
STANDARD DRIVER Communication boards

1

SERIAL COMMUNICATION IN WIN32

Opening a Port

The CreateFile function opens a communications port. There are two ways to call
CreateFile to open the communications port: overlapped and nonoverlapped. The
following is the proper way to open a communications resource for overlapped
operation:

HANDLE hComm;
hComm = CreateFile(gszPort,
 GENERIC_READ | GENERIC_WRITE,
 0,
 0,
 OPEN_EXISTING,
 FILE_FLAG_OVERLAPPED,
 0);
if (hComm == INVALID_HANDLE_VALUE)
 // error opening port; abort

Removal of the FILE_FLAG_OVERLAPPED flag from the call to CreateFile
specifies nonoverlapped operation. The next section discusses overlapped and
nonoverlapped operations.

The Win32 Software Development Kit (SDK) Programmer's Reference (Overviews,
Window Management, System Services) states that when opening a communications
port, the call to CreateFile has the following requirements:

• fdwShareMode must be zero. Communications ports cannot be shared in the same
manner that files are shared. Applications using TAPI can use the TAPI functions to
facilitate sharing resources between applications. For Win32 applications not using
TAPI, handle inheritance or duplication is necessary to share the communications
port. Handle duplication is beyond the scope of this article; please refer to the Win32
SDK documentation for more information.

• fdwCreate must specify the OPEN_EXISTING flag.
• hTemplateFile parameter must be NULL.

One thing to note about port names is that traditionally they have been COM1,
COM2, COM3, or COM4. The Win32 API does not provide any mechanism for
determining what ports exist on a system. Windows NT and Windows 95 keep track
of installed ports differently from one another, so any one method would not be
portable across all Win32 platforms. Some systems even have more ports than the
traditional maximum of four. Hardware vendors and serial-device-driver writers are
free to name the ports anything they like. For this reason, it is best that users have the
ability to specify the port name they want to use. If a port does not exist, an error will
occur (ERROR_FILE_NOT_FOUND) after attempting to open the port, and the user
should be notified that the port isn't available.

Communication boards STANDARD DRIVER

2

Reading and Writing

Reading from and writing to communications ports in Win32 is very similar to file
input/output (I/O) in Win32. In fact, the functions that accomplish file I/O are the
same functions used for serial I/O. I/O in Win32 can be done either of two ways:
overlapped or nonoverlapped. The Win32 SDK documentation uses the terms
asynchronous and synchronous to connote these types of I/O operations. This article,
however, uses the terms overlapped and nonoverlapped.

Nonoverlapped I/O is familiar to most developers because this is the traditional form
of I/O, where an operation is requested and is assumed to be complete when the
function returns. In the case of overlapped I/O, the system may return to the caller
immediately even when an operation is not finished and will signal the caller when the
operation completes. The program may use the time between the I/O request and its
completion to perform some "background" work.

Reading and writing in Win32 is significantly different from reading and writing serial
communications ports in 16-bit Windows. 16-bit Windows only has the ReadComm
and WriteComm functions. Win32 reading and writing can involve many more
functions and choices. These issues are discussed below.

Nonoverlapped I/O

Nonoverlapped I/O is very straightforward, though it has limitations. An operation
takes place while the calling thread is blocked. Once the operation is complete, the
function returns and the thread can continue its work. This type of I/O is useful for
multithreaded applications because while one thread is blocked on an I/O operation,
other threads can still perform work. It is the responsibility of the application to
serialize access to the port correctly. If one thread is blocked waiting for its I/O
operation to complete, all other threads that subsequently call a communications API
will be blocked until the original operation completes. For instance, if one thread were
waiting for a ReadFile function to return, any other thread that issued a WriteFile
function would be blocked.

One of the many factors to consider when choosing between nonoverlapped and
overlapped operations is portability. Overlapped operation is not a good choice
because most operating systems do not support it. Most operating systems support
some form of multithreading, however, so multithreaded nonoverlapped I/O may be
the best choice for portability reasons.

STANDARD DRIVER Communication boards

3

Overlapped I/O

Overlapped I/O is not as straightforward as nonoverlapped I/O, but allows more
flexibility and efficiency. A port open for overlapped operations allows multiple
threads to do I/O operations at the same time and perform other work while the
operations are pending. Furthermore, the behavior of overlapped operations allows a
single thread to issue many different requests and do work in the background while
the operations are pending.

In both single-threaded and multithreaded applications, some synchronization must
take place between issuing requests and processing the results. One thread will have
to be blocked until the result of an operation is available. The advantage is that
overlapped I/O allows a thread to do some work between the time of the request and
its completion. If no work can be done, then the only case for overlapped I/O is that it
allows for better user responsiveness.

Overlapped I/O is the type of operation that the MTTTY sample uses. It creates a
thread that is responsible for reading the port's data and reading the port's status. It
also performs periodic background work. The program creates another thread
exclusively for writing data out the port.

Note: Applications sometimes abuse multithreading systems by creating too
many threads. Although using multiple threads can resolve many difficult
problems, creating excessive threads is not the most efficient use of them in an
application. Threads are less a strain on the system than processes but still
require system resources such as CPU time and memory. An application that
creates excessive threads may adversely affect the performance of the entire
system. A better use of threads is to create a different request queue for each
type of job and to have a worker thread issue an I/O request for each entry in
the request queue. This method is used by the MTTTY sample provided with
this article.

An overlapped I/O operation has two parts: the creation of the operation and the
detection of its completion. Creating the operation entails setting up an
OVERLAPPED structure, creating a manual-reset event for synchronization, and
calling the appropriate function (ReadFile or WriteFile). The I/O operation may or
may not be completed immediately. It is an error for an application to assume that a
request for an overlapped operation always yields an overlapped operation. If an
operation is completed immediately, an application needs to be ready to continue
processing normally. The second part of an overlapped operation is to detect its
completion. Detecting completion of the operation involves waiting for the event
handle, checking the overlapped result, and then handling the data. The reason that
there is more work involved with an overlapped operation is that there are more
points of failure. If a nonoverlapped operation fails, the function just returns an error-
return result. If an overlapped operation fails, it can fail in the creation of the
operation or while the operation is pending. You may also have a time-out of the
operation or a time-out waiting for the signal that the operation is complete.

Communication boards STANDARD DRIVER

4

Reading

The ReadFile function issues a read operation. ReadFileEx also issues a read
operation, but since it is not available on Windows 95, it is not discussed in this
article. Here is a code snippet that details how to issue a read request. Notice that the
function calls a function to process the data if the ReadFile returns TRUE. This is the
same function called if the operation becomes overlapped. Note the fWaitingOnRead
flag that is defined by the code; it indicates whether or not a read operation is
overlapped. It is used to prevent the creation of a new read operation if one is
outstanding.

DWORD dwRead;
BOOL fWaitingOnRead = FALSE;
OVERLAPPED osReader = {0};

// Create the overlapped event. Must be closed before exiting
// to avoid a handle leak.
osReader.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);

if (osReader.hEvent == NULL)
 // Error creating overlapped event; abort.

if (!fWaitingOnRead) {
 // Issue read operation.
 if (!ReadFile(hComm, lpBuf, READ_BUF_SIZE, &dwRead,
&osReader)) {
 if (GetLastError() != ERROR_IO_PENDING) // read not
delayed?
 // Error in communications; report it.
 else
 fWaitingOnRead = TRUE;
 }
 else {
 // read completed immediately
 HandleASuccessfulRead(lpBuf, dwRead);
 }
}

The second part of the overlapped operation is the detection of its completion. The
event handle in the OVERLAPPED structure is passed to the WaitForSingleObject
function, which will wait until the object is signaled. Once the event is signaled, the
operation is complete. This does not mean that it was completed successfully, just that
it was completed. The GetOverlappedResult function reports the result of the
operation. If an error occurred, GetOverlappedResult returns FALSE and
GetLastError returns the error code. If the operation was completed successfully,
GetOverlappedResult will return TRUE.

Note: GetOverlappedResult can detect completion of the operation, as well as
return the operation's failure status. GetOverlappedResult returns FALSE and
GetLastError returns ERROR_IO_INCOMPLETE when the operation is not
completed. In addition, GetOverlappedResult can be made to block until the
operation completes. This effectively turns the overlapped operation into a

STANDARD DRIVER Communication boards

5

nonoverlapped operation and is accomplished by passing TRUE as the bWait
parameter.

Here is a code snippet that shows one way to detect the completion of an overlapped
read operation. Note that the code calls the same function to process the data that
was called when the operation completed immediately. Also note the use of the
fWaitingOnRead flag. Here it controls entry into the detection code, since it should be
called only when an operation is outstanding.

#define READ_TIMEOUT 500 // milliseconds

DWORD dwRes;

if (fWaitingOnRead) {
 dwRes = WaitForSingleObject(osReader.hEvent,
READ_TIMEOUT);
 switch(dwRes)
 {
 // Read completed.
 case WAIT_OBJECT_0:
 if (!GetOverlappedResult(hComm, &osReader, &dwRead,
FALSE))
 // Error in communications; report it.
 else
 // Read completed successfully.
 HandleASuccessfulRead(lpBuf, dwRead);

 // Reset flag so that another opertion can be
issued.
 fWaitingOnRead = FALSE;
 break;

 case WAIT_TIMEOUT:
 // Operation isn't complete yet. fWaitingOnRead
flag isn't
 // changed since I'll loop back around, and I don't
want
 // to issue another read until the first one
finishes.
 //
 // This is a good time to do some background work.
 break;

 default:
 // Error in the WaitForSingleObject; abort.
 // This indicates a problem with the OVERLAPPED
structure's
 // event handle.
 break;
 }
}

Communication boards STANDARD DRIVER

6

Writing
Transmitting data out the communications port is very similar to reading in that it uses
a lot of the same APIs. The code snippet below demonstrates how to issue and wait
for a write operation to be completed.

BOOL WriteABuffer(char * lpBuf, DWORD dwToWrite)
{
 OVERLAPPED osWrite = {0};
 DWORD dwWritten;
 DWORD dwRes;
 BOOL fRes;

 // Create this write operation's OVERLAPPED structure's
hEvent.
 osWrite.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
 if (osWrite.hEvent == NULL)
 // error creating overlapped event handle
 return FALSE;

 // Issue write.
 if (!WriteFile(hComm, lpBuf, dwToWrite, &dwWritten,
&osWrite)) {
 if (GetLastError() != ERROR_IO_PENDING) {
 // WriteFile failed, but isn't delayed. Report error
and abort.
 fRes = FALSE;
 }
 else
 // Write is pending.
 dwRes = WaitForSingleObject(osWrite.hEvent,
INFINITE);
 switch(dwRes)
 {
 // OVERLAPPED structure's event has been
signaled.
 case WAIT_OBJECT_0:
 if (!GetOverlappedResult(hComm, &osWrite,
&dwWritten, FALSE))
 fRes = FALSE;
 else
 // Write operation completed successfully.
 fRes = TRUE;
 break;

 default:
 // An error has occurred in
WaitForSingleObject.
 // This usually indicates a problem with the
 // OVERLAPPED structure's event handle.
 fRes = FALSE;
 break;
 }
 }
 }
 else
 // WriteFile completed immediately.
 fRes = TRUE;

STANDARD DRIVER Communication boards

7

 CloseHandle(osWrite.hEvent);
 return fRes;
}

Notice that the code above uses the WaitForSingleObject function with a time-out
value of INFINITE. This causes the WaitForSingleObject function to wait forever
until the operation is completed; this may make the thread or program appear to be
"hung" when, in fact, the write operation is simply taking a long time to complete or
flow control has blocked the transmission. Status checking, discussed later, can detect
this condition, but doesn't cause the WaitForSingleObject to return. Three things
can alleviate this condition:

• Place the code in a separate thread. This allows other threads to execute any functions
they desire while our writer thread waits for the write to be completed. This is what
the MTTTY sample does.

• Use COMMTIMEOUTS to cause the write to be completed after a time-out period
has passed. This is discussed more fully in the "Communications Time-outs" section
later in this article. This is also what the MTTTY sample allows.

• Change the WaitForSingleObject call to include a real time-out value. This causes
more problems because if the program issues another operation while an older
operation is still pending, new OVERLAPPED structures and overlapped events
need to be allocated. This type of recordkeeping is difficult, particularly when
compared to using a "job queue" design for the operations. The "job queue" method is
used in the MTTTY sample.

Note: The time-out values in synchronization functions are not communications
time-outs. Synchronization time-outs cause WaitForSingleObject or
WaitForMultipleObjects to return WAIT_TIMEOUT. This is not the same as
a read or write operation timing out. Communications time-outs are described
later in this article.

Because the WaitForSingleObject function in the above code snippet uses an
INFINITE time-out, it is equivalent to using GetOverlappedResult with TRUE for the
fWait parameter. Here is equivalent code in a much simplified form:

BOOL WriteABuffer(char * lpBuf, DWORD dwToWrite)
{
 OVERLAPPED osWrite = {0};
 DWORD dwWritten;
 BOOL fRes;

 // Create this writes OVERLAPPED structure hEvent.
 osWrite.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
 if (osWrite.hEvent == NULL)
 // Error creating overlapped event handle.
 return FALSE;

 // Issue write.
 if (!WriteFile(hComm, lpBuf, dwToWrite, &dwWritten,
&osWrite)) {
 if (GetLastError() != ERROR_IO_PENDING) {
 // WriteFile failed, but it isn't delayed. Report
error and abort.
 fRes = FALSE;

Communication boards STANDARD DRIVER

8

 }
 else {
 // Write is pending.
 if (!GetOverlappedResult(hComm, &osWrite,
&dwWritten, TRUE))
 fRes = FALSE;
 else
 // Write operation completed successfully.
 fRes = TRUE;
 }
 }
 else
 // WriteFile completed immediately.
 fRes = TRUE;

 CloseHandle(osWrite.hEvent);
 return fRes;
}

GetOverlappedResult is not always the best way to wait for an overlapped operation
to be completed. For example, if an application needs to wait on another event handle,
the first code snippet serves as a better model than the second. The call to
WaitForSingleObject is easy to change to WaitForMultipleObjects to include the
additional handles on which to wait. This is what the MTTTY sample application
does.

A common mistake in overlapped I/O is to reuse an OVERLAPPED structure before
the previous overlapped operation is completed. If a new overlapped operation is
issued before a previous operation is completed, a new OVERLAPPED structure
must be allocated for it. A new manual-reset event for the hEvent member of the
OVERLAPPED structure must also be created. Once an overlapped operation is
complete, the OVERLAPPED structure and its event are free for reuse.

The only member of the OVERLAPPED structure that needs modifying for serial
communications is the hEvent member. The other members of the OVERLAPPED
structure should be initialized to zero and left alone. Modifying the other members of
the OVERLAPPED structure is not necessary for serial communications devices.
The documentation for ReadFile and WriteFile state that the Offset and OffsetHigh
members of the OVERLAPPED structure must be updated by the application, or else
results are unpredictable. This guideline should be applied to OVERLAPPED
structures used for other types of resources, such as files.

Serial Status
There are two methods to retrieve the status of a communications port. The first is to
set an event mask that causes notification of the application when the desired events
occur. The SetCommMask function sets this event mask, and the WaitCommEvent
function waits for the desired events to occur. These functions are similar to the 16-
bit functions SetCommEventMask and EnableCommNotification, except that the
Win32 functions do not post WM_COMMNOTIFY messages. In fact, the
WM_COMMNOTIFY message is not even part of the Win32 API. The second
method for retrieving the status of the communications port is to periodically call a

STANDARD DRIVER Communication boards

9

few different status functions. Polling is, of course, neither efficient nor
recommended.

Communication boards STANDARD DRIVER

10

Communications Events
Communications events can occur at any time in the course of using a
communications port. The two steps involved in receiving notification of
communications events are as follows:

• SetCommMask sets the desired events that cause a notification.
• WaitCommEvent issues a status check. The status check can be an overlapped or

nonoverlapped operation, just as the read and write operations can be.

Note: The word event in this context refers to communications events only. It
does not refer to an event object used for synchronization.

Here is an example of the SetCommMask function:

DWORD dwStoredFlags;

dwStoredFlags = EV_BREAK | EV_CTS | EV_DSR | EV_ERR |
EV_RING |\
 EV_RLSD | EV_RXCHAR | EV_RXFLAG | EV_TXEMPTY
;
if (!SetCommMask(hComm, dwStoredFlags))
 // error setting communications mask

A description of each type of event is in Table 1.

Table 1. Communications Event Flags

Event Flag Description

EV_BREAK A break was detected on input.

EV_CTS The CTS (clear-to-send) signal changed state. To get the actual state of the CTS
line, GetCommModemStatus should be called.

EV_DSR The DSR (data-set-ready) signal changed state. To get the actual state of the DSR
line, GetCommModemStatus should be called.

EV_ERR A line-status error occurred. Line-status errors are CE_FRAME, CE_OVERRUN,
and CE_RXPARITY. To find the cause of the error, ClearCommError should be
called.

EV_RING A ring indicator was detected.
EV_RLSD The RLSD (receive-line-signal-detect) signal changed state. To get the actual state

of the RLSD line, GetCommModemStatus should be called. Note that this is
commonly referred to as the CD (carrier detect) line.

EV_RXCHAR A new character was received and placed in the input buffer. See the "Caveat"
section below for a discussion of this flag.

EV_RXFLAG The event character was received and placed in the input buffer. The event
character is specified in the EvtChar member of the DCB structure discussed later.
The "Caveat" section below also applies to this flag.

EV_TXEMPTY The last character in the output buffer was sent to the serial port device. If a
hardware buffer is used, this flag only indicates that all data has been sent to the
hardware. There is no way to detect when the hardware buffer is empty without

STANDARD DRIVER Communication boards

11

talking directly to the hardware with a device driver.
After specifying the event mask, the WaitCommEvent function detects the
occurrence of the events. If the port is open for nonoverlapped operation, then the
WaitCommEvent function does not contain an OVERLAPPED structure. The
function blocks the calling thread until the occurrence of one of the events. If an event
never occurs, the thread may block indefinitely.

Here is a code snippet that shows how to wait for an EV_RING event when the port
is open for nonoverlapped operation:

 DWORD dwCommEvent;

 if (!SetCommMask(hComm, EV_RING))
 // Error setting communications mask
 return FALSE;

 if (!WaitCommEvent(hComm, &dwCommEvent, NULL))
 // An error occurred waiting for the event.
 return FALSE;
 else
 // Event has occurred.
 return TRUE;

Note: The Microsoft Win32 SDK Knowledge Base documents a problem with
Windows 95 and the EV_RING flag. The above code never returns in Windows 95
because the EV_RING event is not detected by the system; Windows NT properly
reports the EV_RING event. Please see the Win32 SDK Knowledge Base for more
information on this bug.

As noted, the code above can be blocked forever if an event never occurs. A better
solution would be to open the port for overlapped operation and wait for a status
event in the following manner:

 #define STATUS_CHECK_TIMEOUT 500 // Milliseconds

 DWORD dwRes;
 DWORD dwCommEvent;
 DWORD dwStoredFlags;
 BOOL fWaitingOnStat = FALSE;
 OVERLAPPED osStatus = {0};

 dwStoredFlags = EV_BREAK | EV_CTS | EV_DSR | EV_ERR |
EV_RING |\
 EV_RLSD | EV_RXCHAR | EV_RXFLAG |
EV_TXEMPTY ;
 if (!SetCommMask(comHandle, dwStoredFlags))
 // error setting communications mask; abort
 return 0;

 osStatus.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
 if (osStatus.hEvent == NULL)
 // error creating event; abort
 return 0;

 for (; ;) {

Communication boards STANDARD DRIVER

12

 // Issue a status event check if one hasn't been issued
already.
 if (!fWaitingOnStat) {
 if (!WaitCommEvent(hComm, &dwCommEvent, &osStatus))
{
 if (GetLastError() == ERROR_IO_PENDING)
 bWaitingOnStatusHandle = TRUE;
 else
 // error in WaitCommEvent; abort
 break;
 }
 else
 // WaitCommEvent returned immediately.
 // Deal with status event as appropriate.
 ReportStatusEvent(dwCommEvent);
 }

 // Check on overlapped operation.
 if (fWaitingOnStat) {
 // Wait a little while for an event to occur.
 dwRes = WaitForSingleObject(osStatus.hEvent,
STATUS_CHECK_TIMEOUT);
 switch(dwRes)
 {
 // Event occurred.
 case WAIT_OBJECT_0:
 if (!GetOverlappedResult(hComm, &osStatus,
&dwOvRes, FALSE))
 // An error occurred in the overlapped
operation;
 // call GetLastError to find out what it
was
 // and abort if it is fatal.
 else
 // Status event is stored in the event
flag
 // specified in the original
WaitCommEvent call.
 // Deal with the status event as
appropriate.
 ReportStatusEvent(dwCommEvent);

 // Set fWaitingOnStat flag to indicate that
a new
 // WaitCommEvent is to be issued.
 fWaitingOnStat = FALSE;
 break;

 case WAIT_TIMEOUT:
 // Operation isn't complete yet.
fWaitingOnStatusHandle flag
 // isn't changed since I'll loop back around
and I don't want
 // to issue another WaitCommEvent until the
first one finishes.
 //
 // This is a good time to do some background
work.
 DoBackgroundWork();
 break;

STANDARD DRIVER Communication boards

13

 default:
 // Error in the WaitForSingleObject; abort
 // This indicates a problem with the
OVERLAPPED structure's
 // event handle.
 CloseHandle(osStatus.hEvent);
 return 0;
 }
 }
 }

 CloseHandle(osStatus.hEvent);

The code above very closely resembles the code for overlapped reading. In fact, the
MTTTY sample implements its reading and status checking in the same thread using
WaitForMultipleObjects to wait for either the read event or the status event to
become signaled.

There are two interesting side effects of SetCommMask and WaitCommEvent.
First, if the communications port is open for nonoverlapped operation,
WaitCommEvent will be blocked until an event occurs. If another thread calls
SetCommMask to set a new event mask, that thread will be blocked on the call to
SetCommMask. The reason is that the original call to WaitCommEvent in the first
thread is still executing. The call to SetCommMask blocks the thread until the
WaitCommEvent function returns in the first thread. This side effect is universal for
ports open for nonoverlapped I/O. If a thread is blocked on any communications
function and another thread calls a communications function, the second thread is
blocked until the communications function returns in the first thread. The second
interesting note about these functions is their use on a port open for overlapped
operation. If SetCommMask sets a new event mask, any pending WaitCommEvent
will complete successfully, and the event mask produced by the operation is NULL.

Caveat

Using the EV_RXCHAR flag will notify the thread that a byte arrived at the port.
This event, used in combination with the ReadFile function, enables a program to
read data only after it is in the receive buffer, as opposed to issuing a read that waits
for the data to arrive. This is particularly useful when a port is open for
nonoverlapped operation because the program does not need to poll for incoming
data; the program is notified of the incoming data by the occurrence of the
EV_RXCHAR event. Initial attempts to code this solution often produce the
following pseudocode, including one oversight covered later in this section:

DWORD dwCommEvent;
DWORD dwRead;
char chRead;

if (!SetCommMask(hComm, EV_RXCHAR))
 // Error setting communications event mask.

Communication boards STANDARD DRIVER

14

for (; ;) {
 if (WaitCommEvent(hComm, &dwCommEvent, NULL)) {
 if (ReadFile(hComm, &chRead, 1, &dwRead, NULL))
 // A byte has been read; process it.
 else
 // An error occurred in the ReadFile call.
 break;
 }
 else
 // Error in WaitCommEvent.
 break;
}

The above code waits for an EV_RXCHAR event to occur. When this happens, the
code calls ReadFile to read the one byte received. The loop starts again, and the code
waits for another EV_RXCHAR event. This code works fine when one or two bytes
arrive in quick succession. The byte reception causes the EV_RXCHAR event to
occur. The code reads the byte. If no other byte arrives before the code calls
WaitCommEvent again, then all is fine; the next byte to arrive will cause the
WaitCommEvent function to indicate the occurrence of the EV_RXCHAR event. If
another single byte arrives before the code has a chance to reach the
WaitCommEvent function, then all is fine, too. The first byte is read as before; the
arrival of the second byte causes the EV_RXCHAR flag to be set internally. When the
code returns to the WaitCommEvent function, it indicates the occurrence of the
EV_RXCHAR event and the second byte is read from the port in the ReadFile call.

The problem with the above code occurs when three or more bytes arrive in quick
succession. The first byte causes the EV_RXCHAR event to occur. The second byte
causes the EV_RXCHAR flag to be set internally. The next time the code calls
WaitCommEvent, it indicates the EV_RXCHAR event. Now, a third byte arrives at
the communications port. This third byte causes the system to attempt to set the
EV_RXCHAR flag internally. Because this has already occurred when the second
byte arrived, the arrival of the third byte goes unnoticed. The code eventually will
read the first byte without a problem. After this, the code will call WaitCommEvent,
and it indicates the occurrence of the EV_RXCHAR event (from the arrival of the
second byte). The second byte is read, and the code returns to the WaitCommEvent
function. The third byte waits in the system's internal receive buffer. The code and the
system are now out of sync. When a fourth byte finally arrives, the EV_RXCHAR
event occurs, and the code reads a single byte. It reads the third byte. This will
continue indefinitely.

The solution to this problem seems as easy as increasing the number of bytes
requested in the read operation. Instead of requesting a single byte, the code could
request two, ten, or some other number of bytes. The problem with this idea is that it
still fails when two or more extra bytes above the size of the read request arrive at the
port in quick succession. So, if two bytes are read, then four bytes arriving in quick
succession would cause the problem. Ten bytes requested would still fail if twelve
bytes arrived in quick succession.

The real solution to this problem is to read from the port until no bytes are remaining.
The following pseudocode solves the problem by reading in a loop until zero
characters are read. Another possible method would be to call ClearCommError to

STANDARD DRIVER Communication boards

15

determine the number of bytes in the buffer and read them all in one read operation.
This method requires more sophisticated buffer management, but it reduces the
number of reads when a lot of data arrives at once.

DWORD dwCommEvent;
DWORD dwRead;
char chRead;

if (!SetCommMask(hComm, EV_RXCHAR))
 // Error setting communications event mask

for (; ;) {
 if (WaitCommEvent(hComm, &dwCommEvent, NULL)) {
 do {
 if (ReadFile(hComm, &chRead, 1, &dwRead, NULL))
 // A byte has been read; process it.
 else
 // An error occurred in the ReadFile call.
 break;
 } while (dwRead);
 }
 else
 // Error in WaitCommEvent
 break;
}

The above code does not work correctly without setting the proper time-outs.
Communications time-outs, discussed later, affect the behavior of the ReadFile
operation in order to cause it to return without waiting for bytes to arrive. Discussion
of this topic occurs later in the "Communications Time-outs" section of this article.

The above caveat regarding EV_RXCHAR also applies to EV_RXFLAG. If flag
characters arrive in quick succession, EV_RXFLAG events may not occur for all of
them. Once again, the best solution is to read all bytes until none remain.

The above caveat also applies to other events not related to character reception. If
other events occur in quick succession some of the notifications will be lost. For
instance, if the CTS line voltage starts high, then goes low, high, and low again, an
EV_CTS event occurs. There is no guarantee of how many EV_CTS events will
actually be detected with WaitCommEvent if the changes in the CTS line happen
quickly. For this reason, WaitCommEvent cannot be used to keep track of the state
of the line. Line status is covered in the "Modem Status" section later in this article.

Error Handling and Communications Status

One of the communications event flags specified in the call to SetCommMask is
possibly EV_ERR. The occurrence of the EV_ERR event indicates that an error
condition exists in the communications port. Other errors can occur in the port that
do not cause the EV_ERR event to occur. In either case, errors associated with the
communications port cause all I/O operations to be suspended until removal of the
error condition. ClearCommError is the function to call to detect errors and clear
the error condition.

Communication boards STANDARD DRIVER

16

ClearCommError also provides communications status indicating why transmission
has stopped; it also indicates the number of bytes waiting in the transmit and receive
buffers. The reason why transmission may stop is because of errors or to flow control.
The discussion of flow control occurs later in this article.

Here is some code that demonstrates how to call ClearCommError:

 COMSTAT comStat;
 DWORD dwErrors;
 BOOL fOOP, fOVERRUN, fPTO, fRXOVER, fRXPARITY,
fTXFULL;
 BOOL fBREAK, fDNS, fFRAME, fIOE, fMODE;

 // Get and clear current errors on the port.
 if (!ClearCommError(hComm, &dwErrors, &comStat))
 // Report error in ClearCommError.
 return;

 // Get error flags.
 fDNS = dwErrors & CE_DNS;
 fIOE = dwErrors & CE_IOE;
 fOOP = dwErrors & CE_OOP;
 fPTO = dwErrors & CE_PTO;
 fMODE = dwErrors & CE_MODE;
 fBREAK = dwErrors & CE_BREAK;
 fFRAME = dwErrors & CE_FRAME;
 fRXOVER = dwErrors & CE_RXOVER;
 fTXFULL = dwErrors & CE_TXFULL;
 fOVERRUN = dwErrors & CE_OVERRUN;
 fRXPARITY = dwErrors & CE_RXPARITY;

 // COMSTAT structure contains information regarding
 // communications status.
 if (comStat.fCtsHold)
 // Tx waiting for CTS signal

 if (comStat.fDsrHold)
 // Tx waiting for DSR signal

 if (comStat.fRlsdHold)
 // Tx waiting for RLSD signal

 if (comStat.fXoffHold)
 // Tx waiting, XOFF char rec'd

 if (comStat.fXoffSent)
 // Tx waiting, XOFF char sent

 if (comStat.fEof)
 // EOF character received

 if (comStat.fTxim)
 // Character waiting for Tx; char queued with
TransmitCommChar

 if (comStat.cbInQue)
 // comStat.cbInQue bytes have been received, but not
read

STANDARD DRIVER Communication boards

17

 if (comStat.cbOutQue)
 // comStat.cbOutQue bytes are awaiting transfer

Communication boards STANDARD DRIVER

18

Modem Status (a.k.a. Line Status)

The call to SetCommMask may include the flags EV_CTS, EV_DSR, EV_RING,
and EV_RLSD. These flags indicate changes in the voltage on the lines of the serial
port. There is no indication of the actual status of these lines, just that a change
occurred. The GetCommModemStatus function retrieves the actual state of these
status lines by returning a bit mask indicating a 0 for low or no voltage and 1 for high
voltage for each of the lines.

Please note that the term RLSD (Receive Line Signal Detect) is commonly referred to
as the CD (Carrier Detect) line.

Note: The EV_RING flag does not work in Windows 95 as mentioned earlier. The
GetCommModemStatus function, however, does detect the state of the RING line.

Changes in these lines may also cause a flow-control event. The ClearCommError
function reports whether transmission is suspended because of flow control. If
necessary, a thread may call ClearCommError to detect whether the event is the
cause of a flow-control action. Flow control is covered in the "Flow Control" section
later in this article.

Here is some code that demonstrates how to call GetCommModemStatus:

 DWORD dwModemStatus;
 BOOL fCTS, fDSR, fRING, fRLSD;

 if (!GetCommModemStatus(hComm, &dwModemStatus))
 // Error in GetCommModemStatus;
 return;

 fCTS = MS_CTS_ON & dwModemStatus;
 fDSR = MS_DSR_ON & dwModemStatus;
 fRING = MS_RING_ON & dwModemStatus;
 fRLSD = MS_RLSD_ON & dwModemStatus;

 // Do something with the flags.

Extended Functions

The driver will automatically change the state of control lines as necessary. Generally
speaking, changing status lines is under the control of a driver. If a device uses
communications port control lines in a manner different from RS-232 standards, the
standard serial communications driver will not work to control the device. If the
standard serial communications driver will not control the device, a custom device
driver is necessary.

There are occasions when standard control lines are under the control of the
application instead of the serial communications driver. For instance, an application

STANDARD DRIVER Communication boards

19

may wish to implement its own flow control. The application would be responsible for
changing the status of the RTS and DTR lines. EscapeCommFunction directs a
communications driver to perform such extended operations. EscapeCommFunction
can make the driver perform some other function, such as setting or clearing a
BREAK condition. For more information on this function, consult the Win32 SDK
documentation, the Microsoft Win32 SDK Knowledge Base, or the Microsoft
Developer Network (MSDN) Library.

Serial Settings

DCB Settings

The most crucial aspect of programming serial communications applications is the
settings in the Device-Control Block (DCB) structure. The most common errors in
serial communications programming occur in initializing the DCB structure
improperly. When the serial communications functions do not behave as expected, a
close examination of the DCB structure usually reveals the problem.

There are three ways to initialize a DCB structure. The first method is to use the
function GetCommState. This function returns the current DCB in use for the
communications port. The following code shows how to use the GetCommState
function:

 DCB dcb = {0};

 if (!GetCommState(hComm, &dcb))
 // Error getting current DCB settings
 else
 // DCB is ready for use.

The second method to initialize a DCB is to use a function called BuildCommDCB.
This function fills in the baud, parity type, number of stop bits, and number of data
bits members of the DCB. The function also sets the flow-control members to default
values. Consult the documentation of the BuildCommDCB function for details on
which default values it uses for flow-control members. Other members of the DCB are
unaffected by this function. It is the program's duty to make sure the other members
of the DCB do not cause errors. The simplest thing to do in this regard is to initialize
the DCB structure with zeros and then set the size member to the size, in bytes, of the
structure. If the zero initialization of the DCB structure does not occur, then there
may be nonzero values in the reserved members; this produces an error when trying to
use the DCB later. The following function shows how to properly use this method:

 DCB dcb;

 FillMemory(&dcb, sizeof(dcb), 0);
 dcb.DCBlength = sizeof(dcb);
 if (!BuildCommDCB("9600,n,8,1", &dcb)) {
 // Couldn't build the DCB. Usually a problem
 // with the communications specification string.

Communication boards STANDARD DRIVER

20

 return FALSE;
 }
 else
 // DCB is ready for use.

The third method to initialize a DCB structure is to do it manually. The program
allocates the DCB structure and sets each member with any value desired. This
method does not deal well with changes to the DCB in future implementations of
Win32 and is not recommended.

An application usually needs to set some of the DCB members differently than the
defaults or may need to modify settings in the middle of execution. Once proper
initialization of the DCB occurs, modification of individual members is possible. The
changes to the DCB structure do not have any effect on the behavior of the port until
execution of the SetCommState function. Here is a section of code that retrieves the
current DCB, changes the baud, and then attempts to set the configuration:

 DCB dcb;

 FillMemory(&dcb, sizeof(dcb), 0);
 if (!GetCommState(hComm, &dcb)) // get current DCB
 // Error in GetCommState
 return FALSE;

 // Update DCB rate.
 dcb.BaudRate = CBR_9600 ;

 // Set new state.
 if (!SetCommState(hComm, &dcb))
 // Error in SetCommState. Possibly a problem with the
communications
 // port handle or a problem with the DCB structure
itself.

Here is an explanation of each of the members of the DCB and how they affect other
parts of the serial communications functions.

Note: Most of this information is from the Win32 SDK documentation. Because
documentation is the official word in what the members actually are and what they
mean, this table may not be completely accurate if changes occur in the operating
system.

STANDARD DRIVER Communication boards

21

Table 2. The DCB Structure Members

Member Description
DCBlength Size, in bytes, of the structure. Should be set before calling SetCommState to

update the settings.
BaudRate Specifies the baud at which the communications device operates. This member

can be an actual baud value, or a baud index.
fBinary Specifies whether binary mode is enabled. The Win32 API does not support

nonbinary mode transfers, so this member should be TRUE. Trying to use
FALSE will not work.

fParity Specifies whether parity checking is enabled. If this member is TRUE, parity
checking is performed and parity errors are reported. This should not be confused
with the Parity member, which controls the type of parity used in
communications.

fOutxCtsFlow Specifies whether the CTS (clear-to-send) signal is monitored for output flow
control. If this member is TRUE and CTS is low, output is suspended until CTS
is high again. The CTS signal is under control of the DCE (usually a modem),
the DTE (usually the PC) simply monitors the status of this signal, the DTE does
not change it.

fOutxDsrFlow Specifies whether the DSR (data-set-ready) signal is monitored for output flow
control. If this member is TRUE and DSR is low, output is suspended until DSR
is high again. Once again, this signal is under the control of the DCE; the DTE
only monitors this signal.

fDtrControl Specifies the DTR (data-terminal-ready) input flow control. This member can be
one of the following values:
Value Meaning
DTR_CONTROL_DISABLE Lowers the DTR line when the device is

opened. The application can adjust the state
of the line with EscapeCommFunction.

DTR_CONTROL_ENABLE Raises the DTR line when the device is
opened. The application can adjust the state
of the line with EscapeCommFunction.

DTR_CONTROL_HANDSHAKE Enables DTR flow-control handshaking. If
this value is used, it is an error for the
application to adjust the line with
EscapeCommFunction.

fDsrSensitivity Specifies whether the communications driver is sensitive to the state of the DSR
signal. If this member is TRUE, the driver ignores any bytes received, unless the
DSR modem input line is high.

fTXContinueOnXoff Specifies whether transmission stops when the input buffer is full and the driver
has transmitted the XOFF character. If this member is TRUE, transmission
continues after the XOFF character has been sent. If this member is FALSE,
transmission does not continue until the input buffer is within XonLim bytes of
being empty and the driver has transmitted the XON character.

fOutX Specifies whether XON/XOFF flow control is used during transmission. If this
member is TRUE, transmission stops when the XOFF character is received and
starts again when the XON character is received.

Communication boards STANDARD DRIVER

22

fInX Specifies whether XON/XOFF flow control is used during reception. If this
member is TRUE, the XOFF character is sent when the input buffer comes
within XoffLim bytes of being full, and the XON character is sent when the input
buffer comes within XonLim bytes of being empty.

fErrorChar Specifies whether bytes received with parity errors are replaced with the
character specified by the ErrorChar member. If this member is TRUE and the
fParity member is TRUE, replacement occurs.

fNull Specifies whether null bytes are discarded. If this member is TRUE, null bytes
are discarded when received.

fRtsControl Specifies the RTS (request-to-send) input flow control. If this value is zero, the
default is RTS_CONTROL_HANDSHAKE. This member can be one of the
following values:
Value Meaning
RTS_CONTROL_DISABLE Lowers the RTS line when the device is

opened. The application can use
EscapeCommFunction to change the state
of the line.

RTS_CONTROL_ENABLE Raises the RTS line when the device is
opened. The application can use
EscapeCommFunction to change the state
of the line.

RTS_CONTROL_HANDSHAKE Enables RTS flow-control handshaking.
The driver raises the RTS line, enabling the
DCE to send, when the input buffer has
enough room to receive data. The driver
lowers the RTS line, preventing the DCE to
send, when the input buffer does not have
enough room to receive data. If this value is
used, it is an error for the application to
adjust the line with EscapeCommFunction.

RTS_CONTROL_TOGGLE Specifies that the RTS line will be high if
bytes are available for transmission. After
all buffered bytes have been sent, the RTS
line will be low. If this value is set, it would
be an error for an application to adjust the
line with EscapeCommFunction. This value
is ignored in Windows 95; it causes the
driver to act as if
RTS_CONTROL_ENABLE were
specified.

fAbortOnError Specifies whether read and write operations are terminated if an error occurs. If
this member is TRUE, the driver terminates all read and write operations with an
error status (ERROR_IO_ABORTED) if an error occurs. The driver will not
accept any further communications operations until the application has
acknowledged the error by calling the ClearCommError function.

fDummy2 Reserved; do not use.
wReserved Not used; must be set to zero.
XonLim Specifies the minimum number of bytes allowed in the input buffer before the

XON character is sent.
XoffLim Specifies the maximum number of bytes allowed in the input buffer before the

XOFF character is sent. The maximum number of bytes allowed is calculated by
subtracting this value from the size, in bytes, of the input buffer.

STANDARD DRIVER Communication boards

23

Parity Specifies the parity scheme to be used. This member can be one of the following
values:

Value Meaning
EVENPARITY Even
MARKPARITY Mark
NOPARITY No parity
ODDPARITY Odd

StopBits Specifies the number of stop bits to be used. This member can be one of the
following values:
Value Meaning
ONESTOPBIT 1 stop bit
ONE5STOPBITS 1.5 stop bits
TWOSTOPBITS 2 stop bits

XonChar Specifies the value of the XON character for both transmission and reception.
XoffChar Specifies the value of the XOFF character for both transmission and reception.
ErrorChar Specifies the value of the character used to replace bytes received with a parity

error.
EofChar Specifies the value of the character used to signal the end of data.
EvtChar Specifies the value of the character used to cause the EV_RXFLAG event. This

setting does not actually cause anything to happen without the use of
EV_RXFLAG in the SetCommMask function and the use of WaitCommEvent.

wReserved1 Reserved; do not use.

Flow Control

Flow control in serial communications provides a mechanism for suspending
communications while one of the devices is busy or for some reason cannot do any
communication. There are traditionally two types of flow control: hardware and
software.

A common problem with serial communications is write operations that actually do
not write the data to the device. Often, the problem lies in flow control being used
when the program did not specify it. A close examination of the DCB structure
reveals that one or more of the following members may be TRUE: fOutxCtsFlow,
fOutxDsrFlow, or fOutX. Another mechanism to reveal that flow control is enabled is
to call ClearCommError and examine the COMSTAT structure. It will reveal when
transmission is suspended because of flow control.

Before discussing the types of flow control, a good understanding of some terms is in
order. Serial communications takes place between two devices. Traditionally, there is
a PC and a modem or printer. The PC is labeled the Data Terminal Equipment (DTE).
The DTE is sometimes called the host. The modem, printer, or other peripheral
equipment is identified as the Data Communications Equipment (DCE). The DCE is
sometimes referred to as the device.

Communication boards STANDARD DRIVER

24

Hardware flow control

Hardware flow control uses voltage signals on control lines of the serial cable to
control whether sending or receiving is enabled. The DTE and the DCE must agree
on the types of flow control used for a communications session. Setting the DCB
structure to enable flow control just configures the DTE. The DCE also needs
configuration to make certain the DTE and DCE use the same type of flow control.
There is no mechanism provided by Win32 to set the flow control of the DCE. DIP
switches on the device, or commands sent to it typically establish its configuration.
The following table describes the control lines, the direction of the flow control, and
the line's effect on the DTE and DCE.

Table 3. Hardware Flow-control Lines

Line and Direction Effect on DTE/DCE
CTS (Clear To Send) Output flow control DCE sets the line high to indicate that it can receive

data. DCE sets the line low to indicate that it cannot
receive data.

If the fOutxCtsFlow member of the DCB is TRUE,
then the DTE will not send data if this line is low. It
will resume sending if the line is high.

If the fOutxCtsFlow member of the DCB is FALSE,
then the state of the line does not affect transmission.

DSR (Data Set Ready) Output flow control DCE sets the line high to indicate that it can receive
data. DCE sets the line low to indicate that it cannot
receive data.

If the fOutxDsrFlow member of the DCB is TRUE,
then the DTE will not send data if this line is low. It
will resume sending if the line is high.

 If the fOutxDsrFlow member of the DCB is FALSE,
then the state of the line does not affect transmission.

DSR (Data Set Ready) Input flow control If the DSR line is low, then data that arrives at the
port is ignored.

If the DSR line is high, data that arrives at the port is
received. This behavior occurs if the fDsrSensitivity
member of the DCB is set to TRUE.

If it is FALSE, then the state of the line does not
affect reception.

STANDARD DRIVER Communication boards

25

RTS (Ready To Send) Input flow control The RTS line is controlled by the DTE.

If the fRtsControl member of the DCB is set to
RTS_CONTROL_HANDSHAKE, the following flow
control is used: If the input buffer has enough room to
receive data (at least half the buffer is empty), the
driver sets the RTS line high. If the input buffer has
little room for incoming data (less than a quarter of
the buffer is empty), the driver sets the RTS line low.

If the fRtsControl member of the DCB is set to
RTS_CONTROL_TOGGLE, the driver sets the RTS
line high when data is available for sending. The
driver sets the line low when no data is available for
sending. Windows 95 ignores this value and treats it
the same as RTS_CONTROL_ENABLE.

If the fRtsControl member of the DCB is set to
RTS_CONTROL_ENABLE or
RTS_CONTROL_DISABLE, the application is free
to change the state of the line as it needs. Note that in
this case, the state of the line does not affect reception.

The DCE will suspend transmission when the line
goes low. The DCE will resume transmission when
the line goes high.

DTR (Data Terminal Ready) Input flow control The DTR line is controlled by the DTE.

If the fDtrControl member of the DCB is set to
DTR_CONTROL_HANDSHAKE, the following
flow control is used: If the input buffer has enough
room to receive data (at least half the buffer is empty),
the driver sets the DTR line high.

If the input buffer has little room for incoming data
(less than a quarter of the buffer is empty), the driver
sets the DTR line low.

If the fDtrControl member of the DCB is set to
DTR_CONTROL_ENABLE or
DTR_CONTROL_DISABLE, the application is free
to change the state of the line as it needs. In this case,
the state of the line does not affect reception. The
DCE will suspend transmission when the line goes
low.

The DCE will resume transmission when the line goes
high.

Communication boards STANDARD DRIVER

26

The need for flow control is easy to recognize when the CE_RXOVER error occurs.
This error indicates an overflow of the receive buffer and data loss. If data arrives at
the port faster than it is read, CE_RXOVER can occur. Increasing the input buffer
size may cause the error to occur less frequently, but it does not completely solve the
problem. Input flow control is necessary to completely alleviate this problem. When
the driver detects that the input buffer is nearly full, it will lower the input flow-
control lines. This should cause the DCE to stop transmitting, which gives the DTE
enough time to read the data from the input buffer. When the input buffer has more
room available, the voltage on flow-control lines is set high, and the DCE resumes
sending data.

A similar error is CE_OVERRUN. This error occurs when new data arrives before
the communications hardware and serial communications driver completely receives
old data. This can occur when the transmission speed is too high for the type of
communications hardware or CPU. This can also occur when the operating system is
not free to service the communications hardware. The only way to alleviate this
problem is to apply some combination of decreasing the transmission speed, replacing
the communications hardware, and increasing the CPU speed. Sometimes third-party
hardware drivers that are not very efficient with CPU resources cause this error. Flow
control cannot completely solve the problems that cause the CE_OVERRUN error,
although it may help to reduce the frequency of the error.

Software flow control

Software flow control uses data in the communications stream to control the
transmission and reception of data. Because software flow control uses two special
characters, XOFF and XON, binary transfers cannot use software flow control; the
XON or XOFF character may appear in the binary data and would interfere with data
transfer. Software flow control befits text-based communications or data being
transferred that does not contain the XON and XOFF characters.

In order to enable software flow control, the fOutX and fInX members of the DCB
must be set to TRUE. The fOutX member controls output flow control. The fInX
member controls input flow control.

One thing to note is that the DCB allows the program to dynamically assign the values
the system recognizes as flow-control characters. The XoffChar member of the DCB
dictates the XOFF character for both input and output flow control. The XonChar
member of the DCB similarly dictates the XON character.

For input flow control, the XoffLim member of the DCB specifies the minimum
amount of free space allowed in the input buffer before the XOFF character is sent. If
the amount of free space in the input buffer drops below this amount, then the XOFF
character is sent. For input flow control, the XonLim member of the DCB specifies
the minimum number of bytes allowed in the input buffer before the XON character is
sent. If the amount of data in the input buffer drops below this value, then the XON
character is sent.

Table 4 lists the behavior of the DTE when using XOFF/XON flow control.

STANDARD DRIVER Communication boards

27

Table 4. Software flow-control behavior

Flow-control character Behavior
XOFF received by DTE DTE transmission is suspended until XON is received. DTE reception

continues. The fOutX member of the DCB controls this behavior.
XON received by DTE If DTE transmission is suspended because of a previous XOFF character

being received, DTE transmission is resumed. The fOutX member of the
DCB controls this behavior.

XOFF sent from DTE XOFF is automatically sent by the DTE when the receive buffer
approaches full. The actual limit is dictated by the XoffLim member of
the DCB. The fInX member of the DCB controls this behavior. DTE
transmission is controlled by the fTXContinueOnXoff member of the
DCB as described below.

XON sent from the DTE XON is automatically sent by the DTE when the receive buffer
approaches empty. The actual limit is dictated by the XonLim member of
the DCB. The fInX member of the DCB controls this behavior.

If software flow control is enabled for input control, then the fTXContinueOnXoff
member of the DCB takes effect. The fTXContinueOnXoff member controls
whether transmission is suspended after the XOFF character is automatically sent by
the system. If fTXContinueOnXoff is TRUE, then transmission continues after the
XOFF is sent when the receive buffer is full. If fTXContinueOnXoff is FALSE, then
transmission is suspended until the system automatically sends the XON character.
DCE devices using software flow control will suspend their sending after the XOFF
character is received. Some equipment will resume sending when the XON character
is sent by the DTE. On the other hand, some DCE devices will resume sending after
any character arrives. The fTXContinueOnXoff member should be set to FALSE
when communicating with a DCE device that resumes sending after any character
arrives. If the DTE continued transmission after it automatically sent the XOFF, the
resumption of transmission would cause the DCE to continue sending, defeating the
XOFF.

There is no mechanism available in the Win32 API to cause the DTE to behave the
same way as these devices. The DCB structure contains no members for specifying
suspended transmission to resume when any character is received. The XON
character is the only character that causes transmission to resume.

One other interesting note about software flow control is that reception of XON and
XOFF characters causes pending read operations to complete with zero bytes read.
The XON and XOFF characters cannot be read by the application, since they are not
placed in the input buffer.

A lot of programs on the market, including the Terminal program that comes with
Windows, give the user three choices for flow control: Hardware, Software, or None.
The Windows operating system itself does not limit an application in this way. The
settings of the DCB allow for Software and Hardware flow control simultaneously. In
fact, it is possible to separately configure each member of the DCB that affects flow
control, which allows for several different flow-control configurations. The limits
placed on flow-control choices are there for ease-of-use reasons to reduce confusion

Communication boards STANDARD DRIVER

28

for end users. The limits placed on flow-control choices may also be because devices
used for communications may not support all types of flow control.

Communications Time-outs

Another major topic affecting the behavior of read and write operations is time-outs.
Time-outs affect read and write operations in the following way. If an operation takes
longer than the computed time-out period, the operation is completed. There is no
error code that is returned by ReadFile, WriteFile, GetOverlappedResult, or
WaitForSingleObject. All indicators used to monitor the operation indicate that it
completed successfully. The only way to tell that the operation timed out is that the
number of bytes actually transferred are fewer than the number of bytes requested.
So, if ReadFile returns TRUE, but fewer bytes were read than were requested, the
operation timed out. If an overlapped write operation times out, the overlapped event
handle is signaled and WaitForSingleObject returns WAIT_OBJECT_O.
GetOverlappedResult returns TRUE, but dwBytesTransferred contains the number
of bytes that were transferred before the time-out. The following code demonstrates
how to handle this in an overlapped write operation:

BOOL WriteABuffer(char * lpBuf, DWORD dwToWrite)
{
 OVERLAPPED osWrite = {0};
 DWORD dwWritten;
 DWORD dwRes;
 BOOL fRes;

 // Create this write operation's OVERLAPPED structure
hEvent.
 osWrite.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
 if (osWrite.hEvent == NULL)
 // Error creating overlapped event handle.
 return FALSE;

 // Issue write
 if (!WriteFile(hComm, lpBuf, dwToWrite, &dwWritten,
&osWrite)) {
 if (GetLastError() != ERROR_IO_PENDING) {
 // WriteFile failed, but it isn't delayed. Report
error.
 fRes = FALSE;
 }
 else
 // Write is pending.
 dwRes = WaitForSingleObject(osWrite.hEvent,
INFINITE);
 switch(dwRes)
 {
 // Overlapped event has been signaled.
 case WAIT_OBJECT_0:
 if (!GetOverlappedResult(hComm, &osWrite,
&dwWritten, FALSE))
 fRes = FALSE;
 else {
 if (dwWritten != dwToWrite) {
 // The write operation timed out. I now
need to

STANDARD DRIVER Communication boards

29

 // decide if I want to abort or retry.
If I retry,
 // I need to send only the bytes that
weren't sent.
 // If I want to abort, I would just set
fRes to
 // FALSE and return.
 fRes = FALSE;
 }
 else
 // Write operation completed
successfully.
 fRes = TRUE;
 }
 break;

 default:
 // An error has occurred in
WaitForSingleObject. This usually
 // indicates a problem with the overlapped
event handle.
 fRes = FALSE;
 break;
 }
 }
 }
 else {
 // WriteFile completed immediately.

 if (dwWritten != dwToWrite) {
 // The write operation timed out. I now need to
 // decide if I want to abort or retry. If I retry,
 // I need to send only the bytes that weren't sent.
 // If I want to abort, then I would just set fRes
to
 // FALSE and return.
 fRes = FALSE;
 }
 else
 fRes = TRUE;
 }

 CloseHandle(osWrite.hEvent);
 return fRes;
}

The SetCommTimeouts function specifies the communications time-outs for a port.
To retrieve the current time-outs for a port, a program calls the GetCommTimeouts
function. An applications should retrieve the communications time-outs before
modifying them. This allows the application to set time-outs back to their original
settings when it finishes with the port. Following is an example of setting new time-
outs using SetCommTimeouts:

COMMTIMEOUTS timeouts;

timeouts.ReadIntervalTimeout = 20;
timeouts.ReadTotalTimeoutMultiplier = 10;
timeouts.ReadTotalTimeoutConstant = 100;

Communication boards STANDARD DRIVER

30

timeouts.WriteTotalTimeoutMultiplier = 10;
timeouts.WriteTotalTimeoutConstant = 100;

if (!SetCommTimeouts(hComm, &timeouts))
 // Error setting time-outs.
Note: Once again, communications time-outs are not the same as time-out values
supplied in synchronization functions. WaitForSingleObject, for instance, uses a time-
out value to wait for an object to become signaled; this is not the same as a
communications time-out.

Setting the members of the COMMTIMEOUTS structure to all zeros causes no
time-outs to occur. Nonoverlapped operations will block until all the requested bytes
are transferred. The ReadFile function is blocked until all the requested characters
arrive at the port. The WriteFile function is blocked until all requested characters are
sent out. On the other hand, an overlapped operation will not finish until all the
characters are transferred or the operation is aborted. The following conditions occur
until the operation is completed:

• WaitForSingleObject always returns WAIT_TIMEOUT if a synchronization time-
out is supplied. WaitForSingleObject will block forever if an INFINITE
synchronization time-out is used.

• GetOverlappedResult always returns FALSE and GetLastError returns
ERROR_IO_INCOMPLETE if called directly after the call to
GetOverlappedResult.

Setting the members of the COMMTIMEOUTS structure in the following manner
causes read operations to complete immediately without waiting for any new data to
arrive:

COMMTIMEOUTS timeouts;

timeouts.ReadIntervalTimeout = MAXDWORD;
timeouts.ReadTotalTimeoutMultiplier = 0;
timeouts.ReadTotalTimeoutConstant = 0;
timeouts.WriteTotalTimeoutMultiplier = 0;
timeouts.WriteTotalTimeoutConstant = 0;

if (!SetCommTimeouts(hComm, &timeouts))
 // Error setting time-outs.

These settings are necessary when used with an event-based read described in the
"Caveat" section earlier. In order for ReadFile to return 0 bytes read, the
ReadIntervalTimeout member of the COMMTIMEOUTS structure is set to
MAXDWORD, and the ReadTimeoutMultiplier and ReadTimeoutConstant are
both set to zero.

An application must always specifically set communications time-outs when it uses a
communications port. The behavior of read and write operations is affected by
communications time-outs. When a port is initially open, it uses default time-outs
supplied by the driver or time-outs left over from a previous communications
application. If an application assumes that time-outs are set a certain way, while the

STANDARD DRIVER Communication boards

31

time-outs are actually different, then read and write operations may never complete or
may complete too often.

