
www.cleverscope.com

Cleverscope Ltd
Phone +64 9 524 7456
Fax +64 9 524 7457
Email support@cleverscope.com
28 Ranfurly Rd, Epsom
P.O. Box 26-527
Auckland 1003
New Zealand

V1.4
15 October 2008

Cscope Control Driver DLL Description

Summary
The Cscope Control Driver DLL is used by text based languages to communicate with the Cleverscope CS328A

acquisition unit. We provide an example �SimpleScope� application to show use of the driver. The example is available

for NI Labview, NI Labwindows, Borland Delphi 5, Borland C++ Builder 6, Microsoft Visual Studio C++ 2005, and

Microsoft Visual Studio C# 2005. We have deliberately used older environments, as newer toolsets continue to support

and open older version projects. See the document �Cleverscope Simple Scope application.pdf� to see how the

SimpleScope application is put together. A Labview application �Bandpass Response� shows use of the driver for a

multi-frame capture application.

The Cscope Control Driver comes as three files:

� Cscope Control Driver.h

This header file is used by C++ and C# to define the prototypes for the structures and functions in Cscope Control

Driver. When using Microsoft VS C#, the header items needs to be converted to managed data structures. The

utility �P/Invoke Wizard� can help with this. Similarly a conversion is required for Delphi, and �HeadConv� by

Bob Swart can help. For Microsoft VS, you will have to use �Project/Add Existing Item�� to include the file in

the project.

� Cscope Control Driver.dll

This contains the actual driver. It needs to be linked with the project. See the programming examples to see how
the DLL has been linked. For Microsoft VS, you will have to use �Project/Add Existing Item�� to include the file

in the project.

� Cscope Control Driver.lib

This is the library file, and is required for the C variants. For Delphi C++ builder, you will need to convert the

standard library into Borland format. The �implib.exe� utility is provided for this purpose. The example includes a

pre-converted library. You will only need to convert if you use Labview to rebuild the Control Driver. Other

environments use the .lib file directly.

Changes

Version Date Change

1.0 1 Feb 2005 Initial Cscope Control Driver released

1.4 15 Sep 2008 Sample value format changed from Double to Float (Single), to reduce memory usage.
Added Num_Frames value to driver to report the number of frames transferred in a

multi-frame capture and transfer. Made small changes to the acquire structure � the

order and contents after �Trigger2Source� has changed.

Important: The driver now waits up to 40ms for a trigger when using the Wait for

samples Control Driver Function. After 40ms, the call times-out. The wait blocks the

thread, but relinquishes control to the operating system. This maximizes throughput.

www.cleverscope.com

Cscope Control Driver.h
//This is the format of the cscope control driver.h file for C or c++
#include "extcode.h"
#pragma pack(push)
#pragma pack(1)

#ifdef __cplusplus
extern "C" {
#endif
typedef struct {
 unsigned short AcquireMode;
 unsigned short AcquisitionMode;
 unsigned short Acquirer;
 unsigned short TransferChans;
 double AMaxScale;
 double AMinScale;
 double BMaxScale;
 double BMinScale;
 unsigned short AProbe;
 unsigned short BProbe;
 unsigned short ACoupling;
 unsigned short BCoupling;
 unsigned short ABandwidth;
 unsigned short BBandwidth;
 unsigned long TriggerSource;
 double TriggerAmplitude;
 double ATriggerAmplitude;
 double BTriggerAmplitude;
 unsigned short TriggerFilter;
 LVBoolean TrigSlope;
 double TriggerHoldoff;
 LVBoolean DigPatternRqd;
 unsigned long DigPattern;
 double ExtTrigThreshold;
 double DigInputThreshold;
 double StartTime;
 double StopTime;
 double PreTrigTime;
 unsigned short Port;
 short NumDivisions;
 short NumSeqFrames;
 long NumBuffers;
 double SigGenFreq;
 double SigGenAmp;
 double SigGenOffset;
 unsigned short SigGenWaveform;
 unsigned short SigGenSweep;
 unsigned short SigGenFunc;
 double SigGenFreq2;
 double SigGenPhase;
 unsigned short Trig2Function;
 double MinTriggerPeriod;
 double MaxTriggerPeriod;
 unsigned long TriggerCount;
 LVBoolean Trig2Slope;
 unsigned long Trig2SourceChan;
 double Trig2Level;
 LVBoolean DigPattern2Rqd;
 unsigned long DigPattern2;
 unsigned short Trigger2Source;
 long WaveformAverages;
 long ValueChanged;
 double FreqSpan;
 double FreqRes;
 double Duration;
 double Resolution;
 LVBoolean UnitsAreLinked;
 LVBoolean ExtSampleClock;
 LVBoolean FSpare2;
 LVBoolean FSpare3;
 LVBoolean FSpare4;
 unsigned short SamplerResolution;
 unsigned short IntfSource;
 unsigned short UpdateRate;

www.cleverscope.com

 unsigned short TransferSize;
 double SigGenFreqStep;
 unsigned long TCPAdr;
 unsigned long TCPPort;
 double NSpare3;
 double NSpare4; } TD1;

typedef struct {
 LVBoolean status;
 long code;
 LStrHandle source;
 } TD2;

void __stdcall CscopeControlDriver(
 unsigned short Command, double ReplayStartTime, double ReplayStopTime,
 long SamplesInReplay, long FrameNumber, TD1 *AcquireDefinition,
 LVBoolean *GotSamples, double *T0, double *dT,
 unsigned long *NumSamples, unsigned long *NumFrames,
 float ChanAData[], long ChanAAllocSpace,
 float ChanBData[], long ChanBAllocSpace,
 unsigned short DigitalInputData[], long DigInpAllocSpace,
 TD2 *errorOut);

long __cdecl LVDLLStatus(char *errStr, int errStrLen, void *module);

#ifdef __cplusplus
} // extern "C"
#endif

Cscope Driver Functions

Cscope driver provides two functions:

CscopeControlDriver

This function is used to communicate with the acquisition unit, configure it, and retrieve samples.

LCDLL status

This function is used to verify that the DLL loaded properly, and if not, what the error is.

LVBoolean is a U8. 0 means false, 1 means true.

www.cleverscope.com

CcsopeControlDriver
This is the main user function. Parameters are:

Command
Unsigned 16 bit value.

Values are:
0 - Inititialize. Call this once to initialise the acquisition system. Further calls are ignored.

1 � Acquire. Call to acquire data as defined by the Acquire Definition and other parameters.. Caalling acquire

automatically updates the acquisition unit with any changed acquire values.

2 � Replay. Call this to re-decimate the capture buffer, and return new samples, based on the SamplesIn

Replay, ReplayStartTime and ReplayStopTime values.

3 � Wait for samples. Call this to check if a trigger has occurred, and the samples are available. The Value

GotSamples is set true when all the samples have been received. The call will wait up to 40ms for a trigger.

After 40ms, the call times-out, returning false. The wait blocks the thread, but relinquishes control to the

operating system during the wait. This maximizes throughput.

4 � Update. This call updates acquisition unit values if the acquisition unit is not acquiring, or is waiting for a

trigger. Can be used to update the signal generator values for example.

5 � Finish. Call this to close down the acqusition system
8 - Get Frames. Gets a multi-frame sequence as one array. The value num_samples is the number of samples

in one frame. The value num_frames are the number of frames included in the array. After sending the

command, call �Wait for Samples� until the samples are transferred.

ReplayStartTime

Double.

This value specifies, in seconds, the start time of the samples to be returned in the decimated replay from the sample

buffer. If the start time is outside the actual available buffer start and stop times (relative to the trigger), the start time

will be clipped to either the beginning or end of the buffer, as necessary.

ReplayStopTime

Double.

This value specifies, in seconds, the stop time (inclusive) of the samples to be returned in the decimated replay from the

sample buffer. If the start time is outside the actual available buffer start and stop times (relative to the trigger), the start

time will be clipped to either the beginning or end of the buffer, as necessary.

SamplesInReplay
Signed 32 bit number.

This value specifies the number of samples that will be returned in the decimated replay from the sample buffer. Values

may vary from 0 to the size of a frame. If you request more samples than in a frame, the number will be set to the frame

size. The maximum size is the acquisition storage size (4 or 8M) divided by 2.

www.cleverscope.com

AcquireDefinition
This is TD1, the structure of which is given in the header.

Item Description Data

Type

Acquire Mode How to acquire: 0 = Single, 1= automatic, 2 = triggered,

3 = stop

U16

Acquisition
Mode

Method of acquisistion: 0 = sampled, 1= Peak captured,

2 = Filtered, 3= Repetitive, 4= Waveform avg

If Waveform avg, make sure there are at least waveform avg +1
buffers.

U16

Acquirer Sets the acquirer to use. Always use 4 = cleverscope U16

Transfer Chans Always set to 2 = transfer all channels. U16

A max scale Maximum A channel scale value. Double

A Min scale Minimum A channel scale value � make lower than max Double

B max scale Maximum B channel scale value. Double

B min scale Minimum B channel scale value � make lower than max Double

A probe A Probe Multiplier 0 = x1, 1 = x 10, 2 = x100, 3 = x1000 U16

B probe A Probe Multiplier 0 = x1, 1 = x 10, 2 = x100, 3 = x1000 U16

A Coupling A Coupling, 0 = AC, 1= DC U16

B Coupling B Coupling, 0 = AC, 1= DC U16

A Bandwidth A Bandwidth, 0 = 25MHz, 1 = 100 MHz U16

B Bandwidth B Bandwidth, 0 = 25MHz, 1 = 100 MHz U16

Trigger Source Sets trigger source. 0 = A chan, 1 = B chan, 2 = Ext Trigger, 3 =
Dig Input, 4 = Rear Input

U16

Trigger
Amplitude

Level at which to trigger Double

A Trigger
Amplitude

Not used in driver. Double

B Trigger
Amplitude

Not used in driver. Double

Trigger Filter Sets filter on trigger. 0 = None, 1 = Low Pass, 2 = Hi Pass, 3 =
noise (2 divisions of hysteresis)

U16

Trig Slope Sets the trigger slope. 0 = rising, 1 = falling U8

Trigger Holdoff Not used in driver. Double

Dig Pattern Rqd Sets if the digital pattern qualifies the analog trigger. 0 = not
required. 1= required.

U8

Dig Pattern Sets the digital pattern for digital input triggering.

Byte 0 = Select mask, 1= input is used.

Byte 1 = Pattern required before trigger

Byte 2 = Pattern required to trigger

Byte 3 not used.

Bit 0 is input 1 .. Bit 7 is input 8

U32

Ext Trig
Threshold

Sets the amplitude of the external trigger input, -6..+18V Double

Dig Inp
Threshold

Sets the amplitude of the digital input threshold, 0 .. 10V Double

Start Time Sets the start time relative to the trigger, at which acquisition will
begin. If positive delayed triggering is used.

Double

Stop Time Sets the stop time relative to the trigger. Range is �22 .. + 22
seconds. Resolution is 10 ns.

Double

Pre Trig Time Not used in driver. Double

Port Not used in driver. U16

Num divisions Set to 10. I16

Num seq frames Sets the number of frames captured sequentially. If not waveform
avg method of capture set to 1. If waveform avg capture, set to
the number of averages used, 4,16,64,128. If capturing
sequential frames, set to number of frames to capture.

I16

 Num Buffers Sets the number of buffers allocated for frame capture. Must be
at least num waveform averages + 1.

I32

www.cleverscope.com

Sig Gen Freq Set the signal generator frequency in Hz. Range is 0.003..10e6
Hz.

Double

Sig Gen Amp Amplitude of signal generator output. Range is 0..8V Double

Sig Gen Offset Offset of signal generator output. Range is �5..+5V Double

Sig Gen
Waveform

Sets the signal generator waveform. 0 = sine, 1= triangle, 2 =
square, 3 = DC, 4 = 0V.

U16

Sig Gen Sweep Not used in driver U16

Sig Gen Func 0 means normal sig gen use, 1 means step the sig gen upwards
by Sig Gen Freq Step automatically following a trigger.

U16

Sig Gen Freq 2 Not used in driver. Double

Sig Gen Phase Not used in driver. Double

Trig 2 Function Sets the use of Trigger 2. 0 = Not used, 1 = T1~2 < min, 2 =
min<= T1~2 <= max, T1~2 > max, 3 = Count T1, 4 = Wait for T1,
then count T2.

T1~2 = time duration from trigger 1 to trigger 2.

U16

Min Trigger
Period

Sets the min period. 0..22 secs, resolution is 10 ns. Double

Max Trigger
Period

Sets the max period. 0..22 secs, resolution is 10 ns. Double

Trigger Count Sets the number of counts for counting. 0..4,294,967,295 U32

Trig 2 slope Sets the slope for trigger 2. 0 = rising, 1 = falling U8

Trig 2 Source
han

Sets the trigger 2 source channel. 0 = A chan, 1 = B chan, 2 =
Ext Trigger, 3 = Dig Input, 4 = Rear Input

U16

Trig 2 Level Sets the trigger 2 threshold level. Double

Dig Pattern 2
Rqd

Sets if Trigger 2 is qualified by the pattern. U8

Dig Pattern 2 Defines the trigger 2 digital pattern. U32

Trigger 2 Source Defines the trigger 2 source � 0 = Trigger 1 inverted, 1= Use the
Trigger 2 definition

U16

Waveform
Averages

Sets how many waveforms to average if acquisition mode =
waveform avg. Values are 0 = 4, 1 = 16, 2 = 64, 3 = 128.

I32

Value Changed Change this value to cause the driver to check for changes in all
the values in this data structure. If not changed, data structure
values will not update.

I32

Freq Span Not used in driver Double

 Freq Res Not used in driver Double

Duration Not used in driver Double

Resolution Not used in driver Double

Units are linked 0 means not linked, 1 means linked, and Link port is active U8

Ext Sample
Clock

0 means use internal 100 MHz sample clock. 1 means use
external sample clock. Clock must be a sine or square wave,
with 45-55% duty cycle, amplitude 0.3V � 3V p-p, biased to 0V or
CMOS logic levels. The external clock range currently supported
is 10 � 49 MHz.

U8

Fspare 2 Reserved for future use U8

Fspare 3 Reserved for future use U8

Fspare 4 Reserved for future use U8

Sampler
Resolution

Sets the sampler resolution to be used, 0 = 10 bits, 1 = 12 bits, 2
= 14 bits. Will clip to maximum resolution available.

U16

IntfSource Source for connections � 0 = USB, 1 = Ethernet U16

Update Rate Not used in driver U16

Transfer Size Use 0 to transfer one frame. Use 6 to transfer all the frames in a
sequential capture as one array. See num frames value in next
section.

Sig Gen Freq
Step

Frequency increment used when acquisition unit automatically
steps the signal generator frequency following a trigger, if Sig
gen Func = 1.

Double

TCPAdr TCP address of acquisition unit. Format is bb.bb.bb.bb U32

TCPPort TCP port used for acquisition unit. U32

NSpare3 Reserved for future use Double

 NSpare4 Reserved for future use Double

www.cleverscope.com

GotSamples
Returned value � pointer at U8
Returns 0 if samples are not yet all received. 1 = received the values.

T0
Returned Value � pointer at double.

Returns the start time of the waveform being replayed relative to the trigger, which is time 0, in seconds.

dt
Returned Value � pointer at double.

Returns the interval between successive samples, in seconds.

NumSamples
Returned Value � pointer at U32.

Returns the number of samples in the sample array.

NumFrames
Returned Value � pointer at U32.

Returns the number of frames that the sample array is segmented into � only used when returning all the frames in a

sequential capture in one transfer. As an example, assuming 2000 samples per frame, and 100 frames sequentially

captured, one data array of 200,000 samples will be returned, being composed of 100 segments of 2000 samples.

ChanAData[]
Returned value � pointer to Array of Single (Float). Channel A values.

Values are stored as:

s 7 exp 0 22 mantissa 0

02331

ChanAAllocSpace
Input value � I32

Used to declare to the DLL how much space has been allocated to the Chan A Data array. The data array will be clipped

if insufficient space.

ChanBData[]
Returned value � pointer to Array of Single (Float). Channel B values.

Values are stored as:

s 7 exp 0 22 mantissa 0

02331

ChanBAllocSpace
Input value � I32

Used to declare to the DLL how much space has been allocated to the Chan B Data array. The data array will be clipped

if insufficient space.

DigitalInputData
Returned value � Array of U16. Digital Input values.

Each U16 contains the bit values corresponding as follows:

In 1 = Bit 0.. In8 = Bit 7

www.cleverscope.com

DigInpAllocSpace
Input value � I32

Used to declare to the DLL how much space has been allocated to the DigitalInputs Data array. The data array will be

clipped if insufficient space.

ErrorOut
Defines any errors using the TD2 data structure.

Extcode.h
The Extcode.h header files defines the following:

typedef uInt8 LVBoolean;

#define LVBooleanTrue ((LVBoolean)1)

#define LVBooleanFalse ((LVBoolean)0)

#define LVTRUE LVBooleanTrue /* for CIN users */

#define LVFALSE LVBooleanFalse

typedef struct {

 int32 cnt; /* number of bytes that follow */

 uChar str[1]; /* cnt bytes */
 } LStr, *LStrPtr, **LStrHandle;

Using the DLL

To use the DLL carry out the following steps:

1. Allocate memory for the data arrays.

2. Call the DLL with the Inititialize (0) command.

3. Setup the Acquire Definition, and call using the Acquire (1) command. The Acquire call automatically updates the

acquisition unit to the contents of the acquire structure.

4. Use a timed loop that achieves the desired throughput. Maximum thoughput is typically 20 updates per second

(50msec intervals). Call the Wait for samples (3) command until GotSamples = 1. The data will now be in the data

array. Note that the call may delay up to 40msec for a trigger event to occur. During the wait, the active thread

hibernates and returns control to the operating system.
5. If you want to replay another portion of the acquired data, use the Replay (2) command followed by Wait for

samples (3) to check for the samples being transported. Any returned signal subset will be clipped to the start and

end times specified when the acquire was made.

6. If you want to update the acquisition unit, without making an acquisition, or while waiting for a trigger, use the

Update (4) command. You can control the signal generator this way.

7. Finally finish by calling the Finish (5) command.

Notes:

1. The DLL is called using STD CALL calling conventions.

2. The DLL will automatically take the next lowest available USB serial number if more than one CS328 or CS328A
are connected.

3. ErrorOut may be used to check for errors.

4. LCDLL status may be used to verify that the DLL has loaded correctly before use.

www.cleverscope.com

Example C code
This example makes use of the �cscope interface.h� provided with the SimpleScope example. Here is the source:

#define max_samples 16384 //This can be any number up to 4194304
#define t_divisions 10 //This is the number of time divisions across a graph
#define v_divisions 8 //This is the number of volt divisions up a graph

//Trigger actions:
#define acq_single 0 //means capture with a trigger
#define acq_auto 1 //means capture auto � with a trigger if there is one.
#define acq_stop 3 //means stop capturing.

/* = Sample Oscilloscope Include File ===================================== */
int scope_init (void);
int scope_close (void);
int scope_config (double a_div, double b_div, double t_div, int number_of_points, double freq,
double sigvolts, double trigvolts, int trig_chan, unsigned short trigger_action);
int scope_acquire (void);
int scope_read_waveform (float a_waveform[max_samples], float b_waveform[max_samples],
 int *num_samples, double *delta_t, double *t_zero);
int check_for_samples(void);

//Trigger_action defines how we want to trigger - with a trigger, auto, or not trigger.

Here is the c code
#include "Cscope Control Driver.h"
 #include "cscope interface.h"

#define c_init 0
#define c_acquire 1
#define c_replay 2
#define c_check 3
#define c_update 4
#define c_finish 5

int scope_err;

float a_samples[max_samples]; //contains the a channel samples
float b_samples[max_samples]; //contains the b channel samples
unsigned short dig_samples[max_samples]; //contains teh digotal channel values

long samples_required; //the number of samples to capture and
display
long samples_returned; //actual number of samples returned
double dt,t0; //holds time increment and start value
static TD1 acquire; //holds the acquire definition
static TD2 error; //holds the error value
static LVBoolean got_samples; //set to 1 when we have samples

//**
int call_cscope_control_driver(unsigned short command)
//use this routine to call the control driver with a particular command
{
CscopeControlDriver(command, acquire.StartTime, acquire.StopTime, samples_required,frame_number,
&acquire, &got_samples, &t0, &dt, &samples_returned, &frames_returned,
a_samples, sizeof(a_samples), b_samples, sizeof(b_samples),dig_samples, sizeof(dig_samples),
&error);

scope_err = error.code;
return scope_err;
}
//**
int scope_init (void)
//Assumes the scope is connected and opens it.
//Sets up the default values

{
acquire.AcquireMode = 3; //don�t capture right now
acquire.AcquisitionMode = 1; //peak captured
acquire.Acquirer = 4; //cleverscope is the acquirer
acquire.TransferChans = 2; //transfer both channels

www.cleverscope.com

acquire.AMaxScale = 2; // Volts range = +/-2
acquire.AMinScale = -2;
acquire.BMaxScale = 2;
acquire.BMinScale = -2;
acquire.AProbe = 0; //x1
acquire.BProbe = 0; //x1
acquire.ACoupling = 1; //DC
acquire.BCoupling = 1; //DC
acquire.ABandwidth = 1; //100 MHz
acquire.BBandwidth = 1; //100 MHz
acquire.TriggerSource = 0; //A Chan trigger
acquire.TriggerAmplitude = 0; //Trigger at zero volts
acquire.ATriggerAmplitude = 0;
acquire.BTriggerAmplitude = 0;
acquire.TriggerFilter = 0; //No trigger filter
acquire.TrigSlope = 0; //rising
acquire.TriggerHoldoff = 0;
acquire.DigPatternRqd = 0; //not used
acquire.DigPattern = 0; //not used
acquire.ExtTrigThreshold = 0;
acquire.DigInputThreshold = 2;
acquire.StartTime = -0.005; //-5 msecs
acquire.StopTime = 0.005; //5 msecs
acquire.PreTrigTime = 0.005;
acquire.Port = 0;
acquire.NumDivisions = 10;
acquire.NumSeqFrames = 1;
acquire.NumBuffers = 2;
acquire.SigGenFreq = 1000; //1kHz output
acquire.SigGenAmp = 1; //1V amplitude
acquire.SigGenOffset = 0;
acquire.SigGenWaveform = 0; //sine
acquire.SigGenSweep = 0;
acquire.SigGenFunc = 0;
acquire.SigGenFreq2 = 0;
acquire.SigGenPhase = 0;
acquire.Trig2Function = 0; //not used
acquire.MinTriggerPeriod = 0.0000001;
acquire.MaxTriggerPeriod = 1;
acquire.TriggerCount = 1;
acquire.Trig2Slope = 0;
acquire.Trig2SourceChan = 0;
acquire.Trig2Level = 0;
acquire.DigPattern2Rqd = 0;
acquire.DigPattern2 = 0;
acquire.Trigger2Source = 0;
acquire.WaveformAverages = 1;
acquire.ValueChanged = 1;
acquire.SamplerResolution = 0; //0 = 10 bit (1 = 12 bit, 2 = 14 bit).
samples_required = 1000;
return call_cscope_control_driver(c_init);

}

//**
void update_values(double a_div, double b_div, double t_div, int number_of_points,

double freq, double sigvolts, double trigvolts, int trig_chan, unsigned short
trigger_action)

//updates the acquire variable only. Trigger_action defines single, auto or stop actions.
{
acquire.AMaxScale = v_divisions * a_div / 2;
acquire.AMinScale = - acquire.AMaxScale;
acquire.BMaxScale = v_divisions * b_div / 2;
acquire.BMinScale = - acquire.BMaxScale;
acquire.StopTime = t_divisions * t_div /2;
acquire.StartTime = - acquire.StopTime;
acquire.SigGenFreq = freq;
acquire.SigGenAmp = sigvolts;
acquire.TriggerAmplitude = trigvolts;
acquire.TriggerSource = trig_chan;
samples_required = number_of_points;
acquire.AcquireMode = trigger_action;
acquire.ValueChanged++;
}

//***
int scope_config (void)

www.cleverscope.com

//Configures major values for the acquisition unit.
{
return call_cscope_control_driver(c_update);
}

//***

int scope_acquire (void)
//start an acquisition

{
return call_cscope_control_driver(c_acquire);
}

//**
int scope_read_waveform (float a_waveform[max_samples], float b_waveform[max_samples], int
*num_samples, double *delta_t, double *t_zero)
//returns the last read waveform for the given channel
{
int i;

for (i=0; i<samples_returned; i++)
 {
 a_waveform[i] = a_samples[i];
 }
for (i=0; i<samples_returned; i++)
 {
 b_waveform[i] = b_samples[i];
 }

*delta_t = dt;
*t_zero = t0;
*num_samples = samples_returned;
return scope_err;
}

//**

int check_for_samples(void)
//checks to see if samples have been returned. If so returns 1, else 0

{
call_cscope_control_driver(c_check);
return got_samples;
}

//***
int scope_close (void)
//closes the scope
{
return call_cscope_control_driver(c_finish);
}

//**

To use this system:

1. call scope_init to start the run-time background system working.
2. Setup the acquire variable.
3. call scope_acquire to start looking for a trigger.
4. call check_for_samples to check if samples ready. This command waits up to 40msec for a

trigger. If true call:
5. call scope_read_waveform to get the values. They are in single real format.
6. Repeat 2-5 until done.
7. If you wish to stop sampling call scope_close.

	Cscope Control Driver DLL Description
	Summary
	
	Changes
	Cscope Control Driver.h
	Cscope Driver Functions
	CscopeControlDriver
	LCDLL status

	CcsopeControlDriver
	Command
	ReplayStartTime
	ReplayStopTime
	SamplesInReplay
	This value specifies the number of samples that will be returned in the decimated replay from the sample buffer. Values may va
	GotSamples
	T0
	dt
	NumSamples
	NumFrames
	ChanAData[]
	ChanAAllocSpace
	ChanBData[]
	ChanBAllocSpace
	DigitalInputData
	DigInpAllocSpace
	ErrorOut

	Extcode.h
	Using the DLL
	Example C code

