
Advanced Sample Programs for CompuScope SDK for C/C# for Windows 1

Advanced Sample Programs in CompuScope SDKs
There are three GaGe Software Development Kits (SDKs) for user programming of GaGe
CompuScope cards: one for C/C#, MATLAB, and LabVIEW.

These SDKs include advanced sample programs that are provided in a separate sub-folder and
that are not described within the standard CompuScope SDK documentation. These
Advanced sample programs are described within this document. This document describes the
advanced sample programs in a generic fashion that is not specific to any of the three SDKs.

 C C# VB .Net LabVIEW MatLAB CVI Delphi

Simple X X X X X X X
Acquire X X X X X X X
Coerce X X X X X
ComplexTrigger X X X X X
DeepAcquisition X X X X X
MultipleRecords X X X X X
MultipleSystems X X X X X

AdvMulRec X X
AsTransfer X X X
Average X X X X X
Callback X X
CsPrf X X X
Events X X X
FIR X X X X X
MinMaxDTC X X

GageCsPrf
GageCsPrf is an advanced sample program that may be used to evaluate the repetitive capture
performance of CompuScope hardware. The program makes a series of repetitive
acquisitions using the specified settings and provides subsequent timing measurements. All
timing measurements are done using the QueryPerformanceCounter Windows API timing
function. The total time required to complete a single acquisition is provided along with its
inverse, the Pulse Repeat Frequency (PRF). In addition, the timings of the separate operations

2 Advanced Sample Programs for CompuScope SDK for C/C# for Windows

that occur within one acquisition are provided. Repetitive acquisition sequences are repeated
using different acquisition depths and timing results are provided for acquisition depths.

GageCsPrf is based upon the GageAcquire sample program and uses similar controls. Only
controls that are different from those of GageAcquire are described here. See the
GageAcquire documentation for the common controls.

Since GageCsPrf does not store acquired data, the SaveFileName key within the INI file is
ignored. The timing results file name is specified by the ResultsFile key in the PrfConfig
branch in the INI file. Also, the TransferLength key in the Application branch, along with the
SegmentSize and Depth keys in the Acquisition branch, are ignored since the Depth is
internally adjusted by GageCsPrf. Internally, the Depth is always selected as a power of two.
The range of internally selected Depth values is bound by the smallest power of two that is
greater than or equal to the value of the StartDepth key in the PrfConfig branch and the
highest power of two that does not exceed the value of the FinishDepth key in the PrfConfig
branch.

Results are stored in a tab delimitated text file. The first 5 lines describe the measurement
configuration, such as the CompuScope model number and memory size, acquisition
configuration and number of acquisitions in one repetitive capture sequence (loop count).
These lines are followed by 7 columns of data. The first column (depth) specifies the size of
the acquisition. The remaining columns are the result of the timing measurements. Total time
is the time required by the complete acquisition sequence and PRF is its inverse, the repeat
frequency of acquisitions. Start time is the time required for execution of the CsDo
(ACTION_START) method. In this time the CompuScope system will perform all necessary
operations to start an acquisition. Busy time is the time taken by the data acquisition itself.
Please note that this time includes waiting for the trigger event. Consequently, if the trigger
event is infrequent, the measured Busy time will be long. For measurement of the maximum
PRF, trigger from a fast signal source, such as a sine wave with a frequency of 1 MHz or
more. Transfer time and transfer rate describe data transfer from one channel. Please note
that the data transfer time includes two components: a fixed transfer set-up overhead time and
the actual data transfer duration, which is proportional to the data volume. As data volume
increases, the importance of the overhead time diminishes. Consequently, the calculated
aggregated transfer rate improves with the Depth.

Within GageCsPrf, the power-saving mode is enabled. This is fine for all CompuScope
models except the CS82G and CS8500. For these models, power-saving mode will severely
reduce repetitive capture performance (PRF). In order to get the best PRF from these models,
you must disable power-saving mode. This is done by adding 128 to the Mode value within
the PRF.ini file. For single-channel mode, use “Mode=129” and for dual-channel mode, use
“Mode=130”.

By following the coding illustrated in GageCsPrf, a user can achieve the fastest possible
repetitive capture performance from CompuScope hardware.

Advanced Sample Programs for CompuScope SDK for C/C# for Windows 3

GageASTransfer, GageEvents, GageCallback
These sample programs illustrate advanced synchronization techniques for multi-threaded
applications. These techniques are essential to creating a complex application for real time
data analysis or for operating multiple inter-related instruments. This is because these
techniques allow a multi-threaded application to perform other tasks while CompuScope
hardware is busy acquiring or transferring data without the usual need to poll its status.
Without the need for polling, data acquisition and transfer do not tax the CPU, leaving it free
to perform other operations. Nevertheless, these techniques add significant complexity to the
overall application design, making it prone to errors such as thread deadlock. Consequently,
usage of these techniques should not be considered unless they are truly required.

As the name suggests, GageASTransfer illustrates asynchronous data transfer. When called,
the standard CsTransfer method does not exit and return until the requested data transfer
operation is complete and all data have been transferred into the target buffer. By contrast,
when CsTransferAS is called, it returns immediately after initiating the data transfer, which is
then left to finish in the background. While data are being transferred, the controlling
application may do something else, even though the data transfer is not yet complete.
Completion of the data transfer is signalled by the “end of the transfer” event. Progress of the
data transfer may be checked by CsTransferASResult method. GageASTransfer is a non-
multi-threaded C application that polls the “end-of-transfer” event while checking the transfer
status every 100 milliseconds.

GageEvents is a multi-threaded sample program that illustrates usage of the notification
events that can be assigned to specific operation of the CompuScope, allowing
synchronization between different threads of execution. GageEvents uses the “end-of-busy”
and “end-of-transfer” event notifications to trigger appropriate operations. In parallel,
GageEvents processes older waveform data to determine the minimum and maximum points
within the waveform. The handling of events that is illustrated within GageEvents is the
recommended method of synchronization in a multi-threaded C application.

Some environments, such as Visual Basic and LabWindows/CVI, do not allow the
programmer to create multi-threaded programs directly. These environments, however, do
provide a functionality called “Callbacks”, which allows the programmer to associate a
callback function with notification of an event. The thread associated with the callback is
then launched within the CompuScope driver. Use of callbacks has limitations. For instance,
only one callback function may be executed at a time. Synchronization using callbacks is
illustrated by the GageCallback sample program.

Advanced Multiple Record Sample program
Only available with CS14200, CS12400 and CS14105

CompuScope models such as the CS14200, CS12400 and CS14105 allow for the acquisition
of pre-trigger data in Multiple Record mode. For these CompuScope models, the user is able

4 Advanced Sample Programs for CompuScope SDK for C/C# for Windows

to set up a Multiple Record Segment Size that is larger than the post-trigger depth so that pre-
trigger data may be accumulated. In addition, trigger Time Stamp values are logged and may
be retrieved for each Multiple Record.

The improved Multiple Record features complicate the storage of Multiple Record data in
CompuScope on-board memory. For example, the trigger position may be located anywhere
within the Multiple Record segment memory and a memory footer exists to store information
such as Time-Stamp data. In order to manage these complications, standard GaGe sample
programs in all CompuScope SDKs are designed to download Multiple Records one-at-a-time
in a software loop. The CsTransfer() method internally manages on-board storage
complications and extracts the data for a single Multiple Record segment. While this
technique is easy to use, aggregate PCI data transfer rate is compromised, since software
overhead of initiating separate transfers for each Multiple Record is introduced. In
applications where rapid repetitive Multiple Record acquisitions are required, this software
overhead can limit performance. In order to provide the fastest possible download of Multiple
Record data, GaGe has provided the AdvMultipleRecord sample program for the C/C# SDK.

The AdvMultipleRecord program requires the same input files and provides the same output
files as GageMultipleRecord – the standard Multiple Record C SDK sample program. That
is, the CompuScope configuration settings are read from an INI file and the output files are
individual Multiple Record .DAT files. The difference is that the AdvMultipleRecord
internally downloads all Multiple Record data in one PCI data transfer, rather than using a
separate PCI transfer for each Multiple Record segment. Only after all data transfer is
complete are the records parsed by AdvMultipleRecord for storage in individual Multiple
Record DAT files.

The coding functionality within AdvMultipleRecord and GageMultipleRecord is identical up
until the subroutine call to SaveMulRecRawData() within AdvMultipleRecord. The
SaveMulRecRawData() subroutine calls the CsExpertCall()subroutine using an ActionId that
is equal to the constant EXFN_RAWMULREC_TRANSFER. This call to CsExpertCall()
transfers all segment data for all active channels from a Multiple Record acquisition to the
specified memory buffer in a single PCI data transfer operation. The buffer must have been
previously allocated using the GetMulRecRawDataBufferSize() subroutine, which also calls
CsExpertCall().

Once all the raw Multiple Record data have been transferred to an internal buffer, the records
are parsed within a loop whose index cycles through the number of Multiple Records. Within
the loop, the CompuScope API method or function called
CsRetrieveChannelFromRawBuffer() extracts the data for a single record file, whose
attributes are specified by variables within the InData structure. The data for the extracted
record are returned within the buffer pointed to by pBuffer. Also returned is Time-Stamp data
along with other information in the OutData structure. The Multiple Record waveform data
are optionally converted into Volts and then are stored within a DAT file with a
corresponding header.

The user may easily modify the AdvMultipleRecord program so that the complete raw data
buffer data is stored to a binary file. This way, the user does not need to waste time parsing
data during repetitive Multiple Record acquisitions. After the acquisitions are all finished, the

Advanced Sample Programs for CompuScope SDK for C/C# for Windows 5

user can reload the raw data files and extract the data of interest without sacrificing
measurement time.

Optional Firmware images
Some CompuScope models have the ability to be reconfigured with optional alternative
firmware allowing on-board processing of waveform data before they are transferred to PC
RAM. Currently, these firmware options include Finite Impulse Response (FIR) Filtering,
Signal Averaging, and Peak Detection. When a CompuScope is updated with an optional
firmware image, the image information is stored in CompuScope non-volatile memory. This
memory has space for three firmware images: the standard CompuScope operating image and
up to two optional images. The contents of non-volatile memory may be queried by an
application using the CsGet(hSystem, CS_PARAMS, CS_EXTENDED_OPTIONS,
&i64ExOptions) call, where hSystem is the CompuScope system handle. CS_PARAMS and
CS_EXTENDED_OPTIONS are constants defined in CsDefines.h and CsExpert.h
respectively. I64ExOption is a 64-bit integer type variable that is filled with the results of the
query. The lower 32 bits of the i64ExOption will contain information about first alternative
image and the higher 32 bits will contain information about the second one. There are
corresponding calls to query available firmware in MATLAB (CsMl_GetExtendedOptions.m)
and LabVIEW (CsLv_GetExtendedOptions.vi).

Based on the information about available firmware images, the user application can decide
which image to load. Firmware images are loaded from any SDK by bitwise ORing the
CompuScope mode (1 for “Single”, 2 for “Dual” and 4 for “Quad”) with a specific constant
that indicates the image number. For instance, to specify an alternative image from C, either
the constants CS_MODE_USER1 or CS_MODE_USER2 (for images #1 or #2) should be
bitwise ORed with the u32Mode member of CSACQUSITIONCONFIG structure before it is
used in the CsSet() call. (Note that the firmware image is not actually loaded until a call is
made to CsCommit()).

Each of the CompuScope SDKs (C/C#, MATLAB and LabVIEW) provides a programming
example for each optional firmware image (currently FIR filtering and signal averaging). The
programming sequence for the loading each image, which is described above for C, is
illustrated within each programming example.

GageAverage

Usage of the signal averaging optional firmware image allows repetitive waveform
acquisitions to be rapidly averaged, in order to reduce random noise. In the past, signal
averaging required waveforms to be downloaded for averaging within the host PC’s CPU so
that averaging was limited by the data transfer speed. With the signal averaging firmware,
repetitive waveforms are averaged within the firmware with no data transfer required until up
to 1024 averages have been performed. Consequently, much higher repetition rates may be
achieved.

6 Advanced Sample Programs for CompuScope SDK for C/C# for Windows

Once the signal averaging firmware has been loaded, the user adjusts the number of averages
to be acquired by using the variable for the Number of Records, which is normally used to
select the number of records to be acquired in a Multiple Record acquisition. With the signal
averaging firmware loaded, the CompuScope hardware co-adds this number of consecutive
waveforms, instead of stacking them in on-board memory as is usually done in Multiple
Record Mode.

Co-added waveform data are stored within a 32-bit format buffer within the on-board
firmware. The resulting averaged waveform must therefore be transferred as a 32-bit data
buffer. With the averaging firmware loaded, the Sample Size, Sample Resolution and Sample
Offset values are changed to reflect the 32-bit data format. Querying these parameters after
the firmware is loaded will return the updated values. Co-added waveform data must be
divided by the number of waveform averages in order to obtain the averaged waveform.
Updated Sample Resolution and Sample Offset values may then be used for waveform
voltage conversion.

Each SDK contains an advanced sample program that uploads the signal averaging image,
performs a signal averaging acquisitions with an adjustable number of averages, and then
displays or stores the resulting averaged waveform.

GageFIR

Finite Impulse Response (FIR) filtering of waveform signals is a powerful method for
removing unwanted signal features (like noise) and emphasizing signal features of interest.
Unlike signal averaging, multiple repetitive waveforms need not be acquired and an FIR
filtering algorithm may be applied to a single waveform data set.

The general form of the FIR filter is:

∑
=

−=
N

j
jiji XAY

0

where:

{Xi} is the input data set,
{Yi} is the output data set,
{Aj} is the set of FIR filter coefficients (0 ≤ j < N)
and N is the number of taps and is equal to the number of coefficients.

The CompuScope FIR firmware image allows up to 20 distinct tap coefficients to be used.
FIR filtering is implemented as a numerical convolution algorithm. Since both waveform data
and tap coefficients are real values with no imaginary components, the FIR filtering algorithm
may be used to implement a numerical correlation algorithm, simply by reversing the order of
the tap coefficients.

Advanced Sample Programs for CompuScope SDK for C/C# for Windows 7

During data transfer to the PCI bus, the FIR filtering algorithm is applied to waveform data
that have already been acquired into CompuScope acquisition memory. Since the waveform
data in CompuScope memory remain unfiltered, different filters may be applied to this same
raw waveform data. This is done simply by modifying the tap coefficients and downloading
the waveform data again.

Many sets of standard FIR filter coefficients or filter cores are symmetric, meaning that Aj =
A-j. The FIR filtering firmware image allows up to 39 symmetric tap coefficients to be
loaded. In this case, the FIR filter calculation is modified to be:

()∑
=

+− +=
N

j
jijjiji XAXAY

0

As for the signal averaging firmware, FIR filtered data are returned in a 32-bit data format.
With the firmware loaded, the Sample Size, Sample Resolution and Sample Offset values are
changed accordingly.

In addition, a coefficient scaling factor that scales all tap coefficients is provided. The
idealized coefficients Aj that are listed above are related to the coefficients, i16CoefFactor[j],
that are loaded to the FIR filtering image as follows:

Factoru
[j]CoefFactoriAj 32

16
=

where u32Factor must be a power of 2, with limits listed below. The default value of
u32Factor used within the FIR filtering sample programs is 32768.

Since the idealized coefficients, Aj, are floating point values and generally have absolute
values less than 1, greater numerical precision on these coefficients may be obtained by
increasing the value of u32Factor. However, using a larger value increases the risk that the
FIR filtered data values will exceed the available 32-bit width of the output data buffer.
Optimal selection of u32Factor also requires knowledge of the amplitude of the acquired
signal, since larger signal amplitudes will lead to earlier overload of the 32-bit output data
buffer.

As an example, consider a symmetric moving average filter core with 39 constant
coefficients. Let us assume further that the data may cover the whole 14-bit ADC range of a
CompuScope 14200. In this case, summing full scale data points 39 times requires an extra 6
bits, since 26 = 64. This leaves only 32 – (14 + 6) = 12 bits. Consequently, in order to
guarantee no output data overload, u32Factor should be no larger than 212 = 4096.

From C, the FIR operation is configured by a call to CsSet(hSystem, CS_FIR_CONFIG,
&FirConfig), where hSystem is the CompuScope system handle, CS_FIR_CONFIG is a
constant defined in CsDefines.h and FirConfig is a variable of the type

8 Advanced Sample Programs for CompuScope SDK for C/C# for Windows

CS_FIR_CONFIG_PARAMS that is defined in CsExpert.h. This call does not require a
commit action and takes effect immediately.

The parameters for configuration of the FIR filtering algorithm are specified within a variable
of type CS_FIR_CONFIG_PARAMS:

Field name Type Description

u32Size uIn32 Total size, in Bytes, of the structure
bEnable BOOL Enable FIR. If Disabled, a unity filter is used
bSymmetrical39th BOOL If true, assume that the coefficients are part of a 39-tap

symmetrical filter core
u32Factor uInt32 Scaling factor used for all coefficients. Allowed values

are 2^(2*n+1) 1 <= n <= 10
i16CoefFactor int16 [16] Core coefficients are represented in a fixed point format.

This array contains numerators, while the denominator
is stored in the u32Factor field

Each SDK contains an advanced sample program that uploads the FIR filtering image,
performs an acquisition with FIR filtering, and then displays or stores the resulting waveform.

GageMinMaxDtc (Peak Detection)

The eXpert Peak Detection firmware option allows on-board detection of the minimum and
maximum amplitudes that occur within a waveform, along with their positions within the
waveform. Calculated Peak Information Sets for each waveform are accumulated within the
CompuScope FPGA for PCI download. The data reduction associated with transforming the
raw waveform data into the compact Peak Information Set correspondingly reduces the PCI
data traffic so that a faster repetitive capture rate may be accommodated. This section
describes operation of the eXpert Peak detection firmware from the C programming
environment. Please note: the terms Peak detection and MinMax detection are used
interchangeably. The terms Peak Information Set and MinMax Segment Info structure are
also used interchangeably.

Usage of Peak Detection from C

In the “Advanced” folder within the “C Samples” folder of the CompuScope C/C# SDK is a
Visual C sample project called GageMinMaxDtc that operates CompuScope hardware using
the eXpert Peak Detection firmware option. This project configures the CompuScope
hardware and does an acquisition using the eXpert Peak Detection firmware until a pre-set
number of waveforms have been acquired. The project stores a selectable number Peak
Information Sets in an ASCII file.

GageMinMaxDtc receives input configuration settings from an INI file, as do standard C

Advanced Sample Programs for CompuScope SDK for C/C# for Windows 9

SDK programs. Standard CompuScope input parameters are listed within the INI files and
are the same as those documented in the C SDK. The following parameters are added for
control of Peak Detection acquisitions.

SegmentCount - Determines the number of waveforms to be acquired by the program.

QueueSize - Sets the number of entries within MinMax Detection Queue that is described
below.

LastSegmentSave - Determines the number of peak data sets to be stored in the output TXT
file. If this value exceeds SegmentCount, then the most recently acquired segments are those
that are stored.

TsResetMode - This setting determines when the Time Stamping counter is reset. When it is
set to 0, the Time Stamping Counter is reset only once at the start of the acquisition sequence.
When it is set to 1, the Time Stamping Counter is reset at the beginning of each segment
acquisition. For peak detect operation, this setting should always be 0.

DetectorResetMode - This parameter determines where the Peak detection algorithm should
begin looking for peaks within the acquired waveform. When DetectorResetMode is set to 0,
the Peak detection (also called MinMax detection) algorithm is reset at the trigger position
within an acquired segment. This way, all peaks will be detected within post-trigger
waveform data only. When DetectorResetMode is set to 1, the MinMax detection algorithm
is reset immediately at the start of segment acquisition so that MinMax peaks may be detected
within pre- or post-trigger data.

In order to understand operation of the eXpert Peak Detection firmware option it is important
to understand the hardware/firmware/software architecture, which is illustrated in the Figure
below. First, waveform acquisition by the CompuScope is triggered, as usual. Instead of
storing the raw data in CompuScope on-board memory, the raw waveform data are analysed
within the on-board FPGA to determine the peak parameters. These parameters are
assembled into the Peak Information Set (also called the “MinMax Segment Info structure” in
the API function descriptions). Peak Information Sets are accumulated within the FPGA and
are periodically PCI transferred by the driver to the “MinMax Detection Cue”, which is a
Windows Kernel Level buffer that may accommodate a number of Peak Information Sets that
is specified by the QueueSize value in the INI file.

10 Advanced Sample Programs for CompuScope SDK for C/C# for Windows

Windows User Space

Windows Kernel Space

Drivers’ MinMax
Detection Queue

Application

Segment Info #N

Segment Info #1

Segment Info #2

CompuScope Hardware

FPGA

PCI Transfer

Advanced Sample Programs for CompuScope SDK for C/C# for Windows 11

Peak Information Sets are constantly added to the MinMax Detection Cue as they become
available. The user application polls the MinMax Detection Cue to check if new sets are
available. When available, new sets are transferred from the Kernel Level MinMax Detection
Cue to an Application Level buffer, where they may be accessed by the application for
analysis, display or storage.

The contents of the Peak Information Set (or MinMax Segment Info structure) and the size of
each entry are shown in the table below.

The Peak Information Set contains the Min and Max Amplitude information in units of raw
ADC samples. Also included are the Time-Stamp time values for the trigger event, and the
MinMax positions. These values come from the on-board Time-Stamping counter and may
be converted to absolute time values with knowledge of the Time-Stamping counter’s clock
source frequency, which may be obtained by the driver, as usual.

A distinctive parameter in the Peak Information Set is the Trigger Number parameter. It is
possible that, while the Peak detection algorithm is processing a waveform caused by a given
trigger, another trigger event occurs. This trigger event and its associated peak information
will thus be missed by the CompuScope hardware. In this event, however, the Trigger
Number value will be incremented by the missed trigger. Consequently, the user will find
that the Trigger number between consecutive Peak Information Sets increased by 2 instead of
by 1 and so will know that a trigger was missed and can correctly account for it.

From the above chart, we may calculate the size of a Peak Information Set as:

24 Bytes + 24 Bytes × Number of active channels

Since waveform acquisitions typically consist of thousands of Bytes of data or more, the Peak
Detection firmware clearly leads to a significant reduction in data volume and the associated
PCI transfer traffic. This reduction allows much higher repetitive waveform capture rates to
be achieved without trigger losses.

12 Advanced Sample Programs for CompuScope SDK for C/C# for Windows

In order to provide further clarification, important steps within the GageMinMaxDtc sample
project are described below. Within GageMinMaxDtc, configuration of standard
CompuScope input parameter settings is done as usual.

1) Create the MinMax Detection Queue

This is done by making a call to CsExpertCall() with a function Id of
EXFN_CREATEMINMAXQUEUE within the FunctionParams structure.
Once this function has been executed, the MinMax Detection Cue is set up and the
application will be able to receive the handle of hDataAvailableEvent event.

2) Set the acquisition mode to CS_MODE_USER1 (or CS_MODE_USER2)

The step loads the Peak Detection image from the CompuScope on-board flash
memory to the CompuScope FGPA. The user must first determine whether the Peak
Detection image resides in the USER1 or USER2 flash location. This may be
determined from CompuScope Manager or from the driver.

 This example code loads the USER1 image to the FPGA:
 CsAcqConfig.u32Mode = CS_MODE_USER1 | CS_MODE_DUAL;
 CsSet(hSystem, CS_ACQUISITION, &CsAcqCfg);
 CsDo(hSystem, ACTION_COMMIT);

3) Start acquisition.

Example:
CsDo(hSystem, ACTION_START);

4) Wait for the hDataAvailableEvent event.

5) Once the event is signalled, call CsExpertCall() with the function Id
EXFN_GETSEGMENTINFO to retrieve a single MinMax Segment Info structure
entry (Peak Information Set) from the driver.

6) Repeat calling CsExpertCall() with the function Id EXFN_GETSEGMENTINFO until
receipt of error CS_SEGMENTINFO_EMPTY. This error indicates that all available
Peak Information Sets have been transferred to the application.

7) Process, display and/or store the data, if necessary

8) Return to step 4

9) The MinMax Detection application will continue until the number of Peak Information
Sets acquired is equal to the pre-set number specified by SegmentCount in the INI file.
This criterion may be easily changed according to the requirement.

Advanced Sample Programs for CompuScope SDK for C/C# for Windows 13

In a MinMax Detection acquisition, the MinMax Segment Info structure entries that come
from CompuScope Hardware are in RAW format. The GageMinMaxDtc sample project will
convert these MinMax Segment Info structure entries to a readable format and save them in
the MinMax Detection Queue.

The MinMax Detection Queue acts as a FIFO buffer. The driver saves new MinMax Segment
Info structure entries at the bottom of the queue and the user application reads old MinMax
Segment Info structure entries at the top of queue. Whenever the application retrieves a
MinMax Segment Info structure entry, it removes that MinMax Segment Info structure entry
from the queue, leaving space for the driver to save new incoming MinMax Segment Info
structure entries.

If the application is not fast enough to remove MinMax Segment Info structure entries from
the driver’s MinMax Detection Queue, the queue will become full. When the queue is full,
there is no more space for the driver to save new MinMax Segment Info structure entries, thus
any new RAW MinMax Segment Info structure entries coming from CompuScope hardware
will be discarded. When this happens, the driver will notify the application via the
hSWFifoFull event.

There are actually three potential ways of missing waveform triggers and the associated
MinMax Segment Info structure entries (Peak Information Sets). First, a trigger may be
missed if it occurs while a previous waveform is being acquired. Second, if the Peak
Information Sets within the FPGA are not transferred quickly enough, they may accumulate
and exceed the capacity of the FPGA and some sets will be lost. Finally, as discussed in the
previous paragraph, sets will be lost if the MinMax Detection Queue is not purged frequently
enough by the controlling application. Any and all of these loss situations may be detected
simply by checking the Trigger Number within the Peak Information Set. If the difference
between the Trigger Numbers from successive Peak Information Sets is greater that 1, then
the excess is exactly equal to the number of missed sets, regardless of the loss mechanism.

14 Advanced Sample Programs for CompuScope SDK for C/C# for Windows

Special CompuScope API function for usage with eXpert firmware

CsExpertCall

The CsExpertCall function is required for control of certain eXpert firmware features in CompuScope
cards.

int32 CsExpertCall(CSHANDLE hCsHandle, VOID *pFunctionParams)

Parameters
 hCsHandle hHandle of the CompuScope system
 pFunctionParams The pointer to Function Params structure

Return values
 CS_SUCCESS indicates success.

Remarks
The Function Params structure will be different depending on the action to be performed, but they all
have the same form:

typedef struct
{
 struct
 {
 uInt32 u32Size;
 uInt32 u32ActionId;
 ...
 } in;

 struct
 {

 } out;
}

Advanced Sample Programs for CompuScope SDK for C/C# for Windows 15

FUNCTION PARAM STRUCTURES AND FUNCTION ID TO BE USED
WITH CsExpertCall()

EXFN_CREATEMINMAXQUEUE

Call CsExpertCall() with the function Id EXFN_CREATEMINMAXQUEUE to create a MinMax
Detection Queue within the Windows Kernel for usage by the driver.

typedef struct _CSCREATEMINMAXQUEUE
{
 struct
 {
 uInt32 u32Size;
 uInt32 u32ActionId;
 uInt32 u32QueueSize;
 uInt16 u16DetectorResetMode;

 uInt16 u16TsResetMode;
 } in;

 struct
 {
 HANDLE *hQueueEvent;
 HANDLE *hErrorEvent;
 HANDLE *hSwFifoFullEvent;
 } out;

} CSCREATEMINMAXQUEUE, *PCSCREATEMINMAXQUEUE;

Parameters
 u32Size Size of this structure
 u32ActionId The function Id. Must be EXFN_CREATEMINMAXQUEUE
 u32QueueSize Number of SegmentInfo in the Driver MinMax Detection

Queue. (e.g. a value of 50 indicates that the driver MinMax
Detection Queue can hold up to 50 MinMax Segment Info structure
entries before the hSwFifoFullEvent event gets signalled).

 u16DetectorResetMode MinMax detector reset mode.
 0: Reset on Trigger. Peaks detected only in post-trigger data
 1: Reset on Start of Segment
 u16TsResetMode MinMax Time stamp reset mode
 0: Reset on Start Acquisition
 1: Reset on Start of Segment
 hDataAvailableEvent Event for data available in MinMax Detection Queue
 hErrorEvent; Error event
 hSwFifoFullEvent; Event for MinMax Detection Queue full

Remarks
The queue must be created before the Peak Detection image is loaded onto the CompuScope FPGA.

Upon return from this function, the application may receive one or more of the following 3 events:

16 Advanced Sample Programs for CompuScope SDK for C/C# for Windows

hDataAvailableEvent
 This event will be signalled whenever there is a SegmentInfo item in the MinMax
 Detection Queue.
 As soon as the event is signalled, the application should call CsExpertCall with the
 function Id EXFN_GETSEGMENTINFO to retrieve the SegmentInfo from the driver.

hErrorEvent
 This event will be signalled when a fatal error occurs in the current acquisition.
 Once the error is signalled, the current acquisition will be automatically aborted.

hSwFifoFullEvent
 The event will be signalled when the MinMax Detection Queue. is full.

When the driver MinMaxQueue FIFO is full, any MinMax Segment Info structure entries that
come from hardware will be discarded. The current acquisition will continue.
The event remains in a signalled state, unless the application resets it via a call to
CsExpertCall with the function Id EXFN_CLEARERRORMINMAXQUEUE.

EXFN_DESTROYMINMAXQUEUE

Call CsExpertCall() with the function Id EXFN_DESTROYMINMAXQUEUE to destroy the driver's
MinMax Detection Queue created by EXFN_CREATEMINMAXQUEUE.

typedef struct _CSDESTROYMINMAXQUEUE
{
 struct
 {
 uInt32 u32Size;
 uInt32 u32ActionId;
 } in;

} CSDESTROYMINMAXQUEUE, *PCSDESTROYMINMAXQUEUE;

Parameters
 u32Size Size of this structure
 u32ActionId The function Id. Must be EXFN_DESTROYMINMAXQUEUE

Remarks
The function fails if it is called when the Peak Detection image is loaded onto the CompuScope FPGA.
The standard image CS_MODE_USER0 must be loaded onto the CompuScope FPGA before
destroying the queue.

Advanced Sample Programs for CompuScope SDK for C/C# for Windows 17

EXFN_GETSEGMENTINFO

Call CsExpertCall() with the function Id EXFN_GETSEGMENTINFO to retrieve a MinMax Segment
Info structure from driver's MinMax Detection Queue, which was created by
EXFN_CREATEMINMAXQUEUE.

typedef struct _CSPARAMS_GETSEGMENTINFO
{
 struct
 {
 uInt32 u32Size;
 uInt32 u32ActionId;
 uInt32 u32BufferSize;
 } in;

 struct
 {
 MINMAXSEGMENT_INFO *pBuffer;
 } out;

} CSPARAMS_GESEGMENTINFO, *PCSPARAMS_GESEGMENTINFO;

typedef struct _MINMAXSEGMENT_INFO
{
 uInt32 u32Size; //size of this structure
 uInt32 u32NumberOfChannels; //Number of channels
 TRIGGERTIMEINFO TrigTimeInfo; //The Triggering information
 MINMAXCHANNEL_INFO MinMaxChanInfo[1]; //The MinMaxInfo for each
 channel

}MINMAXSEGMENT_INFO, *PMINMAXSEGMENT_INFO;

typedef struct _TRIGGERTIMEINFO
{
 int64 i64TriggerTimeStamp; //The Time Stamp counter value for
 the Trigger Event
 uInt32 u32TriggerNumber; //The Trigger Number

}TRIGGERTIMEINFO, *PTRIGGERTIMEINFO;

typedef struct _MINMAXCHANNEL_INFO
{
 int16 i16MaxVal; //Max ADC code within the waveform
 int16 i16MinVal; //Min ADC code within the waveform
 int64 i64MaxPosition; //Time Stamp counter value for the
 max position
 int64 i64MinPosition; //Time Stamp counter value for the
 min position

} MINMAXCHANNEL_INFO, *PMINMAXCHANNEL_INFO;

Parameters
 u32Size Size of this structure
 u32ActionId The function Id. Must be EXFN_GETSEGMENTINFO
 u32BufferSize Size of the buffer in bytes.
 pBuffer pointer to the buffer receiving MinMaxSegment info.

18 Advanced Sample Programs for CompuScope SDK for C/C# for Windows

Remarks
The MinMaxSegmentInfo size will be different depending on the mode (Dual or Single channel) and
the number of cards in Master/Slave system. The u32BufferSize must be equal to at least the
MinMaxSegmentInfo size.

EXFN_CLEARERRORMINMAXQUEUE

Call CsExpertCall() with the function Id EXFN_CLEARERRORMINMAXQUEUE to reset the event
hSwFifoFullEvent.

typedef struct _CSPARAMS_CLEARERRORMINMAXQUEUE
{
 struct
 {
 uInt32 u32Size;
 uInt32 u32ActionId;
 } in;

} CLEARERRORMINMAXQUEUE, *PCLEARERRORMINMAXQUEUE;

Parameters
 u32Size Size of this structure
 u32ActionId The function Id. Must be EXFN_GETSEGMENTINFO

Remarks
This function will reset the hSwFifoFullEvent. If the driver's MinMax Detection Queue remains full,
however, this event will get signalled again.

