process. Finally this assumes you are using device number 0 / first found. Please
see the section on OnAlert if you are using multiple LabJacks.

10 Counters and Timers

X

10 Counters and Timers 67

© 2008 AzeoTech®, Inc.

10 Counters and Timers

10.1 Configuring

The counters and timers on the LabJack units are quite flexible. In order to configure them, you have to use some
basic scripting, similar to the script we've seen so far. Because setting up a counter or timer typically requires
setting multiple parameters, we recommend using the AddRequest() / GoOne() / GetResult() method instead of ePut
(), but really its up to you. There are also several e functions you can use, namely eTCValues() and eTCConfig(),
but these functions require you to define variables, so take as many, if not more steps than using AddRequest().
Internally, these functions call AddRequest() anyway, so we recommend just using AddRequest() from the start.
eTCValues(), however, could be useful if you were using a number of timers and counters and not using Channels to
store the results, but that is beyond the scope of this guide.

10.2 Reading values for counters and input timers

Reading the values of counters and timers can of course be done with script as well, using the LJ_ioGET_COUNTER
and LJ_ioGET_TIMER commands. However, you can also use channels, which will perform the same command for
you. If you create a new channel like you did for analog inputs, but select either the Timer or Counter I/O Type,
DAQFactory will query the timer or counter value at the interval you specified. You still need to initialize and
configure your timer or counter in script, but once configured you can use these two I/O types to perform the reads.

10.3 Basic Counter and Timer setup

To use the LabJack timers or counters you need to do some very basic setup.

Note: to enable this guide and the corresponding samples to work with all LabJacks, we use the System Clock
(tcSYS) and a PIN_OFFSET of 4. Depending on your hardware, you should feel free to use other clocks and other
pin offsets.

First, by default, once you enable a timer or counter, it will replace FIO0. If you'd prefer to keep FIO0 for analog or
digital I/O, you can use the LJ_chTIMER_COUNTER_PIN_OFFSET, to select a different pin:

AddRequest (ID, LJ_ioPUT_CONFIG, LJ_chTIMER_COUNTER_PIN_OFFSET, 1, 0, 0)

The above, after a GoOne(ID), will set put the first enabled timer or counter on FIO1 instead of FIO0. The general
form of the command is:

LabJack ID, LJ_ioPUT_CONFIG, LJ_chTIMER_COUNTER_PIN_OFFSET, FIO pin # for first timer/counter, 0, 0

Please note that as of hardware revision 1.3 of the U3, timers and counters will start at pin offset 4. Therefore a pin
offset of 0 to 4 will all result in FIO4 being the first timer. A pin offset of 5 will result in FIO5 being the first timer.
FIO0 through FIO3 will no longer be usable as timers or counters.

Counters:

To use counters, all you really need to do is enable the counter. This is done with LJ_ioPUT_COUNTER_ENABLE:

AddRequest(ID, LJ_ioPUT_COUNTER_ENABLE,0,1,0,0)

This will enable the first counter. To disable, do the same thing, but change the 1 to a 0. The general form of this
command is:

Labjack ID, LJ_ioPUT_COUNTER_ENABLE, Counter #, Enable (1) or Disable (0), 0, 0

Once the counter is enabled, you can read the counter using a channel, putting the ID in for the D#, select an I/O
type of Counter, and putting the counter number for the channel number. If you are looking for the number of
counts in a certain time period, please make sure and read the next section on resetting the counter.

Sample file: LJGuideSamples\BasicCounter.ctl

DAQFactory - LabJack Application Guide68

© 2008 AzeoTech®, Inc.

Timers:

Timers are slightly more complicated, mainly because they are a lot more flexible. There are a number of different
timer modes and each has its own parameters and setup which is described in the following sections. A few common
points though:

Like counters, you'll need to first enable the timers. The function to do so is very similar to counters except you are
specifying how many timers to enable rather than enabling a specific timer. So, to enable two timers:

AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chNUMBER_TIMERS_ENABLED, 2, 0, 0)

After you have enabled the timers, you'll need to set which mode you'd like to use for each timer. For example:

AddRequest(ID, LJ_ioPUT_TIMER_MODE, 0, LJ_tmPWM8, 0, 0)

will set the Timer mode of timer 0 to PWM8. The general form of this command is:

LabJack ID, LJ_ioPUT_TIMER_MODE, Timer #, Timer mode code, 0, 0

Possible Timer modes as of this writing include:

LJ_tmPWM16 // 16 bit PWM
LJ_tmPWM8 // 8 bit PWM
LJ_tmRISINGEDGES32 // 32-bit rising to rising edge measurement
LJ_tmFALLINGEDGES32 // 32-bit falling to falling edge measurement
LJ_tmDUTYCYCLE // duty cycle measurement
LJ_tmFIRMCOUNTER // firmware based rising edge counter
LJ_tmFIRMCOUNTERDEBOUNCE // firmware counter with debounce
LJ_tmFREQOUT // frequency output
LJ_tmQUAD // Quadrature
LJ_tmTIMERSTOP // stops another timer after n pulses
LJ_tmSYSTIMERLOW // read lower 32-bits of system timer
LJ_tmSYSTIMERHIGH // read upper 32-bits of system timer
LJ_tmRISINGEDGES16 // 16-bit rising to rising edge measurement
LJ_tmFALLINGEDGES16 // 16-bit falling to falling edge measurement

Not all modes may be supported by all LabJacks. Please see the file LabJackUD.h in your LabJack installation
directory for any new modes.

Finally, you'll probably need to set the clock base and divisor that the timer will use:

AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_BASE, LJ_tcSYS, 0, 0)
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_DIVISOR, 48, 0, 0)

These both follow the standard form of PUT_CONFIG:

LabJack ID, LJ_ioPUT_CONFIG, Parameter, Value, 0, 0

The clock divisor is an integer. For timer base, there are several constants defined:

LJ_tcSYS // all: system clock, varies depending on device

LJ_tc750KHZ // UE9: 750 khz

LJ_tc2MHZ // U3: Hardware Version 1.20 or lower
LJ_tc6MHZ // U3: Hardware Version 1.20 or lower
LJ_tc24MHZ // U3: Hardware Version 1.20 or lower
LJ_tc500KHZ_DIV // U3: Hardware Version 1.20 or lower
LJ_tc2MHZ_DIV // U3: Hardware Version 1.20 or lower
LJ_tc6MHZ_DIV // U3: Hardware Version 1.20 or lower
LJ_tc24MHZ_DIV // U3: Hardware Version 1.20 or lower

LJ_tc4MHZ // U3: Hardware Version 1.21 or higher
LJ_tc12MHZ // U3: Hardware Version 1.21 or higher
LJ_tc48MHZ // U3: Hardware Version 1.21 or higher
LJ_tc1MHZ_DIV // U3: Hardware Version 1.21 or higher
LJ_tc4MHZ_DIV // U3: Hardware Version 1.21 or higher
LJ_tc12MHZ_DIV // U3: Hardware Version 1.21 or higher
LJ_tc48MHZ_DIV // U3: Hardware Version 1.21 or higher

10 Counters and Timers 69

© 2008 AzeoTech®, Inc.

Once again, not all clock bases are supported by all LabJacks and you should check the LabJackUD.h file for any new
bases.

10.4 Resetting Counters

A common use for counters is to count the number of events that occur within a preset time, often within a second.
In these cases, it is tempting to reset the counter after each interval. This, however, is not recommend because
every time you reset the counter there is a very short dead period where no counts can be measured. At higher
count rates you can easily miss counts. To avoid this, you should use the power of DAQFactory to calculate the
difference between two consecutive readings to get a counts per interval reading rather than resetting the counter.

To do this, you will need two channels. First, we'll assume you have properly initialized your counter as described in
the previous section. You also probably should reset the counter at startup using:

AddRequest(ID, LJ_ioPUT_COUNTER_RESET,0,0,0,0)

where the first 0 is the counter number to reset, in this case the first counter.

1) Create a channel to read the counter. Call it RawCounts or similar. This will be Device Type = LabJack of course,

D# = LabJack ID, I/O Type of Counter, Channel # = desired counter or 0 on devices with only one counter. Set the

Timing to whatever your desired interval is. For counts per second, put 1.00.

2) Create a second channel that will hold your counts per interval. Call it Counts for now. This channel will be

Device Type = Test, D# = 0, I/O Type = A to D, Channel # = 0, and most importantly, Timing = 0. Click Apply to save

your new channels.

3) Click on the + next the CHANNELS: in the Workspace, then click on the RawCounts channel. When the channel
view appears, click on the Event tab. Enter the following script:

Counts.AddValue(RawCounts[0] - RawCounts[1])

4) Click Apply. At this point, provided RawCounts is actually getting increasing counts, the Counts channel will have
the interval counts. You can click on the Table tab to see this (after clicking on Counts in the Workspace).

The problem with the above method is that it doesn't account for counter roll over. On a 32 bit counter this happens
at just over 4 billion counts, so before worrying about this, you might want to figure out how long it would take to
accumulate that many counts and see if its worth worrying about. Remember that if you reset the counter at
startup, you only have to worry about the amount of time DAQFactory is continuously running. If rollover does
occur, all you will see is a single, negative interval counts measurement. You can post-calc the correct measurement
by simply adding 4294967296 to this negative number. That is 2 raised to the 32 power.

But, if you don't want negative counts on rollover, you just have to change the Event from step 3 slightly:

if (RawCounts[0] > RawCounts[1])
 Counts.AddValue(RawCounts[0] - RawCounts[1])
else
 Counts.AddValue(RawCounts[0] - RawCounts[1] + 2^32)
endif

Of course if you have a 16 bit counter, you'll need to change the 32 to 16 so it adds 65536 instead.

Hertz measurements:

Finally, if instead of actual counts in an interval, you want a hertz measurement (counts per second), we just change
the AddValue() lines to divide by the difference in time:

if (RawCounts[0] > RawCounts[1])
 Counts.AddValue((RawCounts[0] - RawCounts[1]) / (RawCounts.Time[0] - RawCounts.Time[1]))
else
 Counts.AddValue((RawCounts[0] - RawCounts[1] + 2^32) / (RawCounts.Time[0] - RawCounts.Time[1]))
endif

The nice part about this is that if DAQFactory gets delayed a few milliseconds before doing the read, the hertz
measurement will be properly normalized.

DAQFactory - LabJack Application Guide70

© 2008 AzeoTech®, Inc.

Sample file: LJGuideSamples\BasicCounter.ctl

10.5 Setting up specific timer modes

10.5.1 PWM out

There are two timer / counter modes for pulse width modulation (PWM), one is 16 bit, the other 8 bit. These, and
the available timer clocks are described in your LabJack User's manual and vary depending on the device. The
setup, however, is largely the same. Here's some sample script for setting up and starting a PWM8 on FIO4. As
always, we assume you've done using() and include() someplace else and defined ID appropriately:

//Set the timer/counter pin offset to 4, which will put the first timer/counter on FIO4.
AddRequest (ID, LJ_ioPUT_CONFIG, LJ_chTIMER_COUNTER_PIN_OFFSET, 4, 0, 0)

// use system clock so works on U3 and UE9:
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_BASE, LJ_tcSYS, 0, 0)

//Enable 1 timer. It will use FIO0.
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chNUMBER_TIMERS_ENABLED, 1, 0, 0)

//Configure Timer0 as 8-bit PWM. Frequency will be 1M/256 = 3906 Hz.
AddRequest(ID, LJ_ioPUT_TIMER_MODE, 0, LJ_tmPWM8, 0, 0)

//Set the PWM duty cycle to 50%.
AddRequest(ID, LJ_ioPUT_TIMER_VALUE, 0, 32768, 0, 0)

//Execute the requests.
GoOne(ID)

We've explained most of these commands already. The only one new is the LJ_ioPUT_TIMER_VALUE. This sets the
PWM duty cycle. Even though we are using an 8 bit PWM, this takes a 16 bit number. 32768 is half way into a 16
bit unsigned integer, so this results in a 50% duty cycle PWM. The general form of this command is:

LabJack ID, LJ_ioPUT_TIMER_VALUE, Timer #, Value, 0, 0

The two modes are:

LJ_tmPWM8
LJ_tmPWM16

Sample file: LJGuideSamples\TimerPWM.ctl

10.5.2 Period in

There are four Timer modes that allow you to measure the number of clock cycles between consecutive rising or
falling edges. Two 16 bit, and two 32 bit. Using these modes is just a matter of performing all the basic steps we've
described:

1) Enable a Timer:

AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chNUMBER_TIMERS_ENABLED, 1, 0, 0)

2) Set the mode:

AddRequest(ID, LJ_ioPUT_TIMER_MODE, 0, LJ_tmRISINGEDGE32, 0, 0)

The four modes are:

10 Counters and Timers 71

© 2008 AzeoTech®, Inc.

LJ_tmRISINGEDGES32
LJ_tmFALLINGEDGES32
LJ_tmRISINGEDGES16
LJ_tmFALLINGEDGES16

Note the plural form of Edge!

3) Set the clock frequency and divisor:

// use system clock so works on U3 and UE9:
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_BASE, LJ_tcSYS, 0, 0)
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_DIVISOR, 48, 0, 0)

4) GoOne() to actually execute the commands:

GoOne(ID)

5) Create a channel to read the Timer. I/O Type is Timer, Channel # is the timer #, in this case 0.

The difference between the rising and falling edge versions of these modes is self explanatory. The 32 bit versions
allow you to measure longer lengths with higher clock frequencies, and thus higher resolution for long periods, but
are subject to small errors because it is interrupt driven. If your lengths are short enough that the edges will always
occur within 65535 clock cycles, you should use the 16 bit versions as they are not subject to the interrupt errors.

If you want to read the timer from script, you can use LJ_ioGET_TIMER:

private datain
eGet(ID, LJ_ioGET_TIMER, 0, @datain, 0)

Sample file: LJGuideSamples\TimerPeriodIn.ctl

10.5.3 Duty cycle in

Duty cycle in is similar to setup as period in. The difference is that duty cycle in returns two values, the number of
clock cycles the signal is high and the number of cycles the signal is low packed into one 32 bit number. These two
values, therefore, are 16 bit, so you'll need to pick a clock frequency and divisor that won't overflow the 65535
counts possible. Setting up these modes is just a matter of performing all the basic steps we've described:

1) Enable a Timer:

AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chNUMBER_TIMERS_ENABLED, 1, 0, 0)

2) Set the mode:

AddRequest(ID, LJ_ioPUT_TIMER_MODE, 0, LJ_tmDUTYCYCLE, 0, 0)

3) Set the clock frequency and divisor:

// use system clock so works on U3 and UE9:
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_BASE, LJ_tcSYS, 0, 0)
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_DIVISOR, 48, 0, 0)

4) GoOne() to actually execute the commands:

GoOne(ID)

5) Create a channel to read the Timer. I/O Type is Timer, Channel # is the timer #, in this case 0.

The tricky part is actually parsing the data, since it is actually two different values packed into one number. The
best way to do this is similar to the way we dealt with resetting counters, by creating extra, psuedo-channels to
store the parsed data:

6) Create two more channels, one called TimeHigh, one called TimeLow. Device Type is Test, D# = 0, I/O Type = A to

D, Chan # = 0 and most importantly, Timing = 0.

7) Click Apply to save your new channels, then click on the + next to CHANNELS: in the Workspace, then click on
your Timer channel. We'll assume you called that channel RawDuty.

DAQFactory - LabJack Application Guide72

© 2008 AzeoTech®, Inc.

8) Click on the Event tab when the Channel view appears. Enter the follow script to parse the timer reading and
click Apply:

TimeHigh.AddValue(RawDuty[0] % 0x10000) // LSW
TimeLow.AddValue(floor(RawDuty[0] / 0x10000)) // MSW

This will split the single 32 bit reading into two separate readings and place them in their own channels.

Sample file: LJGuideSamples\TimerDuty.ctl

10.5.4 Firmware counter in

This Timer mode works similar to a counter, but uses an interrupt routine to increment the counter so can't handle
real high speed counts, and has a bit more internal overhead than a regular counter. Setting it up is basically the
same as period in:

1) Enable a Timer:

AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chNUMBER_TIMERS_ENABLED, 1, 0, 0)

2) Set the mode:

AddRequest(ID, LJ_ioPUT_TIMER_MODE, 0, LJ_tmFIRMCOUNTER, 0, 0)

3) Set the clock frequency and divisor:

// use system clock so works on U3 and UE9:
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_BASE, LJ_tcSYS, 0, 0)
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_DIVISOR, 48, 0, 0)

4) GoOne() to actually execute the commands:

GoOne(ID)

5) Create a channel to read the Timer. I/O Type is Timer, Channel # is the timer #, in this case 0.

You can reset the timer to 0 by using LJ_ioPUT_TIMER_VALUE, put please read the section on resetting counters and
how to get around it.

AddRequest(ID, LJ_ioPUT_TIMER_VALUE, 0, 0, 0, 0)

Sample file: LJGuideSamples\TimerFirmCount.ctl

10.5.5 Firmware counter in w/ Debounce

This Timer mode works the same as Firmware Counter In, but introduces a debounce circuit for mechanical switch
counting. It is really designed for frequencies less than 10hz, mostly push-button and reed-switch detection.
Setting it up is similar to the regular Firmware Counter In, but has some extra steps to set the debounce settings:

1) Enable a Timer:

AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chNUMBER_TIMERS_ENABLED, 1, 0, 0)

2) Set the mode:

AddRequest(ID, LJ_ioPUT_TIMER_MODE, 0, LJ_tmFIRMCOUNTERDEBOUNCE, 0, 0)

3) Set the clock frequency and divisor:

// use system clock so works on U3 and UE9:
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_BASE, LJ_tcSYS, 0, 0)
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_DIVISOR, 48, 0, 0)

4) Set the debounce settings to a single 87ms period, positive edges counted:

AddRequest(ID, LJ_ioPUT_TIMER_VALUE, 0, 257, 0, 0)

5) GoOne() to actually execute the commands:

10 Counters and Timers 73

© 2008 AzeoTech®, Inc.

GoOne(ID)

6) Create a channel to read the Timer. I/O Type is Timer, Channel # is the timer #, in this case 0.

You can reset the timer to 0 by using LJ_ioPUT_TIMER_VALUE, put please read the section on resetting counters and
how to get around it.

AddRequest(ID, LJ_ioPUT_TIMER_VALUE, 0, 0, 0, 0)

Sample file: LJGuideSamples\TimerFirmCount.ctl

10.5.6 Frequency out

Frequency out is similar to PWM, but outputs a 50% duty cycle square wave. Because its fixed at 50% duty, a wider
range of frequencies are attainable. Setup is similar to PWM, except the Timer value we specify is another divisor for
the clock:

//Set the timer/counter pin offset to 0, which will put the first timer/counter on FIO4.
AddRequest (ID, LJ_ioPUT_CONFIG, LJ_chTIMER_COUNTER_PIN_OFFSET, 4, 0, 0)

// use system clock so works on U3 and UE9:
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_BASE, LJ_tcSYS, 0, 0)

//Set the divisor to 24
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_DIVISOR, 48, 0, 0)

//Enable 1 timer. It will use FIO4.
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chNUMBER_TIMERS_ENABLED, 1, 0, 0)

//Configure Timer0 as Frequency out.
AddRequest(ID, LJ_ioPUT_TIMER_MODE, 0, LJ_tmFREQOUT, 0, 0)

//Set the second divisor to 10
AddRequest(ID, LJ_ioPUT_TIMER_VALUE, 0, 10, 0, 0)

//Execute the requests.
GoOne(0)

Sample file: LJGuideSamples\TimerFreqOut.ctl

10.5.7 Quadrature

The quadrature Timer mode is designed explicitly for use with quadrature encoders. A quadrature encoder is a
device that allows you to determine the absolute position of a rotating shaft. It does this by generating two pulses
with each part of a rotation (how small of a rotation a "part" is depends on the encoder). One pulse will come before
the other if the shaft is rotating in one direction, and the pulse order is flipped if the shaft is rotating in the other
direction. The LabJack quadrature timer reads both these pulses and increments or decrements the timer reading
depending on which pulse occurs first.

Because it takes two pulse signals coming in on two wires, the quadrature mode requires two timers, even though
there is only one reading. The two timers have to be adjacent pairs, with the even timer as quadrature channel A,
and the odd timer as quadrature channel B. Reading either timer returns the same, signed 32 bit count, and writing
a zero to either timer resets both. Here's some DAQFactory script to initialize the quadrature mode on timers 0 and
1:

AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chNUMBER_TIMERS_ENABLED, 2, 0, 0)
//Configure Timer0 as quadrature.
AddRequest(ID, LJ_ioPUT_TIMER_MODE, 0, LJ_tmQUAD, 0, 0)
//Configure Timer1 as quadrature.
AddRequest(ID, LJ_ioPUT_TIMER_MODE, 1, LJ_tmQUAD, 0, 0)
GoOne(ID)

As you can see, its one of the easier timers to setup since it doesn't require the internal clock. The easiest way to

DAQFactory - LabJack Application Guide74

© 2008 AzeoTech®, Inc.

read the timer is to create a Timer channel: I/O Type is Timer, Channel # is the timer #, in this case 0, Timing can be

whatever update interval you would like. Alternatively, you can use LJ_ioGET_TIMER to retrieve the reading from
script:

private datain
eGet(ID, LJ_ioGET_TIMER, 0, @datain, 0)

10.5.8 Timer stop

Timer stop allows you to stop a particular (even numbered) timer after a certain number of pulses is received on the
odd numbered timer stop timer pin. This is especially useful when used with frequency or PWM out to drive a
stepper motor a certain number of pulses. For example, to generate exactly 1000 pulses on Timer 0, we'd setup
timer 0 as frequency out, and timer 1 in timer stop mode and tie the two output pins together. You'll recognize the
first part from the frequency out section:

//Set the timer/counter pin offset to 4, which will put the first timer/counter on FIO4.
AddRequest (ID, LJ_ioPUT_CONFIG, LJ_chTIMER_COUNTER_PIN_OFFSET, 4, 0, 0)

// use system clock so works on U3 and UE9:
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_BASE, LJ_tcSYS, 0, 0)

//Set the divisor to 48.
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chTIMER_CLOCK_DIVISOR, 48, 0, 0)

//Enable 1 timer. It will use FIO4.
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chNUMBER_TIMERS_ENABLED, 2, 0, 0)

//Configure Timer0 as Frequency out.
AddRequest(ID, LJ_ioPUT_TIMER_MODE, 0, LJ_tmFREQOUT, 0, 0)

//Set the second divisor to 10
AddRequest(ID, LJ_ioPUT_TIMER_VALUE, 0, 10, 0, 0)

// now timer stop:
AddRequest(ID, LJ_ioPUT_TIMER_MODE, 1, LJ_tmTIMERSTOP, 0, 0)

// set number of pulses:
AddRequest(ID, LJ_ioPUT_TIMER_VALUE, 1, 1000, 0, 0)

//Execute the requests.
GoOne(0)

Once the 1000 pulse are complete, Timer 0 will stop. To restart it, you'll need to reconfigure the timers by simply
rerunning the above script.

Add a digital line to control the direction and you have a very easy stepper controller. But if you want it even easier,
you can use a Channel event to allow a channel to trigger the pulses. To do this:

1) Create a sequence called PulseOut with the above script, replacing the 1000 in the last AddRequest with
NumPulses[0]:

....
AddRequest(ID, LJ_ioPUT_TIMER_MODE, 1, LJ_tmTIMERSTOP, 0, 0)

// set number of pulses:
AddRequest(ID, LJ_ioPUT_TIMER_VALUE, 1, NumPulses[0], 0, 0)
....

2) Create a new channel, call it NumPulses. Device Type = Test, D# = 0, I/O Type = D to A, Chan # = a unique

number (if you are using more than 1 Test D/A channel). Click Apply.

3) Click on the + next to CHANNELS: in the Workspace if not already expanded and click on the NumPulses channel.

4) Click on the Event tab, and put this script in:

beginseq(PulseOut)

10 Counters and Timers 75

© 2008 AzeoTech®, Inc.

Now, you can use the various DAQFactory components to simply set the NumPulses channel and the desired length
pulse train will be outputted. Just remember that sliders and knobs will continuously update this channel and so are
not good for changing NumPulses since the pulse train will likely take longer than the update speed. You can also
change NumPulses in script:

NumPulses = 500

Just remember that as soon as NumPulses is set, the pulse train will start.

Sample file: LJGuideSamples\TimerStop.ctl

10.5.9 System timer in

This mode allows you to read the free-running internal 64 bit system timer. The frequency of this timer is 750khz
for the UE9 and 4MHz for the U3. Since DAQFactory's clock is precise to 1 microsecond (1 MHz), and there is a built
in latency of a few milliseconds to actually read the LabJack, there are really only two uses for this timer. The first is
when doing triggered stream. Here, DAQFactory has no way of determining the time of each scan, so we can use
the system timer to apply a high precision time stamp as long as we include the timer in the stream. This is
described in the section on Triggered Streaming.

The other use is when you need a high precision time stamp on another timer or counter read. Since all the timer
and counter reads are done with a single call to the device, there is no software latency if the desired timers and the
timer setup as system timer are read at the same time. This is as simple as making sure all your
LJ_ioGET_TIMER_VALUE requests are together. This can also be achieved if you are using Channels to retrieve your
timer readings as long as your timers all have the same Timing and Offset.

Depending on how long your experiment runs, you may be able to get away with only SYSTIMERLOW. For the UE9
at 750khz, the low timer will roll over every 5726 seconds, while the U3 at 4MHz rolls over in 1073 seconds. Here's
the script to do both low and high system timers for longer experiments:

AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chNUMBER_TIMERS_ENABLED, 2, 0, 0)
//Configure Timer0 as timer low.
AddRequest(ID, LJ_ioPUT_TIMER_MODE, 0, LJ_tmSYSTIMERLOW, 0, 0)
//Configure Timer1 as timer high.
AddRequest(ID, LJ_ioPUT_TIMER_MODE, 1, LJ_tmSYSTIMERHIGH, 0, 0)
GoOne(ID)

Of course you'll probably have more than 2 timers enabled, or perhaps a counter or two.

If you actually need the high double-word of the system timer, you are going to end up with the time spread across
two channels. You'll have to combine them. The easiest way is probably to use a calculated V channel. Here's how
to do it, plus convert the counts to actual seconds:

1) Right click on CHANNELS: under V: in the Workspace and select Add V Channel. Give it a name, such as
LJSystemClock.

2) In the Expression area enter the following and click Apply:

(SysTimerLow + SysTimerHigh << 32) / 4e6

This assumes you named your timer channels SysTimerLow and SysTimerHigh. It also assumes a U3 with a 4Mhz
clock. For the UE9, change the 4e6 (4 million) to 750e3 (750 thousand).

You can now use this V channel anywhere you would a regular channel. You just have to prepend V. in front of the
channel name:

V.LJSystemClock

Sample file: see Triggered Streaming

Please note that DAQFactory uses 64 bit double precision floating point for all numbers. This representation has 52
bits of precision on the integer side, so you can only really store up to 52 bits of this counter. As the counter gets
above 2 ^ 52, you will lose precision in the low order bits.

11 Advanced

XI

11 Advanced 77

© 2008 AzeoTech®, Inc.

11 Advanced

11.1 Opening a LabJack manually

There may be applications, most likely ones running in the Runtime version of DAQFactory, where you do not know
the ID or address of the LabJack when creating the application and so can't hard code this in. Because of this, the
LabJack driver has a function to allow you to manually open a LabJack, returning a device number that you can use
with the rest of the functions just like before. For example, to open a UE9 at Ethernet address 192.168.2.1, you
might do:

global DNum
private err
err = OpenLabJack(LJ_dtUE9, LJ_ctETHERNET, "192.168.2.1", 0, @DNum)
if (err != LJE_NOERROR)
 // failed to open
endif

This of course assumes you've done your using() and include() calls elsewhere already. In this example we used
static parameters, but there is no reason you couldn't replace any or all of the parameters with variables that could
be edited by the end user from pages you created.

Once successfully called, you should then use the DNum variable in all your other LabJack function calls.

A few points:

· There is no way to close a LabJack. This is handled automatically when you quit DAQFactory. That said, you don't
want to go randomly opening LabJacks that don't exist as each attempt will use a little memory that can't be
recovered until you quit DAQFactory.

· If you call OpenLabJack() with the exact same parameters, the function will not reopen the LabJack, but rather will
return Device Number of the previously opened LabJack. Of course if the first call to OpenLabJack() failed, it will
try again.

11.2 Raw In/Out and other functions that require array
pointers

The Raw In and Raw Out functions (LJ_ioRAW_IN, LJ_ioRAW_OUT), and several other functions of the LabJack
require an array pointer. You can pass a pointer to an array, just like you've been passing references to variables,
using the @ sign. Just make sure you have preinitialized the array to the correct amount. So, using the example in
the LabJack User's Guide for Raw In and Out, the DAQFactory script would look like this (assuming first found and
that you've done the using() and include() somewhere else):

private writeArray = {0x70,0x70}
private readArray = {0x00,0x00}
private NumBytesToWrite = 2
private NumBytesToRead = 2
eGet(0, LJ_ioRAW_OUT, 0, @NumBytesToWrite, @writeArray)
eGet(0, LJ_ioRAW_IN, 0, @NumBytesToRead, @readArray)

Internally, DAQFactory will convert the array of double precision values, which is the only numeric data type
supported in DAQFactory, to an array of bytes. This means that each element in the array should be between 0 and
255. The array also must be 1 dimensional. Most importantly, the array MUST be preinitialized to the proper
length. The driver does not look at the previous parameter to make sure you have the correct array size, any more
than the C version would do. If you do not preinitialize, you are likely to crash DAQFactory. Worse, it may work
sometimes, but crash others, so be careful with this one.

DAQFactory - LabJack Application Guide78

© 2008 AzeoTech®, Inc.

11.3 SPI communications

The LabJack devices support doing serial communications using their digital lines using the standard SPI
synchronous format. This is a powerful, but advanced feature of the LabJack, and the details of SPI is beyond the
scope of this guide. Instead, here is some sample code that demonstrates SPI. It will use FIO0 for the clock (CLK),
FIO1 for CS, FIO2 for MOSI, and FIO3 for MISO. It then sends out a string of 16 bytes and prints the received
string to the command / alert window. If you short MISO to MOSI, then the 16 bytes sent out are echoed back. If
MISO is tied to GND, then all zeros are received and printed. If you tie MISO to VS or leave it unconnected, then all
255's are received and printed. Here's the script. Its pretty much a direct copy of the C sample provided by
LabJack:

using("device.labjack")
include("c:\program files\labjack\drivers\labjackud.h")
global ID = 0 // use first found

//First, we do a pin config reset to set the LabJack to factory defaults.
ePut(ID,LJ_ioPIN_CONFIGURATION_RESET,0,0,0)

// Configure the SPI communication:
//Enable automatic chip-select control.
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chSPI_AUTO_CS,1,0,0)
//Mode A: CPHA=1, CPOL=1.
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chSPI_MODE,0,0,0)

//125kHz clock.
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chSPI_CLOCK_FACTOR,0,0,0)

//MOSI is FIO2
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chSPI_MOSI_PIN_NUM,2,0,0)

//MISO is FIO3
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chSPI_MISO_PIN_NUM,3,0,0)

//CLK is FIO0
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chSPI_CLK_PIN_NUM,0,0,0)

//CS is FIO1
AddRequest(ID, LJ_ioPUT_CONFIG, LJ_chSPI_CS_PIN_NUM,1,0,0)

//Execute the requests on a single LabJack. The driver will use a single low-level TimerCounter command to handle all the requests above.
GoOne(ID)

// now that its setup, do the communication. Note that you can do this part in a separate sequence, and run multiple times
// without the reconfiguring the SPI with the above code.

// initialize the variables
private numSPIBytesToTransfer=4
private dataArray
dataArray[0] = 170
dataArray[1] = 138
dataArray[2] = 85
dataArray[3] = 21

//Transfer the data. The write and read is done at the same time.
eGet(ID, LJ_ioSPI_COMMUNICATION, 0, @numSPIBytesToTransfer, @dataArray)

// print the read to the command / alert window. Of course you'll probably do something a bit more exciting with the data
? dataArray

Each time you run the script the 4 bytes of dataArray will be written and then 4 bytes will be read back and printed
to the command / alert window. As mentioned in the script comments, you can do the actual communication
multiple times without re-running reconfiguration script at the top of this sample.

11 Advanced 79

© 2008 AzeoTech®, Inc.

11.4 Utilizing multicore processors

In many places in this guide, we've split apart things that occur at less than 100hz, and those that are faster. This is
because Windows needs to have some CPU time to redraw the screen, move the mouse and perform other tasks and
thus can't really do things at an interval faster than 100hz.

However, if you have a multicore or multiprocessor computer, you can take advantage of DAQFactory's design and
the multiple cores to achieve faster software polled rates than would be possible with a single core. The trick to this
is making sure that all your fast processes, i.e. anything faster than 50hz or so, is done in a single thread.

What's a thread? You've seen Windows do multiprocessing before when you are downloading a big file off the
internet and you switch to another program to check your email at the same time. A thread is just like different
programs that can run simultaneously, but that exist inside of a single program like DAQFactory. DAQFactory is
made up of a lot of different threads and so can perform multiple tasks simultaneously. Likewise, it can split these
threads across multiple cores or processors for maximum efficiency.

There are basically two ways you can keep things on a single thread in DAQFactory. The first is to put all the tasks
in a single sequence. Each sequence is run in its own thread, unless of course it is called as a function from another
sequence. This is why you can create multiple sequences to perform different tasks and run them all
simultaneously. The other way is to create Channels, and give all the desired high speed channels the same Timing
and Offset values. If Channels have different Timing or Offset, then they are put on a different thread.

If you have multiple processors or cores and want to see this in action, just create a few analog input channels and
set their Timing to 0.001. This will chew up much of the processor power of one of your cores, but will leave
Windows the other core to perform its tasks. In fact, as I am typing this, I have DAQFactory running reading an
analog input from a LabJack at full speed, and I see no lag in my typing.

That all said, its important to understand that there is a limit to how fast the LabJack itself can process commands.
If you perform the test with a few Channels with Timing = 0.001, and then go to the Table tab of one of the
channels, you will see that the data actually comes in about every 4 milliseconds. This is because although
DAQFactory is trying to read it at 1 millisecond intervals, the LabJack is taking about 4 milliseconds to actually
perform the command.

11.5 Unsupported functions

The LJ_ioSET_STREAM_CALLBACK, LJ_ioSET_EVENT_CALLBACK and any other LabJack function that requires a
function pointer are not supported. These particular two callback's are handled internally by DAQFactory. The first
allows DAQFactory to process streaming data, while the second handles connect and disconnect messages from the
driver.

Also, you should not change the LJ_chSTREAM_WAIT_MODE, as all waiting is handled internally. If you change this,
you will most likely cause streaming to stop functioning.

	1 Introduction
	1.1 Welcome
	1.2 How to use this guide
	1.3 DAQFactory Versions
	1.4 Acknowledgments
	1.5 End User License Agreement

	2 Installing and Starting
	2.1 Installation
	2.2 Setup device
	2.3 Starting DAQFactory
	2.4 Ethernet setup

	3 Basic I/O, read/write analog/digital
	3.1 Reading inputs
	3.2 Differential analog inputs
	3.3 Channel Pinouts
	3.4 Setting outputs

	4 Display the data
	4.1 Manipulating screen components
	4.2 Variable value components for numeric display
	4.3 Conversions vs direct expressions
	4.4 Descriptive text components for textual display
	4.5 Graphing
	4.6 Outputting with variable value and descriptive text components

	5 Logging
	5.1 Logging to ASCII files
	5.2 Batch logging
	5.3 Doing daily logs
	5.4 Conditional logging and the export set
	5.5 Loading logged data into Excel

	6 Intro to scripting
	6.1 Creating sequences
	6.2 Scripting basics
	6.2.1 Assignment
	6.2.2 Variables
	6.2.3 Calling functions
	6.2.4 Conditional statements
	6.2.5 Loops and Delay

	7 Some Common Tasks
	7.1 Doing things based on an input
	7.2 Sending email out of DAQFactory
	7.3 Uploading data using FTP
	7.4 Performing a ramped output

	8 Calling the LabJackUD
	8.1 Using() and include() for LabJack
	8.2 Doing configuration steps
	8.3 Error handling with OnAlert
	8.4 Handling Disconnect / Reconnect
	8.5 Error handling in script

	9 Analog and Digital I/O
	9.1 Low speed acquisition < 100hz
	9.1.1 Introduction
	9.1.2 The easy way - with channels
	9.1.3 Basic scripting using eGet
	9.1.4 More advanced using Add / Go / Get
	9.1.5 Controlling outputs

	9.2 High speed acquisition - streaming
	9.2.1 Introduction
	9.2.2 Basic streaming
	9.2.3 Streaming other inputs
	9.2.4 Triggered
	9.2.5 Error handling for streaming

	10 Counters and Timers
	10.1 Configuring
	10.2 Reading values for counters and input timers
	10.3 Basic Counter and Timer setup
	10.4 Resetting Counters
	10.5 Setting up specific timer modes
	10.5.1 PWM out
	10.5.2 Period in
	10.5.3 Duty cycle in
	10.5.4 Firmware counter in
	10.5.5 Firmware counter in w/ Debounce
	10.5.6 Frequency out
	10.5.7 Quadrature
	10.5.8 Timer stop
	10.5.9 System timer in

	11 Advanced
	11.1 Opening a LabJack manually
	11.2 Raw In/Out and other functions that require array pointers
	11.3 SPI communications
	11.4 Utilizing multicore processors
	11.5 Unsupported functions

