

CompuGen PCI SDK
User’s Guide

For CompuGen 4300,

CompuGen 8150, CompuGen 8152,
and CompuGen 11G

Supporting:
• CompuGen PCI SDK for C/C++
• CompuGen PCI SDKs for LabVIEW
• CompuGen SDKs for MATLAB

Reorder #: MKT-SWM-CGPCI02
0511

© Copyright Gage Applied Technologies 2005, 2006

Second Edition (March 2006)
CompuGen is a registered trademark of Gage Applied Technologies. Windows is a registered trademark of
Microsoft Incorporated. LabVIEW is a registered trademark of National Instruments Inc. MATLAB is a
registered trademark of The MathWorks Inc. All other trademarks are registered trademarks of their
respective companies.

Changes are periodically made to the information herein; these changes will be incorporated into new
editions of the publication. Gage Applied Technologies may make improvements and/or changes in the
products and/or programs described in this publication at any time.

Copyright © 2005, 2006 Gage Applied Technologies. All Rights Reserved, including those to reproduce this
publication or parts thereof in any form without permission in writing from Gage Applied Technologies.

The installation program used to install the CompuGen PCI SDKs for Windows, InstallShield, is licensed
software provided by InstallShield Software Corp., 900 National Parkway, Ste. 125, Schaumburg, IL.
InstallShield is Copyright © 2000 by InstallShield Software Corp., which reserves all copyright protection
worldwide. InstallShield is provided to you for the exclusive purpose of installing the CompuGen SDKs for
Windows. Gage Applied Technologies is exclusively responsible for the support of the CompuGen SDKs for
Windows, including support during the installation phase. In no event will InstallShield Software Corp. be
able to provide any technical support for the CompuGen SDKs for Windows.

Please complete the following section and keep it handy when calling for GaGe technical support:

Owned by: ___________________________
Serial Number: ___________________________
Purchase Date: ___________________________
Purchased From: ___________________________
You must also have the following information when you call:
· Brand name and type of computer
· Processor and bus speed
· Total memory size
· Information on all other hardware in the computer

How to reach GaGe Product Support
Toll-free phone: (800) 567-GAGE
Toll-free fax: (800) 780-8411

To reach GaGe from outside North America
Tel: +1-514-633-7447
Fax: +1-514-633-0770
E-mail: prodinfo@gage-applied.com
Website: http://www.gage-applied.com

Table of Contents

GaGe CompuGen PCI SDK Manual 3

Preface ... 5
CompuGen PCI C/C++ SDK Overview... 6

CompuGen PCI C/C++ API..7
Constants returned by CompuGen API functions ...7
Structures used by CompuGen API functions...9
CompuGen API Functions ..10

CgInitialize ..10
CgGetBoardName ..11
CgGetBoardType..12
CgGetCaps ...13
CgSet..15
CgDo...17
CgRelease ..18

CompuGen PCI LabVIEW SDK Overview ... 19
CgLv Sub-VIs..21

CgLv_ConfigureBoard.vi...21
CgLv_ConfigureChannel.vi ...22
CgLv_ConfigureChannelAtten.vi...23
CgLv_ConfigureSegment.vi ..24
CgLv_ErrorHandler.vi ...25
CgLv_GetBoardName.vi ...25
CgLv_GetChannelCount.vi ...26
CgLv_Intialize.vi..26
CgLv_LoadSegBuffer.vi ..27
CgLv_ResetSegments.vi ..28
CgLv_Start.vi ..28
CgLv_Stop.vi ..29
CgLv_Trigger.vi ..29

CompuGen PCI MATLAB SDK Overview.. 30
CompuGen PCI MATLAB CgCall Functionality..31

CompuGen MATLAB CgCall Modes...32
CgCall(INITIALIZE)...32
CgCall(QUERY, board_number, command_item) ..33

QUERY_CHANNEL_COUNT ...33
QUERY_RATE_COUNT...33
QUERY_ATTENUATION..33
QUERY_EXTERNAL_CLOCK..33
QUERY_RATES...33

CgCall(CONFIGURE, board_number, command_item, structure, signal_buffer)34
CONFIGURE_SEGMENT...34
CONFIGURE_CHANNEL ...35
CONFIGURE_BOARD ...35

CgCall(DO, board_number, command_item)..36
ACTION_START_TRIGGERED ...36
ACTION_START_FREE...36
ACTION_TRIGGER..36
ACTION_STOP ..36

4 CompuGen PCI SDK Manual GaGe

Advanced CompuGen PCI SDK Functionality ... 37
Link’n’Loop..37

Introduction ...37
The seg Structure ...38
Link’N’Loop Operation ..39

Digital Output Marker Control ...41

GaGe CompuGen PCI SDK Manual 5

Preface
This manual is designed to describe CompuGen PCI Software Development Kits (SDKs) for
the Windows 2000, and Windows XP environments. Separate SDKs are provided for C/C++,
LabVIEW, and MATLAB.

All Software Development Kits are installed by the CompuGen driver installation in the
O/S system drive: \Program Files\Gage\CompuGen\sample directory. This manual
assumes that the user is familiar with operation of the programming language (C, LabVIEW,
or MATLAB) in use. No description is given for these topics. The manual also refers to
CompuGen functionality only in so far as it is necessary to describe CompuGen control from
the SDK in use. For detailed description to CompuGen functionality, please refer to the
CompuGen PCI Hardware Manual and Installation Guide.

CompuGen PCI C/C++ SDK

6 CompuGen PCI C/C++ SDK Overview GaGe

CompuGen PCI C/C++ SDK Overview

In order to operate the CompuGen PCI C/C++ SDK, the user requires Microsoft Visual
Studio 6.0 or higher (both VS 6.0 and VS 7.1 projects are included). The CompuGen PCI
C/C++ SDK consists of a single Microsoft Visual C project called CgSimple.dsw. The project
includes the main C source code in CgSimple.c as well as all required supporting files.
CgSimple.c may be compiled using different Windows compilers such as Borland C Builder,
however, no project files are supplied and the user must construct the project file
themselves.

The structure of CgSimple.c is very straightforward, but may be easily extended to more
complex operation by reading about and understanding the basic C API CompuGen
subroutine calls and making appropriate modifications.

An overview of the operation of CgSimple.c is given below.

1. Initialize the CompuGen hardware and determine the number of CompuGen boards
installed in the host PC.

2. Obtain the name of the first CompuGen board in the host PC. All subsequent coding
will operate only on this first CompuGen board.

3. Calculate the data points for a single cycle sine wave waveform that is 1024 points
long. The values to be uploaded to the CompuGen board must take on the values
from 0 to 4095. A 0 value corresponds to negative full scale output. A value of 4095
corresponds to positive full scale. A value of 2048 corresponds to 0 Volts.

4. Return the number of channels on the first CompuGen board in the host PC.
5. Set the segment configuration. This entails setting the Generation Mode to Free Run

and setting the segment length on the board, which is 1024 by default. The segment
length is the number of data points in the waveform segment that will be generated.
This is distinct from the pattern buffer length, which may be different.

6. Upload the sinusoidal cycle pattern created in step 3 to all channels on the first
CompuGen board. In this step, the length of the pattern, dwBuffLength, is passed to
the CompuGen board. While dwBuffLength is set equal to dwLength within
CgSimple.c, this need not be the case. If the uploaded pattern is longer
(dwBuffLength > dwLength), then only the first dwLength points from the pattern are
generated. If the uploaded pattern is shorter (dwBuffLength < dwLength), then
pattern is extended so that it is dwLength points long. This is done by repeating the
last point in the uploaded pattern until it is padded up to dwLength.

7. Set the CompuGen generation parameters. These parameters include the
conversion rate and the flag to activate External Clocking. The default conversion
rate is set to the maximum available for the CompuGen board in use.

8. Start generation on the CompuGen board in Free Run Mode.
9. Generation continues until a key is pressed at which point generation is stopped, all

allocated buffers are freed, and the driver is released.

Please note that in developing a C application from CgSimple.c, the user should maintain the
above order in making C API subroutine calls. Making the calls in an arbitrary order may
result in faulty operation.

CompuGen PCI C/C++ SDK

GaGe CompuGen PCI C/C++ SDK 7

CompuGen PCI C/C++ API

CgSimple.c may be easily modified to implement different functionality by modifying
the code accordingly. For instance, the user might easily calculate a pattern other
than a sinusoidal cycle and upload it to one or more channels. The following
sections completely document the elements of the CompuGen API (Application
Program Interface). These elements are the values of the defined constants
returned by the API functions, the data structures used by the API functions, and a
list of the API functions themselves and their functionalities.

Constants returned by CompuGen API functions

The following definitions are used to identify which CompuGen model was detected.

#define CG_11G 0x00000001
#define CG_4300 0x00000002
#define CG_8150 0x00000003
#define CG_8152 0x00000004

The following definitions are used to specify which capability to query during a call to
CgGetCaps().

#define CG_CHAN_NUM 1
#define CG_RATE_NUM 2
#define CG_RATE 3
#define CG_ATTEN 4
#define CG_EXT_CLK 5
#define CG_MAX_MEM 6

The following definitions are used to specify which configuration parameter group to
set during a call to CgSet().

#define CG_BOARD_CONF 1
#define CG_SEGMENT_CONF 2
#define CG_CHANNEL_CONF 3

The following definitions are used to specify which action should be executed during
a call to CgDo().

#define CG_DO_START_TRIGGERED 1
#define CG_DO_STOP 2
#define CG_DO_TRIGGER 3
#define CG_DO_START_FREE 4

CompuGen PCI C/C++ SDK

8 CompuGen PCI C/C++ SDK GaGe

These macros are defined to help simplify validation of the return values from the
CompuGen API functions.

#define CG_FAILED(x) ((x)<0?TRUE:FALSE)
#define CG_SUCCEEDED(x) ((x)<0?FALSE:TRUE)

The following definitions are used to identify which error occurred during a function
call, if any.

#define CG_FALSE 0
#define CG_SUCCESS 1
#define CG_INVALID_CHANNEL -1
#define CG_NO_ATTENUATION -2
#define CG_SEGMENT_TOO_BIG -3
#define CG_TOO_MANY_SEGMENTS -4
#define CG_INVALID_SEGMENT -5
#define CG_ZERO_LENGTH -6
#define CG_INVALID_BOARD -7
#define CG_INVALID_CAPS_ID -8
#define CG_BAD_POINTER -9
#define CG_INVALID_ID -10
#define CG_FAIL 0x80000000

The following definitions are required by the CompuGen API.

#define CG_API __stdcall
typedef long CG_STATUS;

CompuGen PCI C/C++ SDK

GaGe CompuGen PCI C/C++ SDK 9

Structures used by CompuGen API functions

typedef struct _CG_GEN_CONFIG
{

Float fConversionRate; // Conversion rate in Hz for the signal to
be generated.

bool bExtClock; // Flag that activates external clocking
when TRUE.

bool bReserved; // This parameter is currently ignored and
is reserved for future use.

}CG_GEN_CONFIG;

typedef struct _CG_SEG_CONFIG
{

DWORD dwLength; // Length in points of the segment to be
generated by the CompuGen board. It
must be a multiple of 16 with a 64 point
minimum.

DWORD dwLoopCount; // Currently only 0 is supported. This
parameter has no effect.

bool bTriggered; // This flag sets the CompuGen
conversion mode.
For Triggered Mode, set to TRUE.
For Free Run Mode, set to FALSE.

}CG_SEG_CONFIG, *PCG_SEG_CONFIG;

typedef struct _CG_CHAN_CONFIG
{

DWORD dwChanNum; // Number of the channel to be configured.
Use values 1 to n to configure a specific
channel. A value of 0 will configure all
channels identically.

DWORD dwBufLength; // Size of the buffer that contains the
waveform pattern to be uploaded to the
CompuGen memory.

Float fAtten; // Output attenuation factor for the
CG4300, in dB. Ignored for other
CompuGen models.

}CG_CHAN_CONFIG, *PCG_CHAN_CONFIG;

All structures are packed on 8 byte boundaries. (This information is only important if
you are trying to call CompuGen C API functions from another programming
language, such as Visual Basic.)

CompuGen PCI C/C++ SDK

10 CompuGen PCI C/C++ SDK GaGe

CompuGen API Functions

CgInitialize

Function Prototype:
CG_STATUS CG_API CgInitialize(void);

Purpose:
This function initializes the CompuGen hardware and driver. It also identifies the
number of CompuGen boards installed in the host PC.

Parameters:
None

Returns:
A positive return value indicates the number of CompuGen boards found.
A negative return value indicates an error. The value is the error code.

Example Code:
//Initialize the driver and query number of board available
 long lBoards = CgInitialize();

CompuGen PCI C/C++ SDK

GaGe CompuGen PCI C/C++ SDK 11

CgGetBoardName

Function Prototype:
CG_STATUS CG_API CgGetBoardName(DWORD dwBoardNumber, size_t stLen,
char* pBoardName);

Purpose:
This function obtains a text string containing the name of the CompuGen board.

Parameters:
dwBoardNumber Number of the CompuGen board to be addressed,

starting from 0.
stLen The size of the string variable to which pBoardName

points.
pBoardName A pointer to the string variable supplied by the user.

This string will be returned containing the CompuGen
board name.

Returns:
CG_SUCCESS upon success or error code upon failure.

Example Code:
//Get name of the first board
 char strBoardName[MAX_PATH];
 CgGetBoardName(0, MAX_PATH, strBoardName);

CompuGen PCI C/C++ SDK

12 CompuGen PCI C/C++ SDK GaGe

CgGetBoardType

Function Prototype:
DWORD CG_API CgGetBoardType(DWORD dwBoardNumber);

Purpose:
This function gets the CompuGen board type (model) for the selected board number.

Parameters:
dwBoardNumber Number of the CompuGen board to be addressed,

starting from 0.

Returns:
Returns the CompuGen board type or model, which is a positive number equal to
CG_11G, CG_4300, CG_8152, or CG_8150.
A negative return value indicates an error. The value is the error code.

Example Code:
 DWORD dwBoardType = CgGetBoardType(0);

CompuGen PCI C/C++ SDK

GaGe CompuGen PCI C/C++ SDK 13

CgGetCaps

Function Prototype:
CG_STATUS CG_API CgGetCaps(DWORD dwBoardNumber, DWORD dwCapsId,
void* pBuffer, DWORD dwBufferSize);

Purpose:
This function gets the capabilities of the selected CompuGen board.

Parameters:
dwBoardNumber Number of the CompuGen board to be addressed,

starting from 0.

dwCapsId Specifies which CompuGen capabilities are to be
obtained by CgGetCaps(). Must be one of the following:

CG_CHAN_NUM Causes CgGetCaps() to return the number of
CompuGen channels.

CG_RATE_NUM Causes CgGetCaps() to return the number of different
internal CompuGen conversion rates.

CG_MAX_MEM Causes CgGetCaps() to return the size of the
maximum memory available per channel on the
selected CompuGen card.

CG_ATTEN Causes CgGetCaps() to return a 1 if an output
attenuator is available on the selected CompuGen
card. Otherwise, a zero value is returned.

CG_EXT_CLK Causes CgGetCaps() to return a 1 if the selected
CompuGen card supports external clock. Otherwise,
a zero value is returned.

CG_RATE Causes CgGetCaps() to fill up the buffer variable to
which pBuffer points with the valid internal conversion
rates for the selected CompuGen board. pBuffer
should point to an array of float variables with enough
elements to hold the retrieved information
(CG_RATE_NUM or more).

pBuffer Ignored unless dwCapsId = CG_RATE.
If dwCapsId = CG_RATE, pBuffer is a pointer to a buffer
variable that will be returned containing requested
information.

dwBufferSize Ignored unless dwCapsId = CG_RATE.
If dwCapsId = CG_RATE, dwBufferSize is the size in
bytes of the buffer to which pBuffer points.

CompuGen PCI C/C++ SDK

14 CompuGen PCI C/C++ SDK GaGe

Returns:
Return value depends on the value of dwCapsId.
An error code is returned upon failure.

Example Code:
//Query number of channels on the first board
 long lChanNum = CgGetCaps(0, CG_CHAN_NUM, NULL, 0);

CompuGen PCI C/C++ SDK

GaGe CompuGen PCI C/C++ SDK 15

CgSet

Function Prototype:
CG_STATUS CG_API CgSet(DWORD dwBoardNumber, DWORD dwSetId, void*
pStruct, void* pBuffer);

Purpose:
This function configures the selected CompuGen board

Parameters:
dwBoardNumber Number of the CompuGen board to be

addressed, starting from 0.

dwSetId Specifies which board settings to configure.
Must be one of the following:

CG_BOARD_CONF To configure overall conversion parameters
CG_SEG_MARKER_CONF To configure the segment with one marker
CG_SEG_MARKER_MOD To modify configuration of the segment with

one marker
CG_CHANNEL_CONF To configure the channel attenuation and

load channel data. This Id used only in single
segment mode

CG_CHANNEL_ATTEN To configure the channel attenuation in
Link’N’Loop mode

CG_SEG_BUFFER To load data for specified segment of the
specified channel in Link’N’Loop mode

CG_SEGMENT_RESET To reset or clear previous segment
configuration

pStruct Points to a variable whose type must be
appropriate for the dwSetId being used.

For dwSetId = CG_BOARD_CONF, use type
CG_GEN_CONFIG

For dwSetId = CG_SEG_MARKER_CONF or
CG_SEG_MARKER_MOD , use type
CG_SEG_MARK_CONFIG

For dwSetId = CG_SEG_BUFFER, use type
CG_SEG_BUF_CONFIG

For dwSetId = CG_CHANNEL_CONF or
CG_CHANNEL_ATTEN, use type
CG_CHAN_CONFIG

For deSetId = CG_SEGMENT_RESET, use null pointer

CompuGen PCI C/C++ SDK

16 CompuGen PCI C/C++ SDK GaGe

pBuffer Use when dwSetId = CG_CHANNEL_CONF
or CG_SEG_BUFFER, otherwise ignored.
Pointer to the buffer that contains the
waveform pattern to be uploaded to the
CompuGen memory. pBuffer must point to
an array of short variables with dwBuffLength
elements. A short variable value of 4095
corresponds to negative full scale. A value of
2048 corresponds to 0 Volts.

Returns:
CG_SUCCESS upon success or error code upon failure.

Example Code:
//Configure board generation parameters
 CG_GEN_CONFIG gen;
 gen.fConversionRate = 300e6F;
 gen.bExtClock = false;
 gen.bReserved = false;
 st = CgSet(0, CG_BOARD_CONF, &gen, NULL);

CompuGen PCI C/C++ SDK

GaGe CompuGen PCI C/C++ SDK 17

CgDo

Function Prototype:
CG_STATUS CG_API CgDo(DWORD dwBoardNumber, DWORD dwActionId);

Purpose:
This function performs an action on the selected CompuGen board.

Parameters:
dwBoardNumber Number of the CompuGen board to be addressed,

starting from 0.

dwActionId Specifies which action is to be executed by CgDo().
Must be one of the following:

CG_DO_START_TRIGGERED Start signal generation in Triggered Mode.
CG_DO_STOP Stop signal generation.
CG_DO_TRIGGER Force generation of a single waveform in

Triggered Mode.
CG_DO_START_FREE Start signal generation in Free Run Mode.

Returns:
CG_SUCCESS upon success or error code upon failure.

Example Code:
//Start generation in Free Run Mode
 st = CgDo(0, CG_DO_START_FREE);

CompuGen PCI C/C++ SDK

18 CompuGen PCI C/C++ SDK GaGe

CgRelease

Function Prototype:
CG_STATUS CG_API CgRelease(void);

Purpose:
This function causes the C application to release the CompuGen driver and frees all
allocated resources.

Parameters:
None

Returns:
A positive return value indicates that driver successfully released.
A negative return value indicates an error. The value is the error code.

Example Code:
//Release the driver and free allocated resources
 st = CgRelease();

CompuGen PCI LabVIEW SDK

GaGe CompuGen PCI LabVIEW SDK Overview 19

CompuGen PCI LabVIEW SDK Overview

In order to operate the CompuGen PCI LabVIEW SDK, the user requires National
Instruments LabVIEW version 6.1 or higher. The CompuGen PCI LabVIEW SDK consists of
two LabVIEW VI called CgSimple.vi and CgLnL.vi. The CgSimple VI allows generation of a
sine, triangle, square, or ground waveforms on the CompuGen hardware.

The front panel of CgSimple.vi is shown below.

CgSimple.vi is constructed using lower level sub-VIs, each of which is a simple wrapper VI
that calls the CompuGen driver Dynamically Linked Library (DLL). CgSimple.vi may be
easily extended to more complex operation by reading and understanding the descriptions of
the CgLv VIs and making appropriate modifications.

An overview of the operation of CgSimple.vi is given below.

1. Initialize the CompuGen hardware and determine the number of CompuGen boards
installed in the host PC.

2. Obtain and display the name of the first CompuGen board in the host PC. All
subsequent coding will operate only on this first CompuGen board.

3. Obtain and display the number of channels on the first CompuGen board in the host
PC.

4. Wait until the Start button is pressed.

CompuGen PCI LabVIEW SDK

20 CompuGen PCI LabVIEW SDK Overview GaGe

5. Reset previous segment configuration.
6. Set the segment configuration. This entails setting the Generation Mode to Free Run

and setting the segment Length on the board, which is 1024 by default. The
segment Length is the number of data points in the waveform segment that will be
generated. This is distinct from the pattern Buffer Length, which may be different.

7. Calculate the pattern data values for the selected waveform type. The values to be
uploaded to the CompuGen board must take on the values from 0 to 4095. A 0 value
corresponds to negative full scale output. A value of 4095 corresponds to positive
full scale. A value of 2048 corresponds to 0 Volts.

8. Upload the selected pattern created in step 6 to all channels on the first CompuGen
board. In this step, the length of the pattern, Buffer Length, is passed to the
CompuGen board. While Buffer Length is set equal to Length within CgSimple.vi,
this need not be the case. If the uploaded pattern is longer (Buffer Length > Length),
then only the first Length points from the pattern are generated. If the uploaded
pattern is shorter (Buffer Length < Length), then pattern is extended so that it is
Length points long. This is done by repeating the last point in the uploaded pattern
until it is padded up to Length.

9. Set the CompuGen generation parameters. These parameters include the
conversion rate and the flag to activate External Clocking. The default conversion
rate is set to the maximum available for the CompuGen board in use.

10. Start generation on the CompuGen board in Free Run Mode.
11. Generation continues until the Stop button is pressed at which point generation is

stopped. Please note that this is the end of the sequence. In order to start
generation again, you will need to restart the VI.

Please note that in developing a VI from CgSimple.vi, the user should maintain the above
order in making calls to CsLv VIs. Making the calls in an arbitrary order may result in faulty
operation. The following section describes the operation of each CgLv VI.

CompuGen PCI LabVIEW SDK

GaGe CompuGen PCI MATLAB SDK 21

CgLv Sub-VIs

CgLv_ConfigureBoard.vi
This VI configures the overall CompuGen generation parameters.
Board Number – number of the CompuGen board to be addressed, starting from 0.
Conversion Rate – conversion rate in Hz.
External Clock – flag to activate external clocking.
Reserved – this control has no effect.
The VI returns an Error Code.

Connector Pane

Front Panel

Controls and Indicators

 Conversion Rate (150 MHz)

 External Clock (f)

 Reserved (f)

 Board Number (0)

 Error Code

CompuGen PCI LabVIEW SDK

22 CompuGen PCI LabVIEW SDK GaGe

CgLv_ConfigureChannel.vi
This VI configures a CompuGen channel specified by Channel Number on the board specified by
Board Number.
Board Number – number of the CompuGen board to be addressed, starting from 0.
Buffer – array of U16 variables containing the segment data. A value of 0 corresponds to positive
full scale. A value of 4095 corresponds to negative full scale. A value of 2048 corresponds to
0 Volts.
Buffer Length – number of elements in the Buffer array. If Buffer Length is greater than segment
Length, then only the first Length samples in the pattern will generated. If Buffer Length is less
than segment Length, then the last sample in the pattern buffer will be repeated to fill the rest of
the segment Length.
Attenuation sets the attenuation factor, in dB, on the CompuGen output attenuator, if available.
The VI returns an Error Code.

Connector Pane

Front Panel

Controls and Indicators

 Channel Number (1)

 Buffer Length (1024)

 Attenuation (0)

 Board Number (0)

 Buffer

 Numeric

 Error Code

CompuGen PCI LabVIEW SDK

GaGe CompuGen PCI MATLAB SDK 23

CgLv_ConfigureChannelAtten.vi
This VI configures a channel, specified by Channel Number, of the board specified by Board
Number.
Buffer - array of U16 variables containing the segment data. A value of 0 corresponds to positive
full scale. A value of 4095 corresponds to negative full scale. A value of 2048 corresponds to 0
Volts.
Buffer Length - number of elements in the Buffer array. If Buffer Length is greater than segment
Length, then only the first Length samples in the pattern will generated. If Buffer Length is less
than segment Length, then the last sample in the pattern buffer will be repeated to fill the rest of
the segment Length.
Attenuation sets the attenuation factor, in dB, on the CompuGen output attenuator, if available.
The VI returns an Error Code.

Connector Pane

Front Panel

Controls and Indicators

 Channel Number (1)

 Attenuation (0)

 Board Number (0)

 Error Code

CompuGen PCI LabVIEW SDK

24 CompuGen PCI LabVIEW SDK GaGe

CgLv_ConfigureSegment.vi
This VI configures the output waveform segment for the CompuGen board specified by Board
Number.
Board Number – number of the CompuGen board to be addressed, starting from 0.
The Length must conform to the limitations specified in the CompuGen PCI hardware manual for
the CompuGen model in use.
Loop count specifies how many times to repeat a segment before switching to the next one. It
should be set to 0 for continuous operation. This control is only necessary in Link’N’Loop mode
and should be left disconnected in normal generation mode.
The Triggered input sets the CompuGen generation mode. For Triggered Mode, set to TRUE.
For Free Run Mode, set to FALSE.
Marker specifies the position of the marker output for this segment. If the marker value is greater
than the segment Length, no marker pulse is generated.
Next specifies the subsequent segment number to be generated in Link’N’Loop mode. This
control is only necessary in Link’N’Loop mode and should be left disconnected in normal
generation mode.
The VI returns an Error Code.

Connector Pane

Front Panel

Controls and Indicators

 Length (1024)

 Loop Count (0)

 Triggered (f)

 Board Number (0)

 Marker (0)

 Number

 Next

 Error Code

CompuGen PCI LabVIEW SDK

GaGe CompuGen PCI MATLAB SDK 25

CgLv_ErrorHandler.vi
This VI returns a descriptive error string that corresponds to the input Error Code.
If StopOnError is TRUE, execution of the main VI is stopped if the Error Code indicates that an
error has occurred.

Connector Pane

Front Panel

Controls and Indicators

 Error Code

 StopOnError (true)

 Error String

CgLv_GetBoardName.vi
This VI retrieves the model name of the CompuGen board specified by Board Number.
Returns the Board Name as a string variable and an Error Code.
Board Number – number of the CompuGen board to be addressed, starting from 0.
The VI returns an Error Code.

Connector Pane

Front Panel

Controls and Indicators

 Board Number

 Error Code

 Board Name

CompuGen PCI LabVIEW SDK

26 CompuGen PCI LabVIEW SDK GaGe

CgLv_GetChannelCount.vi
This VI retrieves number of channels of the specified CompuGen board.
Board Number – number of the CompuGen board to be addressed, starting from 0.
The VI returns an Error Code.

Connector Pane

Front Panel

Controls and Indicators

 Board Number

 Channels

 Error Code

CgLv_Intialize.vi
This VI initializes the CompuGen driver and returns the number of CompuGen boards found. The
VI returns an Error Code.

Connector Pane

Front Panel

Controls and Indicators

 Boards Found

 Error Code

CompuGen PCI LabVIEW SDK

GaGe CompuGen PCI MATLAB SDK 27

CgLv_LoadSegBuffer.vi
This VI loads data for the specified segment.
Board Number, Channel Number and Segment identify the target for upload.
Buffer - array of U16 variables containing the segment data. A value of 0 corresponds to positive
full scale. A value of 4095 corresponds to negative full scale. A value of 2048 corresponds to
0 Volts.
Buffer Length - number elements in the Buffer array. If Buffer Length is greater than segment
Length, then only the first Length samples in the pattern will generated. If Buffer Length is less
than Segment length, then the last sample in the pattern buffer will be repeated to fill the rest of
the segment Length.
The VI returns an Error Code.

Connector Pane

Front Panel

Controls and Indicators

 Channel Number (1)

 Buffer Length (1024)

 Board Number (0)

 Buffer

 Numeric

 Segment

 Error Code

CompuGen PCI LabVIEW SDK

28 CompuGen PCI LabVIEW SDK GaGe

CgLv_ResetSegments.vi
This VI removes any previous segment data on the CompuGen hardware.
This VI should be called prior to the first call to CgLv_ConfigureSegment.vi.
The VI returns an Error Code.

Connector Pane

Front Panel

Controls and Indicators

 Board Number (0)

 Error Code

CgLv_Start.vi
This VI starts CompuGen signal generation.
The Triggered input sets the CompuGen generation mode. For Triggered Mode, set to TRUE.
For Free Run Mode, set to FALSE.
Board Number – number of the CompuGen board to be addressed, starting from 0.
The VI returns an Error Code.

Connector Pane

Front Panel

Controls and Indicators

 Board Number (0)

 Triggered (f)

 Error Code

CompuGen PCI LabVIEW SDK

GaGe CompuGen PCI MATLAB SDK 29

CgLv_Stop.vi
This VI stops CompuGen signal generation.
Board Number – number of the CompuGen board to be addressed, starting from 0.
The VI returns an Error Code.

Connector Pane

Front Panel

Controls and Indicators

 Board Number (0)

 Error Code

CgLv_Trigger.vi
This VI forces generation of a single waveform in Triggered Mode.
Board Number – number of the CompuGen board to be addressed, starting from 0.
The VI returns an Error Code.

Connector Pane

Front Panel

Controls and Indicators

 Board Number (0)

 Error Code

CompuGen PCI MATLAB SDK

30 CompuGen PCI MATLAB SDK Overview GaGe

CompuGen PCI MATLAB SDK Overview

In order to operate the CompuGen PCI MATLAB SDK, the user requires Mathwork’s
MATLAB 6.5 or higher. The CompuGen PCI MATLAB SDK consists of a single MATLAB
program called CgSimple.m. The MATLAB SDK folder includes CgSimple.m as well as all
required supporting files.

CgSimple.m works by making function calls to a Dynamically Linked Library (DLL) called
CgCall.dll. The structure of CgSimple.m is very straightforward, but may be easily extended
to more complex operation by reading about and understanding the basic CgCall function
calls and making appropriate modifications.

An overview of the operation of CgSimple.m is given below.

1. Initialize the CompuGen hardware and determine the number of CompuGen boards
installed in the host PC.

2. Query the CompuGen hardware in order to determine its capabilities.
3. Set the CompuGen board parameters. These parameters include the conversion

rate and the flag to activate External Clocking. The default conversion rate is set to
150000000.

4. Calculate the data points for a single cycle sine wave waveform. The values to be
uploaded to the CompuGen board must take on the values from 0 to 4095. A 0 value
corresponds to negative full scale output. A value of 4095 corresponds to positive
full scale. A value of 2048 corresponds to 0 Volts.

5. Set the segment configuration. This entails setting the Generation Mode to Free Run
and setting the segment length on the board. The segment length is the number of
data points in the waveform segment that will be generated. This is distinct from the
pattern buffer length, which may be different.

6. Calculate a new segment pattern.
7. Upload the sinusoidal cycle pattern created in step 4 to the first half of the channels

on the first CompuGen board. In this step, the length of the pattern,
channel.buffer_length, is passed to the CompuGen board. While
channel.buffer_length is set equal to segment.length within CgSimple.c, this need
not be the case.
If the uploaded pattern is longer (channel.buffer_length > segment.length), then
only the first segment.length points from the pattern are generated. If the uploaded
pattern is shorter (channel.buffer_length < segment.length), then pattern is
extended so that it is segment.length points long. This is done by repeating the last
point in the uploaded pattern until it is padded up to segment.length.

8. Upload the pattern created in step 6 to the second half of the channels on the first
CompuGen board.

9. Start generation on the CompuGen board in Free Run Mode.

Please note that in developing a MATLAB application from CgSimple.m, the user should
maintain the above order in making CgCall() subroutine calls. Making the calls in an
arbitrary order may result in faulty operation.

CompuGen PCI MATLAB SDK

GaGe CompuGen PCI MATLAB SDK 31

CompuGen PCI MATLAB CgCall Functionality

CgSimple.m controls the CompuGen hardware by making function calls to an
intermediate DLL written in C called CgCall.dll.

The function calling convention to CgCall.dll is as follows:

Return_value =
CgCall(system_command, board_number, item, structure, signal_buffer)

The most important parameter is system_command which determines the type of
operation that CgCall() will perform on the CompuGen hardware. This parameter
may be set to 1, 2, 3, and 4. For convenience, CgSimple.m makes the following
assignments:

INITIALIZE = 1;
QUERY = 2;
CONFIGURE = 3;
DO = 4.

Remaining parameters for CgCall() behave differently depending on the value of
system_command. It is not necessary to include all CgCall() parameters for every
call. Some parameters are unnecessary, depending on the value of
system_command.

The remainder of this manual describes the operation of CgCall() for the four
different possible values of system_command.

In the event of an error, CgCall() returns an error code. Please refer to page 8 of the
C/C++ SDK section for the meaning of each error code.

CompuGen PCI MATLAB SDK

32 CompuGen PCI MATLAB SDK GaGe

CompuGen MATLAB CgCall Modes

CgCall(INITIALIZE)

Purpose:
This CgCall() command initializes the CompuGen hardware and driver. It also
identifies the number of CompuGen boards installed in the host PC.

Additional parameters:
None

Returns:
A positive return value indicates the number of CompuGen boards found.
If an error occurs, then the return value is an error code.

CompuGen PCI MATLAB SDK

GaGe CompuGen PCI MATLAB SDK 33

CgCall(QUERY, board_number, command_item)

Purpose:
This CgCall() command queries the driver and returns a value that is the response to
the query.

Additional parameters:
board_number Number of the CompuGen board to be addressed,

starting from 0.

command_item Can be assigned to QUERY_CHANNEL_COUNT,
QUERY_RATE_COUNT, QUERY_ATTENUATION,
QUERY_EXTERNAL_CLOCK, or QUERY_RATES,
which are defined within CgSimple.m.

QUERY_CHANNEL_COUNT Queries the CompuGen hardware and returns the
number of available output channels.

QUERY_RATE_COUNT Queries the CompuGen hardware and returns the
number of different available conversion rates.

QUERY_ATTENUATION Queries the CompuGen hardware and returns a 1
if a CompuGen output attenuator is available.

QUERY_EXTERNAL_CLOCK Queries the CompuGen hardware and returns a 1
if external clocking functionality is available.

QUERY_RATES Queries the CompuGen hardware in order to
determine the available internal conversion rates.
If the call is successful, the return value is an array
of doubles containing the available conversion
rates. The size of the array can be determined by
a QUERY_RATE_COUNT query.

Returns:
The return value depends on the query type, as described above.
If an error occurs, then the return value is an error code.

CompuGen PCI MATLAB SDK

34 CompuGen PCI MATLAB SDK GaGe

CgCall(CONFIGURE, board_number, command_item, structure,
signal_buffer)

Purpose:
This CgCall() command configures the CompuGen hardware. The command can be
used to configure the pattern segment, the channel configuration, or the board
configuration.

Additional parameters:
board_number Number of the CompuGen board to be addressed,

starting from 0.

command_item Can be assigned to CONFIGURE_SEGMENT,
CONFIGURE_CHANNEL, or CONFIGURE_BOARD,
which are defined within CgSimple.m.

CONFIGURE_SEGMENT Assigning the command_item to
CONFIGURE_SEGMENT sets the segment
configuration. The segment configuration
parameters are contained in a structure called
segment, which must be passed as the structure
parameter of CgCall(). The elements of the
structure called segment are:

segment.trigger This flag sets the CompuGen conversion mode.
For Triggered Mode, set to 1.
For Free Run Mode, set to 0.

segment.loop_count Currently only 0 is supported.
This parameter has no effect.

segment.length Length in points of the segment to be generated by
the CompuGen board. It must be a multiple of 16
with a 64 point minimum.

signal_buffer This is not used for CONFIGURE_SEGMENT.

CompuGen PCI MATLAB SDK

GaGe CompuGen PCI MATLAB SDK 35

CONFIGURE_CHANNEL Assigning the command_item to
CONFIGURE_CHANNEL configures the channel
settings. The most important channel setting is the
pattern to be uploaded. The channel configuration
parameters are contained in a structure called
channel, which must be passed as the structure
parameter of CgCall(). The elements of the
structure called channel are:

channel.channel_number Number of the channel to be configured. Use
values 1 to n to configure a specific channel. A
value of 0 will configure all channels identically.

channel.attenuation Output attenuation factor for the CG4300, in dB.
Ignored for other CompuGen models.

channel.buffer_length Size of the buffer that contains the waveform
pattern to be uploaded to the CompuGen memory.

signal_buffer The buffer that contains the waveform pattern to be
uploaded to the CompuGen memory.
signal_buffer must be an array of variables with
channel.buffer_length elements. A variable value of
4095 corresponds to negative full scale. A value of
2048 corresponds to 0 Volts.

CONFIGURE_BOARD Assigning the command_item to
CONFIGURE_BOARD sets the board
configuration. The board configuration parameters
are contained in a structure called board, which
must be passed as the structure parameter of
CgCall(). The elements of the structure called
board are:

board.conversion_rate Sets the conversion rate in Hz.
board.external_clock Flag that activates external clocking when set to 1,

set to 0 for internal clocking.
board.external_trigger This flag sets the CompuGen conversion mode.

For Triggered Mode, set to 1.
For Free Run Mode, set to 0.

signal_buffer This is not used for CONFIGURE_BOARD.

Returns:
If an error occurs, then the return value is an error code.

CompuGen PCI MATLAB SDK

36 CompuGen PCI MATLAB SDK GaGe

CgCall(DO, board_number, command_item)

Purpose:
This CgCall() command performs an action on the selected CompuGen board.

Additional parameters:
board_number Number of the CompuGen board to be addressed,

starting from 0.

command_item Can be assigned to ACTION_START_TRIGGERED,
ACTION_START_FREE, ACTION_TRIGGER, or
ACTION_STOP, which are defined within CgSimple.m.

ACTION_START_TRIGGERED Start signal generation in Triggered Mode.

ACTION_START_FREE Start signal generation in Free Run Mode.

ACTION_TRIGGER Force generation of a single waveform in
Triggered Mode.

ACTION_STOP Stop signal generation.

Returns:
If an error occurs, then the return value is an error code.

Advanced CompuGen PCI SDK Functionality

GaGe Advanced CompuGen PCI SDK Functionality 37

Advanced CompuGen PCI SDK Functionality

CompuGen PCI Software Development Kits include advanced sample programs that
are for use by customers who are already comfortable with normal CompuGen
operation

This section describes the advanced sample programs in a generic fashion that is
not specific to any of the three CompuGen SDKs.

Link’n’Loop

Introduction
All PCI CompuGen cards support CompuGen Link’N’Loop Mode, which allows
multiple pattern segments to be uploaded to the CompuGen card for later selective
generation. Link’N’Loop Mode allows CompuGen memory limitations to be
overcome for a wide variety of signals. For instance, a user may generate a
succession of different cyclical waveforms simply by uploading the pattern for a
single cycle of each waveform and then seamlessly looping each single cycle in
order to obtain the required number of cycles. As an example, a Link’N’Loop
generation sequence might generate 100 cycles of a 1 MHz sine wave, followed by
2000 cycles of a 2.5 MHz triangle wave, followed by 200 cycles of a 500 kHz square
wave. Alternatively, a user who wants to generate short distinct waveforms that are
separated by a long duration where the signal is at 0 Volts need not waste
CompuGen memory by filling it up with 0 Volt values. Instead, only the short distinct
waveform are uploaded and, in Link’N’Loop mode, each waveform is generated
upon receipt of a software or external trigger. Using Link’N’Loop mode, a user may
even initially upload a portfolio of waveforms and then may select to generate them
in different orders simply by uploading new segment order lists.

Link’N’Loop Mode is somewhat more complex than normal CompuGen mode and so
should be used only by users who are already comfortable with Normal CompuGen
operation. Link’N’Loop Mode is accessible only using the CompuGen Software
Development Kits.

A big advantage of Link’N’Loop Mode is that if the user needs to rapidly switch
between different output waveforms, then different waveform data need not be
uploaded in order to the switch the output waveform. Instead, waveform segments
may be preloaded onto the CompuGen hardware and then the user may rapidly
switch between different segments during generation. For instance, for a
CompuGen 11G, which has 4 MegaSamples of pattern memory per channel, over
4000 waveform segments of 1024 points each may be pre-loaded into the
CompuGen memory for later generation. Different triggering and looping conditions
may be pre-selected for each Link’N’Loop segment. Segment configurations are
pre-loaded to the CompuGen hardware so that, during generation, the user may

Advanced CompuGen PCI SDK Functionality

38 Advanced CompuGen PCI SDK Functionality GaGe

switch between different waveform segments very quickly with no software
interaction required.

From any of the three CompuGen SDKs, Link’N’Loop mode is implemented as a
simple extension of Normal CompuGen operation mode. Each SDK includes a
sample program called CgLnL, which illustrates use of Link’N’Loop mode. CgLnL
calculates the distinct waveform data for a few segments and assigns different
Link’N’Loop settings for each segment. These segments and settings are then
uploaded to the CompuGen hardware and generated in the prescribed fashion.

Link’N’Loop mode is controlled using the same sub-routine set that is used for the
control of Normal CompuGen operating mode. The only difference is that new
Link’N’Loop mode variables and constants must be used for Link’N’Loop control. In
what follows, a description of the software elements required for Link’N’Loop control
is given. The description is given only for the C programming language. From
MATLAB or LabVIEW, Link’N’Loop is controlled in the same fashion but following the
syntax required for these environments. The user may refer to the Link’N’Loop
sample programs (CgLnL.M and CgLnL.VI) as guides on correct syntax.

The seg Structure
Settings for Link’N’Loop operation are contained within the seg structure in CgLnL.c.
Link’N’Loop mode is actually enabled simply by using a loop to upload multiple
copies of the seg structure to the CompuGen drivers, rather than only one. The seg
structure contains a variable (seg.dwSegNumber) that specifies to which segment
the entries refer. The variables contained in the seg structure and their operation in
Link’N’Loop mode are described below.

seg.bTriggered - As in Normal operating mode, this Boolean variable determines
how the CompuGen will initiate segment generation. If seg[i].bTriggered is set to
FALSE, then Free Run generation mode is selected. In this mode, the segment
loops seamlessly and successive segment generations occur immediately after the
previous generation. This mode is useful for generating sine waves, for instance,
where the segment data for only a single cycle of the sine wave are uploaded and
the segment is looped seamlessly to generate multiple sine wave cycles. If
seg[i].bTriggered is set to TRUE, then Triggered Mode generation mode is selected.
In this mode, the CompuGen awaits the occurrence of an external or software trigger
event before generating its segment. bTriggered may be set independently for each
segment in the Link’N’Loop sequence.

seg.dwLoopCount - In Normal Mode, segment looping in Free Run Mode is endless
while segments are only generated once in Triggered Mode. In Link’N’Loop mode,
however, each segment may be looped a selectable finite number of times in both
Free Run and Triggered modes. The value of the dwLoopCount variable sets the
number of times that the pattern will be looped. The maximum value is 16384.

Advanced CompuGen PCI SDK Functionality

GaGe Advanced CompuGen PCI SDK Functionality 39

seg.dwLength – This variable must be set equal to the number of points in the
segment data pattern that is to be uploaded to the CompuGen hardware. The
variable value must conform to the specified minimum length and length increment
for the CompuGen model in use.

seg.dwSegNumber – This variable must be equal to the index of the current
segment, starting from 0. For instance, for the first segment the value must be 0, for
the second segment the value must be 1, etc.

seg.dwNextSegment – In Link’N’Loop mode, all but the first of the uploaded
segments may be generated in any arbitrary order. The segments may be
generated, for instance, in the order #1, #4, #5, #3, #2. By uploading only a new
segment structure, the segment order may be changed without uploading new
segment pattern data. The dwNextSegment variable selects which segment will be
generated after the current one.

seg.dwMarkerAddress – This variable specifies the marker pulse position, as it does
in Normal mode. In Link’N’Loop mode, a marker may be independently specified for
each Link’N’Loop segment.

Link’N’Loop Operation
Once the values have been set within the seg structure, these values are set on the
CompuGen hardware using CgSet() with the CG_SEGMENT_CONF modifier, as in
Normal generation mode. Board configuration is done using CgSet() with the
CG_BOARD_CONF modifier, as in Normal generation mode.

Before loading new segment data, the user should normally first clear previous
segment data on the CompuGen hardware using CgSet() with the
RESET_SEGMENT modifier. The user may opt not to make this call, however, and
only change seg structure variables and upload them to CompuGen hardware. In
this way, using the same segment data, changes may be made only to the
Link’N’Loop settings without having to re-upload the segment data. In this case,
changes to seg structure variables must be consistent with the already loaded
segment data. For instance, while the dwLoopCount and bTriggered values may be
arbitrarily changed, dwLength must remain equal to the already uploaded segment
pattern length.

Data for each Link’N’Loop segment are uploaded to the CompuGen hardware using
CgSet() with the CG_CHANNEL_CONF modifier, as in Normal generation mode.
Segments are uploaded separately and in order. New uploaded segment data is
automatically appended as the next segment in the list. As discussed, CgSet() with
the RESET_SEGMENT modifier is required to clear all segments and restart the list.

Once the CompuGen hardware has been configured and the segment data have
been uploaded, the generation of the Link’N’Loop sequence may be initiated. In

Advanced CompuGen PCI SDK Functionality

40 Advanced CompuGen PCI SDK Functionality GaGe

order to understand the details of Link’N’Loop generation, further explanation is
necessary.

First of all, the overall Link’N’Loop sequence is always looped so that it repeats
forever. For instance, if the user uploads three Link’N’Loop segments, the
generation sequence will be:

Segment #1 sequence, segment #2 sequence, segment #3 sequence, segment #1
sequence, segment #2 sequence, segment #3 sequence, segment #1sequence
…….

By “segment #N sequence”, we mean the generation of segment #N for the pre-set
number of loops and using the triggering conditions specified in the seg structure.
By “over-all Link’N’Loop sequence”, we mean a complete single generation of all
segment sequences.

A user may wish to generate the overall Link’N’Loop sequence only once, however.
This may be done by simply adding a bogus final segment containing all 0 Volt
values. Next, set the seg.dwNextSegment value for the final segment so that it
points to itself. This way, at the end of the first generation of the overall Link’N’Loop
sequence, the CompuGen hardware will become stuck in a loop generating a 0 Volt
pattern forever. The user may then abort the CompuGen generation by calling
CsDo() with the CG_DO_STOP modifier.

Since Link’N’Loop settings are all pre-loaded onto the CompuGen hardware before
generation, software interaction is not required for the hardware to switch between
sequential segments. Consequently, switching between segments is extremely fast
but is not instantaneous. The CompuGen boards require a 64 point delay in order to
switch between segments. During this delay time, the output voltage is held at a
value that corresponds to the last value of the previous segment. Since no software
interaction is required, the 64 point delay is always fixed and does not depend on the
operating system task load in any way. The user may, therefore, compensate for
this fixed delay if phase coherence from one segment to the next is required.

The CompuGen drivers logically order the dwLoopCount and bTriggered variables
so that they are associated with the current segment. Internally, however, on the
CompuGen hardware, these variables and the dwNextSegment value are held in
memory associated with the previously generated segment. As a result, when the
Link’N’Loop sequence begins, the first segment cannot be associated with any
dwLoopCount and bTriggered variables, since no previous segment has yet been
generated. Consequently, for the first generation of the first segment in a
Link’N’Loop, The dwLoopCount value is always 1 and the bTriggered value is always
FALSE. On the second time through the Link’N’Loop sequence, the first segment
gets its dwLoopCount and bTriggered values from the last segment (which was the
previous segment generated) so that the specified dwLoopCount and bTriggered
values for the first segment are used. The irregularity of generation of first segment
is no real limitation since it may be rendered irrelevant. For instance, if the user

Advanced CompuGen PCI SDK Functionality

GaGe Advanced CompuGen PCI SDK Functionality 41

requires the first segment to loop a finite number of times, then they may create a
short bogus first segment that contains all 0 V output values and then load the real
first segment as the second segment. This way, when Link’N’Loop generation
begins, a short, innocuous 0V generation occurs before the real first segment is
looped as required.

Once Link’N’Loop configuration and segment data have been loaded to the
CompuGen hardware, generation is initiated in the same way as Normal Generation.
In order to begin generation immediately, simply call CsDo() with the
CG_DO_START_FREE modifier. If CsDo() is called with the
CG_DO_START_TRIGGERED modifier, then the CompuGen hardware will await an
external trigger pulse or software trigger before generating.

Digital Output Marker Control

Each model of PCI CompuGen card comes equipped with a Digital Marker Output,
which produces signals with a TRUE level of 1.3 V and a FALSE level of 0 Volts,
when the output is terminated by a 50 Ohm load. The main usage of the Marker
Output signal is for creating a digital pulse signal that may be used as an external
trigger source for other devices, such as a CompuScope digitizer card. Software
control allows placement of a Marker pulse that is N samples wide and occurs during
pattern generation. The marker position may be specified with a resolution of N
samples anywhere within the CompuGen pattern. For the CompuGen 815x and
4300, N=4 and for the CompuGen 11G, N=16. The Marker position value specifies
the position of the falling edge of the Marker Pulse. For instance, consider a pattern
of length 8192 points. A marker position of 0 will cause the Marker Output to
generate a digital pulse at the beginning of the pattern. Similarly, a Marker position
of 4096 will create a Marker output pulse in the middle of the pattern, while a marker
position of 8180 will create a marker pulse near the end of the pattern.

From CgTest, the position in time of the digital marker position is adjusted using the
Marker control, which selects the sample number on which the falling edge of the
marker pulse will occur. From the CompuGen C Software Development Kit, the
marker position is selected by assigning a value to the variable dwmarker, within the
seg structure (i.e. seg.dwmarker). The name of the marker variable is slightly
different in the MATLAB and LabVIEW SDKs and its usage is illustrated in the
CgSimple.M and CgSimple.VI sample programs. As in CgTest, the value of the
marker variable in CgSimple determines the sample number on which the falling
edge of the marker pulse occurs. Each SDK sample program contains code that
illustrates the assignment of the marker pulse position. Disabling of the output
marker is done by simply assigning a value to the marker position that this outside
limits of the current segment. For instance, if the pattern segment is 4096 points
long, then a marker position of 16384 will disable the marker output.

	Preface
	CompuGen PCI C/C++ SDK Overview
	CompuGen PCI C/C++ API
	Constants returned by CompuGen API functions
	Structures used by CompuGen API functions
	CompuGen API Functions
	CgInitialize
	CgGetBoardName
	CgGetBoardType
	CgGetCaps
	CgSet
	CgDo
	CgRelease

	CompuGen PCI LabVIEW SDK Overview
	CgLv Sub-VIs
	CgLv_ConfigureBoard.vi
	CgLv_ConfigureChannel.vi
	CgLv_ConfigureChannelAtten.vi
	CgLv_ConfigureSegment.vi
	CgLv_ErrorHandler.vi
	CgLv_GetBoardName.vi
	CgLv_GetChannelCount.vi
	CgLv_Intialize.vi
	CgLv_LoadSegBuffer.vi
	CgLv_ResetSegments.vi
	CgLv_Start.vi
	CgLv_Stop.vi
	CgLv_Trigger.vi

	CompuGen PCI MATLAB SDK Overview
	CompuGen PCI MATLAB CgCall Functionality
	CompuGen MATLAB CgCall Modes
	CgCall(INITIALIZE)
	CgCall(QUERY, board_number, command_item)
	CgCall(CONFIGURE, board_number, command_item, structure, sig
	CgCall(DO, board_number, command_item)

	Advanced CompuGen PCI SDK Functionality
	Link’n’Loop
	Introduction
	The seg Structure
	Link’N’Loop Operation

	Digital Output Marker Control

