

POSITIONING- AND CONTOURING
CONTROL SYSTEM
PA8000
PROGRAMMING AND
REFERENCE MANUAL / PM

2 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

1 Introduction ... 9

2 Internal details of the rw_TOS operating system software... 10

2.1 The PA8000 position controller .. 10
2.1.1 Control loop opened/closed .. 10
2.1.2 PIDF filter .. 10

2.1.2.1 The filter parameters KD, KI, KP ... 10
2.1.2.2 Additional phase element .. 11
2.1.2.3 Scan time... 11

2.2 The PA8000 profile generator .. 11
2.2.1 Profile generation for JOG commands ... 11
2.2.2 Profile generation for MOVE commands .. 12
2.2.3 Acceleration .. 13
2.2.4 Maximum velocity ... 13
2.2.5 Target velocity... 13
2.2.6 Velocity correction... 13
2.2.7 Target position / Traverse distance .. 13
2.2.8 Operating modes for command processing ... 14

2.2.8.1 Direct mode ... 14
2.2.8.2 Spool mode ... 14

2.3 Interpolation with the PA8000 .. 15
2.3.1 Linear interpolation ... 15

2.3.1.1 Formal linear interpolation ... 15
2.3.2 Circular interpolation... 15
2.3.3 Helical interpolation... 15
2.3.4 Synchronous and asynchronous interpolations .. 15

2.4 PA8000 limit switch handling ... 16
2.4.1 TOM limit switch function(Turn-Off-Motor) ... 16
2.4.2 SMA limit switch function (Stop-Motor-Abruptly) .. 16
2.4.3 SMD limit switch function (Stop-Motor-Decelerate) .. 16

3 The PA8000 programming methods.. 17

3.1 PC application programming (PCAP programming, or direct programming)................................... 17
3.2 Stand-alone application programming (SAP programming) .. 17

3.2.1 SAP-Multitasking .. 18

4 PC application programming ... 19

4.1 Introduction .. 19
4.2 Example programs for using the function libraries... 19
4.3 Definitions, structures and records .. 20

4.3.1 Definitions ... 20
4.3.2 Structures and records ... 20

4.3.2.1 Structure/record type AS ... 20
4.3.2.2 Structure/record type TSRP .. 21

LIST OF CONTENTS 3

4.3.2.3 Structure/record type TRU (Trajectory Units).. 22
4.3.2.4 Structure/record type LMP (Linear Motion Parameters).. 22
4.3.2.5 Structure/record type CMP (Circular Motion Parameters)..................................... 22
4.3.2.6 Structure/record type HMP (Helical Motion Parameters) 23
4.3.2.7 Structure/record type TOSI (Transputer Operating System Information).............. 23
4.3.2.8 Structure/record type CBCNT (Common Buffer CNC-Task)................................. 24
4.3.2.9 Structure/record type CNCTS (Computerized Numerical Control Task Status).... 24

4.4 PCAP high-level language function reference list .. 25
4.4.1 Structure of the reference list.. 25
4.4.2 General information .. 25
4.4.3 azo, activate zero offsets .. 26
4.4.4 cl, close loop ... 26
4.4.5 contcnct, continue numeric controller task ... 26
4.4.6 ctru, change trajectory units.. 27
4.4.7 dummy, dummy function call .. 28
4.4.8 InitMcuSystem, initialise mcu system ... 28
4.4.9 ja, jog absolute.. 29
4.4.10 jhi, jog home index.. 30
4.4.11 jhl, jog home left.. 30
4.4.12 jhr, jog home right ... 31
4.4.13 jr, jog relative .. 31
4.4.14 js, jog stop... 31
4.4.15 lps, latch position synchronous... 32
4.4.16 mca, move circular absolute smca, spool motion circular absolute 32
4.4.17 mcr, move circular relative smcr, spool motion circular relative 33
4.4.18 mcuinit, motion control unit initialisation ... 33
4.4.19 mha, move helical absolute smha, spool motion helical absolute 34
4.4.20 mhr, move helical relative smhr, spool motion helical relative.. 34
4.4.21 mla, move linear absolute smla, spool motion linear absolute ... 35
4.4.22 mlr, move linear relative smlr, spool motion linear relative... 35
4.4.23 ms, motion stop .. 36
4.4.24 ol, open loop ... 36
4.4.25 ra, reset axis ... 36
4.4.26 rdap, read axis parameters... 37
4.4.27 rdaxst, read axis status... 37
4.4.28 rdaxstb, read axis status bit .. 39
4.4.29 rdcbcnct, read common buffer CNC-Task.. 39
4.4.30 rdcd, read common double... 40
4.4.31 rdci, read common integer .. 40
4.4.32 rdcncts, read computerized numeric controller task status .. 40
4.4.33 rdigi, reset digital inputs .. 41
4.4.34 rddigi, read digital inputs ... 41

4.4.34.1 Axis-qualifier digi ... 42
4.4.35 rddigib, read digital input bit .. 43
4.4.36 rddigo, read digital outputs.. 43
4.4.37 rddigob, read digital output bit... 44
4.4.38 rddp, read desired position ... 44
4.4.39 rddv, read desired velocity .. 44
4.4.40 rdepc, read EEPROM programming cycle.. 45
4.4.41 rdf, read filter... 45
4.4.42 rdgf, read gear factor .. 45
4.4.43 rdhac, read home acceleration ... 46
4.4.44 rdhvl, read home velocity.. 46
4.4.45 rdifs, read interface status .. 47

4.4.45.1 Axis qualifier ifs.. 47
4.4.46 rdifsb, read interface status bit.. 47
4.4.47 rdipw, read in position window.. 48

4 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.48 rdirqpc, read interrupt request PC .. 48
4.4.49 rdjac, read jog accleration... 48
4.4.50 rdjtvl, read jog target velocity .. 49
4.4.51 rdjvl, read jog velocity ... 49
4.4.52 rdledgn, read led green... 49
4.4.53 rdledrd, read led red ... 50
4.4.54 rdledyl, read led yellow.. 50
4.4.55 rdlp, read latched position... 50
4.4.56 rdlpndx, read latched position index ... 51
4.4.57 rdlsm, read left spool memory .. 51
4.4.58 rdmcp, read motor command port .. 52
4.4.59 rdmpe, read maximum position error ... 52
4.4.60 rdrp, read real position.. 53
4.4.61 rdsdec, read stop deceleration ... 53
4.4.62 rdsll, read software limit left .. 53
4.4.63 rdslr, read software limit right.. 54
4.4.64 rdtp, read target position... 54
4.4.65 rdtrovr, read trajectory override .. 54
4.4.66 rifs, reset interface status register .. 55
4.4.67 rs, reset system .. 55
4.4.68 sdels, spooler delete synchronous ... 55
4.4.69 shp, set home position.. 56
4.4.70 ssms, start spooled motions synchronous.. 56
4.4.71 sstps, spooler stop synchronous .. 56
4.4.72 startcnct, start numeric controller task.. 57
4.4.73 stepcnct, step numeric controller task .. 57
4.4.74 stopcnct, stop numeric controller task .. 57
4.4.75 txbf, transmit binary file... 58
4.4.76 uf, update filter .. 59
4.4.77 utrovr, update trajectroy override.. 59
4.4.78 wrcbcnct, write common buffer CNC-Task... 59
4.4.79 wrcd, write common double .. 60
4.4.80 wrci, write common integer ... 60
4.4.81 wrdigo, write digital outputs... 61
4.4.82 wrdigob, write digital output bit.. 61
4.4.83 wrdp, write desired position .. 62
4.4.84 wrgf, write gear factor ... 62
4.4.85 wrhac, write home acceleration .. 63
4.4.86 wrhvl, write home velocity ... 63
4.4.87 wripw, write in position window ... 63
4.4.88 wrjac, write jog acceleration.. 64
4.4.89 wrjovr, write jog override... 64
4.4.90 wrjtvl, write jog target velocity ... 64
4.4.91 wrjvl, write jog velocity .. 65
4.4.92 wrledgn, write led green.. 65
4.4.93 wrledrd, write led red... 65
4.4.94 wrledyl, write led yellow... 65
4.4.95 wrlp, write latched position.. 66
4.4.96 wrlpndx, write latched position index .. 66
4.4.97 wrmcp, write motor command port ... 67
4.4.98 wrmpe, write maximum position error... 68
4.4.99 wrrp, write real position ... 68
4.4.100 wrsdec, write stop deceleration .. 68
4.4.101 wrsll, write software limit left ... 69
4.4.102 wrslr, write software limit right... 69
4.4.103 wrtrovr, write trajectory override.. 69

4.5 Accessing the PA8000 over the I/O address area ... 70

LIST OF CONTENTS 5

4.5.1 Function libraries for PA8000 I/O programming ... 70
4.5.2 DLL library for the PA8000 I/O programming function.. 70
4.5.3 Interface library for the Borland DELPHI programming language 70

5 The rw_SymPas programming language for stand-alone application programming 71

5.1 Introduction .. 71
5.2 Lexical grammar .. 71

5.2.1 Whitespace... 71
5.2.2 Comments .. 71
5.2.3 Symbole .. 72

5.2.3.1 Keywords ... 72
5.2.3.2 Designators ... 72

5.2.3.2.1 Name and length restrictions ... 73
5.2.3.2.2 Designator upper and lower case... 73
5.2.3.2.3 Unambiguity and validity of designators... 73

5.2.3.3 Standard designators .. 73
5.2.3.4 Axis designators .. 73
5.2.3.5 Qualified designators... 74
5.2.3.6 Labels .. 74
5.2.3.7 Constants .. 75

5.2.3.7.1 Integer constants.. 76
5.2.3.7.1.1 Decimal constants... 76
5.2.3.7.1.2 Hexadecimal constants... 76

5.2.3.7.2 Floating-point constants ... 76
5.2.3.7.2.1 The type of floating-point constants .. 76
5.2.3.7.2.2 Declaration of constants ... 76

5.2.3.7.3 Punctuation characters .. 76
5.2.3.7.3.1 Parentheses.. 77
5.2.3.7.3.2 Comma ... 77
5.2.3.7.3.3 Semi-colon .. 77
5.2.3.7.3.4 Equals sign.. 77

5.3 Semantic grammar... 78
5.3.1 Declarations.. 78

5.3.1.1 Objects .. 78
5.3.1.2 Typens... 78

5.3.1.2.1 Boolean type... 78
5.3.1.2.2 Integer type .. 79
5.3.1.2.3 Floating-point types (real types) ... 79
5.3.1.2.4 Assignment compatibility of types .. 79

5.3.1.3 Variables.. 80
5.3.1.3.1 Automatic type conversion ... 80

5.3.2 Blocks, locality and range of application... 80
5.3.2.1 Syntax.. 80

5.3.2.1.1 Declaration section l ... 80
5.3.2.1.1.1 Label declaration section .. 81
5.3.2.1.1.2 Constant declaration section... 81
5.3.2.1.1.3 Variable declaration section.. 81

5.3.2.1.2 Command section .. 81
5.3.2.2 Range of application.. 82

5.3.2.2.1 Redeclaration in a subordinate block ... 82
5.3.2.2.2 The location of a declaration in a block.. 82
5.3.2.2.3 Redeclarations inside a block .. 82
5.3.2.2.4 Standard designators ... 82

5.3.3 Variables ... 83
5.3.3.1 The declaration of variables .. 83

5.3.3.1.1 Timer declaration ... 84

6 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

5.3.3.2 Conversion of variable types ... 84
5.3.4 Expressions .. 85

5.3.4.1 Syntax of expressions ... 86
5.3.4.2 Operators... 86
5.3.4.3 Arithmetical operators.. 86
5.3.4.4 Logic operators.. 87
5.3.4.5 Boolean operators ... 87
5.3.4.6 Relational operators .. 87

5.3.5 Statements.. 88
5.3.5.1 Assignments .. 88
5.3.5.2 Procedure calls.. 88
5.3.5.3 The goto statement ... 88
5.3.5.4 Structured instructions... 89
5.3.5.5 Compound statements .. 89
5.3.5.6 Conditional statements .. 90

5.3.5.6.1 The if statement ... 90
5.3.5.7 Loops... 90

5.3.5.7.1 The while statement ... 90
5.3.5.7.2 The repeat statement ... 91
5.3.5.7.3 The for statement ... 91

5.3.6 Procedures and functions ... 92
5.3.6.1 Procedure declarations.. 92
5.3.6.2 Function declarations .. 92

5.3.7 The syntax of an rw_SymPas program .. 92
5.3.7.1 The program descriptor ... 93
5.3.7.2 The program block .. 93

6 Stand-alone application programming ... 94

6.1 Introduction .. 94
6.2 rw_SymPas example programs... 94
6.3 Abbreviations, system parameters, axis specifiers and axis qualifiers .. 94

6.3.1 System parameters... 95
6.3.1.1 PC interrupt generation ... 95
6.3.1.2 System parameters for unit processing... 96

6.3.2 Axis specifiers... 96
6.3.3 Axis qualifiers.. 97
6.3.4 Structured axis qualifiers .. 99
6.3.5 Abbreviations .. 99

6.4 Reserved procedure names with event function.. 100
6.4.1 Event procedure EVEO .. 100
6.4.2 Event-Prozedur EVDNR ... 100
6.4.3 Event procedure EVLSH... 100
6.4.4 Event procedure EVLSS... 101
6.4.5 Event procedure EVMPE.. 101
6.4.6 Event procedure EVUI .. 101
6.4.7 Priority and processing sequence for the event procedures... 101

6.5 SAP block commands.. 102
6.6 rw_SymPas SAP command reference list ... 103

6.6.1 Structure of the reference list.. 103
6.6.2 ABORT, abort ... 103
6.6.3 ABS, absolute function ... 104
6.6.4 ACOS, arc cosine function.. 104
6.6.5 ASIN, arc sine function ... 104
6.6.6 ATAN, arc tangent function... 104

LIST OF CONTENTS 7

6.6.7 AZO, activate zero offsets .. 104
6.6.8 CL, close loop ... 105
6.6.9 CONTCNCT, continue CNC-Task .. 105
6.6.10 COS, cosine function .. 105
6.6.11 COSH, hyperbolic cosine function .. 105
6.6.12 DISEV, disable event .. 106
6.6.13 ENEV, enable event.. 106
6.6.14 EXP, exponential function... 106
6.6.15 JA, jog absolute .. 106
6.6.16 JAW, jog absolute waiting... 107
6.6.17 JHI, jog home index .. 107
6.6.18 JHIW, jog home index waiting .. 107
6.6.19 JHL, jog home left... 108
6.6.20 JHLW, jog home left waiting ... 108
6.6.21 JHR, jog home right .. 108
6.6.22 JHRW, jog home right waiting .. 109
6.6.23 JR, jog relative .. 109
6.6.24 JRW, jog relative waiting .. 109
6.6.25 JS, jog stop ... 109
6.6.26 JSW, jog stop waiting ... 110
6.6.27 LN, natural logarithm function... 110
6.6.28 MCA, move circular absolute SMCA, spool motion circular absolute............................. 110
6.6.29 MCAW, move circular absolute waiting .. 110
6.6.30 MCR, move circular relative SMCR, spool motion circular relative 111
6.6.31 MCRW, move circular relative waiting.. 111
6.6.32 MHA, move helical absolute SMHA, spool motion helical absolute................................ 111
6.6.33 MHAW, move helical absolute waiting.. 111
6.6.34 MHR, move helical relative SMHR, spool motion helical relative 111
6.6.35 MHRW, move helical relative waiting ... 112
6.6.36 MLA, move linear absolute SMLA, spool motion linear absolute.................................... 112
6.6.37 MLAW, move linear absolute waiting.. 112
6.6.38 MLR, move linear relative SMLR, spool motion linear relative 112
6.6.39 MLRW, move linear relative waiting ... 113
6.6.40 MS, motion stop.. 113
6.6.41 MSW, motion stop waiting .. 113
6.6.42 OL, open loop ... 113
6.6.43 RA, reset axis ... 114
6.6.44 RDCBD, read COMMON BUFFER double function ... 114
6.6.45 RDCBI, read COMMON BUFFER integer function... 114
6.6.46 RDCBS, read COMMON BUFFER single function... 115
6.6.47 RS, reset system .. 115
6.6.48 SHP, set home position .. 115
6.6.49 SIN, sine function.. 116
6.6.50 SINH, hyperbolic sine function.. 116
6.6.51 SQRT, square root function.. 116
6.6.52 SSMS, start spooled motions synchronous .. 117
6.6.53 SSMSW, start spooled motions synchronous waiting .. 117
6.6.54 STARTCNCT, start CNC-Task... 117
6.6.55 STOP, stop ... 118
6.6.56 STOPCNCT, stop CNC-Task ... 118
6.6.57 TAN, tangent function ... 118
6.6.58 TANH, hyperbolic tangent function ... 119
6.6.59 UF, update filter .. 119
6.6.60 UTROVR, update trajectory override.. 119
6.6.61 WRCBI, write COMMON BUFFER integer procedure.. 120
6.6.62 WRCBS, write COMMON BUFFER single procedure.. 120
6.6.63 WRCBD, write COMMON BUFFER double procedure .. 120

8 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

6.6.64 WT, wait timer... 121
6.7 Compiler commands .. 122

6.7.1 Include file... 122
6.7.2 Compiler commands, task selection... 122

CHAPTER 1 - INTRODUCTION 9

1 Introduction

This manual contains all the details you will need for programming the PA8000. Before the various
programming methods and operating modes can be presented, we must first describe various functions
provided by the rw_TOS operating system software.
Please note: you will find further information on rw_TOS in the Operating Manual [OM / chapter 4.1].

10 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

2 Internal details of the rw_TOS operating system software

As already mentioned in the Operating Manual, one of the main factors in the PA8000’s performance
capabilities is the rw_TOS operating system software. The following chapters will describe the functions
implemented in rw_TOS, like profile generation or limit switch handling.

2.1 The PA8000 position controller

The PA8000's basic operating mode is the position control mode. In this operating mode, the PA8000
attempts to keep the motor position in the setpoint position. The control loop usually consists of the following
components: digital controller - digital/analog converter - power section - motor - encoder - pulse acquisition.
The encoder is in most cases attached directly to the motor, i.e. rigidly connected to the motor axis.
If this is not the case, the transmission elements between motor axis and encoder axis are also incorporated
in the control loop. The load is also connected to the motor axis. The response of the control system is
determined by all the elements contained in the control loop, and by the load. In any given system, the
control response can be influenced only by the filter parameters of the digital filter. Remember that all
possible operating cases (e.g. changes in load) have to be allowed for.

2.1.1 Control loop opened/closed

After power-up, the control loop is at first open. The value 0 is outputted on the manipulated variable output
(Motor-Command-Port). The axis connected can be traversed in uncontrolled mode by outputting a value.
The PCAP command cl() (close loop) is used to close the control loop. Note that the current position is
accepted as the setpoint position, in order to prevent the motor axis being traversed unintentionally.
Traversing profiles cannot be carried out until the position control has been activated. This also applies for
stepping motors.

2.1.2 PIDF filter

The digital filter has the structure of a real PIDF filter. Almost all controlled systems encountered in practice
can be stably adjusted with this type of controller.

2.1.2.1 The filter parameters KD, KI, KP

The setting procedure utilizes the filter parameters KD , KI and KP. The significance of these parameters can
be very simply understood in terms of the common parameters encountered in the literature: proportional
amplification KP , derivative-action time KD, and integral-action time KI.

KP - Proportional amplification
KI - Integral-action coefficient
KD - Derivative-action coefficient
TV - Derivative-action time
TN - Integral-action time

KI = KP / TN

KD = KP * TV

If a controller with a different structure is to be implemented, the individual components involved can be
simply de-activated by setting them to zero.

CHAPTER 2 - INTERNAL DETAILS OF THE RW_TOS OPERATING SYSTEM SOFTWARE 11

2.1.2.2 Additional phase element

The digital PIDF filter provided is in the standard version cascaded with a first-order time-delay element with a
time constant of TA/2 (half the scan time). This is why it is referred to as a real PIDF filter. The filter parameter
KPL can now be used to reduce this time-delay still further, thus making a harder controller setting possible.
The KPL parameter may in theory assume any value between 0 and 1. In practice, however, a value greater
than approx. 0.95 is no longer expedient.

The connection between KPL and the time delay can be simply represented as:

KPL - Filter parameter
TDELAY - real time-delay of the PIDF filter
TA - Scan time

 TDELAY = (1 - KPL) * TA / 2

2.1.2.3 Scan time

In the paragraph above, the scan time TA was used: this is a characteristic variable for the digital controller.
The scan time is the time after which setpoint and actual values are each scanned, and the command value
is computed using the control algorithm. If the scan time is small compared to the system time constants
involved, the controller can be dimensioned like a continuous controller. This means that no special
knowledge of digital control engineering is required for adjustment purposes.

Note: In the standard version of the PA8000 , the scan time has been set to 1.28 ms.

2.2 The PA8000 profile generator

When traversing with the individual axes, the specified paths are approached with a trapezoidal speed profile.
For a trapezoidal speed profile of this kind, the determinant variables are initial velocity, initial position,
acceleration, maximum velocity, target position and target velocity. The profile generation feature under
discussion here generates the appropriate setpoint values for the position controller [chapter 2.1]
synchronously with the scans, so that starting from the current position the axis accelerates from the current
velocity up to the maximum velocity. The initial velocity and initial position are instantaneous values, and are
not specified as parameters for a motion profile. Before the target position is reached, the profile generator
decelerates in good time with the specified deceleration, so that the target velocity is reached in the specified
target point.

2.2.1 Profile generation for JOG commands

There are certain special cases possible when running a trapezoidal speed profile (single-axis movements):

• The initial velocity is negative in terms of the traversing direction. This means that the axis is initially
traversing in the wrong direction, but decelerates, reverses, and now accelerates in the right direction.

• The final velocity is negative in terms of the traversing direction. The axis initially moves beyond the target
point, decelerates, reverses its direction, and has the target velocity when it reaches the target point
again.

• The initial velocity is equal to the maximum velocity.
• The initial velocity is higher than the maximum velocity. In this case, the axis is automatically decelerated

to the maximum velocity.
• The final velocity is equal to the maximum velocity.
• The maximum velocity is not reached, because the axis has to be decelerated beforehand in order to

reach the target velocity by the time it gets to the target position. In this case, a triangular speed profile is
run.

12 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

All these cases will be correctly handled if the distance to be travelled is sufficient. In addition, a positive
maximum velocity and acceleration must always be specified, and the final velocity must be smaller than or
equal to the maximum velocity. When a negative acceleration is stated, this will be utilized for the profile's
braking ramp.
With JOG traversing commands, it is thus possible to program acceleration ramps and braking ramps with
differing degrees of steepness.

In the cases listed below, velocity jumps occur (undesirably high accelerations). If these cannot be
implemented by the system, a position error will occur, which will, however, generally be corrected after a
limited time period. When stepping motors are used, these cases cannot usually be permitted.

• The traverse distance specified is not sufficient for deceleration.
• The target velocity is higher than the maximum velocity. In this case, the traversing velocity is set to target

velocity at the end of the profile.

2.2.2 Profile generation for MOVE commands

When running a trapezoidal speed profile with MOVE traversing commands (multiple-axis movements with
interpolation) with one or more than one axis, the following special cases are possible:

• The final velocity is negative in relation to the traversing direction. The system first traverses beyond the
target point, decelerates, reverses direction, and when it reaches the target point again possesses the
target velocity.

• The initial velocity is equal to the maximum velocity.
• The initial velocity is higher than the maximum velocity. With direct MOVE commands, the system

automatically decelerates down to maximum velocity in this case. With spooler commands, the initial
velocity is set to maximum velocity. This corresponds to a velocity jump.

• The final velocity is equal to the maximum velocity.
• The maximum velocity is not reached, since the system must decelerate beforehand in order to reach the

target velocity by the time the target position is reached. In this case, a triangular speed profile is run.

All these cases are handled correctly if the traverse distance is sufficient in each case. Furthermore, a
positive maximum velocity and acceleration must always be stated, and the final velocity must be smaller
than or equal to the maximum velocity. If a negative acceleration or negative maximum velocity is stated, the
profile will be discarded. With MOVE traversing commands, it is not possible to program acceleration ramps
and braking ramps with differing degrees of steepness in one traversing command. Should this be required,
you can, however, program several MOVE commands consecutively.

In the cases listed below, velocity jumps are involved, i.e. unwantedly high accelerations. If these cannot be
implemented by the system, a position error will occur, which will, however, generally be corrected again after
a limited time period. These cases must not as a rule be permitted in conjunction with stepping motors.

• The traverse distance stated is not sufficient for accelerating up to target velocity. In this case, the target
velocity is set to a value which can actually be reached within the profile stated. In this case, there will
however be no velocity jump.

• The traverse distance stated is not sufficient for deceleration. In this case, the profile's initial velocity is set
to a value which permits deceleration down to final velocity within the profile stated.

• The target velocity is higher than the maximum velocity. In this case, the traversing velocity is set to target
velocity at the end of the profile.

• The traversing profile's direction is altered. In this case, the amount of the velocity vector is taken from the
previous direction and placed in the direction now to be traversed. In this case, there will be velocity jumps
of varying magnitude at the axes involved. Special caution is required here when stepping motor systems
are used.

This type of profile generation is not only executed when linear MOVE commands are being run. This pattern
is also used for generating the trajectory velocity when running circular movements with two axes.

CHAPTER 2 - INTERNAL DETAILS OF THE RW_TOS OPERATING SYSTEM SOFTWARE 13

2.2.3 Acceleration

If an acceleration smaller than zero is stated, then the data record is discarded with MOVE commands. With
JOG commands, a negative acceleration specifies the steepness of the braking ramp. As a default, the
braking ramp and the acceleration ramp are of identical steepness, or an endless profile is run into the wrong
direction (JOG). The units for the acceleration can be axis-specifically stated in the mcfg.exe utility program.
For the interpolation commands (MOVE commands) there are various options for selecting the units. The
value for acceleration is specified as a floating-point number, meaning that the value range is almost
unlimited. If you specify an acceleration higher than the system can implement, an enlarged position error will
be produced during the acceleration phase.

2.2.4 Maximum velocity

The maximum velocity must always be specified as greater than zero, otherwise the data record will be
rejected (MOVE commands) or an endless profile will be run in the wrong direction (JOG). The units for the
maximum velocity can be axis-specifically specified in the mcfg.exe utility program. For the interpolation
commands there are various options for selecting the units. The value for the maximum velocity is specified
as a floating-point number, meaning that the value range is almost unlimited. If you specify a velocity higher
than the system can implement, an enlarged position error will be produced during traversing. If the
maximum velocity specified is smaller than the initial velocity, the conditions mentioned above shall apply,
depending on the command type involved.

2.2.5 Target velocity

The target velocity can be specified as positive, negative or natural with 0. The direction of the target velocity
is always referenced to the direction of traversing. If traversing is in a negative direction, and the target
velocity is positive, this means the system will continue to move in a negative direction. The target velocity
has the same unit as the maximum velocity. The value is specified as a floating-point number, meaning that
the value range is almost unlimited. If you specify a velocity higher than the system can implement, an
enlarged position error will be produced during traversing. If the target velocity specified is greater than the
maximum velocity, the traversing profile will be concluded with a velocity jump. The current velocity will in this
case be set to the target velocity at the end of the profile.

2.2.6 Velocity correction

In certain cases, you may want to alter the axis or trajectory velocity during execution of a trapezoidal speed
profile. A typical example of this is manual velocity correction (override). You have various SAP and PCAP
commands available for this purpose.
The velocity correction factor, whose default value is 1.0, acts on velocities and accelerations alike.

2.2.7 Target position / Traverse distance

The target can be specified as a relative or absolute value. If you specify a relative value traversing will be by
the distance specified, i.e. you have programmed a traverse distance. If you specify an absolute value, the
system will traverse to the position specified, i.e. you have programmed a target position. The reference point
for absolute target positions is the machine zero.

14 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

2.2.8 Operating modes for command processing

Traversing commands and other commands can be executed in two different operating modes, the "direct
mode" and the "spool mode". The operating mode being implemented at any one time is automatically
specified by the syntax of the command involved.

Note: The command abbreviations for the spool commands are distinguished from the direct commands by
the character 's' as the first letter in the command word. There are identical spool commands available for
both programming methods, SAP and PCAP programming alike.

2.2.8.1 Direct mode

Direct mode is activated automatically by calling special move and jog commands. When you program a
traversing command in direct mode, the program begins to execute the specified command after a system-
entailed time-delay (approx. 2 - 3 scan intervals). A profile which is already running will not be run till its end:
the instantaneous values for velocity and position will be accepted as initial values for the current traversing
command. If the profile data and the initial values are consistent, i.e. comply with the above requirements, a
currently running profile will be seamlessly continued. It is thus possible, for example, to alter the target point
of a running profile, to increase the velocity again, or to subsequently alter the deceleration of the braking
ramp, or even alter the acceleration during an acceleration ramp. If different profiles are to be run in
succession, you have to wait for the end of the profile concerned in each case.

Note: Any data present in the spooler will be rejected when commands are executed in direct mode.

2.2.8.2 Spool mode

In spool mode, a large number of traverse or other commands can be entered in a queue (spooler).
Processing of the commands entered in the spooler is started by the PCAP command ssms(), for example.
During processing, you can write further commands into the spooler. Commands from the spooler are
processed one after the other without any time-delay. The free spooler area becomes smaller each time a
command is entered, but becomes larger again every time a command is executed. When all commands in
the spooler have been processed, the system automatically switches back to direct mode, i.e. after more
spool commands have been entered, their processing has to be started anew.

Note: For the spooler entries to be processed correctly, the following preconditions must be satisfied::

• All axes for which commands are to be spooled must be in position control at the first spooler entry.
• The velocity of these axes must be zero before the first spool command is executed, which is why the

Start Spooled Motions Synchronized ssms() command may be executed only when all axes involved are
at rest.

CHAPTER 2 - INTERNAL DETAILS OF THE RW_TOS OPERATING SYSTEM SOFTWARE 15

2.3 Interpolation with the PA8000

Individual axes are moved with the PA8000 using the jog commands. The move commands are available for
moving more than one axis in interpolated mode. The PA8000 enables you to perform circular, linear and
helical interpolations. It can process several interpolation profiles simultaneously, with any initial and final
velocities you want. All interpolation computations are synchronized with the scan function (1.28 ms).

2.3.1 Linear interpolation

With linear interpolation, any desired number of axes are moved on a line of space (n-dimensional) from the
starting point to the target point (absolute positioning) or by a space vector (relative positioning). Parameters
used in linear interpolation are the axes involved, the traverse distance or the target position, the trajectory
acceleration, the maximum trajectory velocity, and the trajectory target velocity. When interpolating with an
initial velocity, you should make sure that the direction vectors for the initial velocity and for the interpolation
profile coincide. Otherwise the direction of the velocity vector will be altered, and this may lead to velocity
jumps at the axes involved. If the interpolation direction has to be altered from one profile to the next, an
intermediate stop should be made. For direction reversal, there is an option for ending the first profile with
negative target velocity.

2.3.1.1 Formal linear interpolation

When running contours, there is an option for having one axis retain the instantaneous motor position, while
the other axes are run in interpolated mode. This stationary axis can, however, participate formally in this
interpolation for the other axes, and thus remains synchronized with them. This formal interpolation is
particularly important in the spool operating mode, and is selected automatically for all axes at which a
traverse distance of 0 is programmed.

2.3.2 Circular interpolation

Circular interpolation is performed with any two axes. Parameters used for circular interpolation are the axes
involved, the coordinates of the circle's centre, the traverse angle (positive or negative), the trajectory
acceleration, the trajectory maximum velocity, and the trajectory target velocity. The coordinates of the
circle's centre can be specified in absolute or relative coordinates.
When interpolating a circle with an initial velocity, you must always make sure that the initial velocity has the
direction you want, i.e. the direction of the tangent in the circle's starting point. Otherwise the direction of the
velocity vector will be altered, and this may lead to velocity jumps at the axes involved. If the interpolation
direction has to be altered from one profile to the next, an intermediate stop should be made. For direction
reversal, there is an option for ending the first profile with negative target velocity.

2.3.3 Helical interpolation

Helical interpolation is executed for any two axes as a circular interpolation, and with any third axis as a linear
interpolation.

2.3.4 Synchronous and asynchronous interpolations

One of the options provided by the PA8000 is to process several different interpolations at the same time. It is
possible, for example, to execute two circular interpolations with two different axis channels each. The
interpolations concerned can be executed synchronously or asynchronously with each other. The
synchronous operating mode is supported particularly well by the spooler mechanism. Of course, besides an
interpolation, any other axis you want that is not used in an interpolation context can be run independently.

16 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

2.4 PA8000 limit switch handling

The PA8000 offers a wide range of options for limit switch handling and traversing range limitation. You have
options, for example, for configuring any one or more digital inputs as left or right hardware limit switches.
During configuration, a TOM, SMA or SMD function is additionally assigned to the limit switch input. What's
more, you can additionally define a software limit switch (left and right) for each axis channel. You can select
any limit switch positions you want. Here, too, you can choose between the TOM, SMA and SMD functions.
The state of the limit switches can be taken from the axst status flag.
A particular limit switch state is erased if the setpoint position is below the limit switch position.
Note: All limit switch states are erased when the control loop is closed [chapter 4.4.4 - cl()].

2.4.1 TOM limit switch function(Turn-Off-Motor)

With this limit switch function, the motor is de-energized in the limit switch direction, i.e. the axis comes to
rest in uncontrolled mode when the limit switch is tripped, and cannot be moved further into the limit switch
zone, only against the limit switch direction. The setpoint position can, however, continue to run into the limit
switch zone, e.g. due to a profile currently being run. When it exits from the limit switch zone, uncontrolled
velocity jumps may occur.

2.4.2 SMA limit switch function (Stop-Motor-Abruptly)

With this limit switch function, the setpoint position is retained when the limit switch position is exceeded. The
position controller halts the axis in this position. The setpoint position computed by the profile generator will,
however, be correctly continued internally. When the setpoint value position and leaves the limit switch zone,
uncontrolled velocity jumps may occur.

2.4.3 SMD limit switch function (Stop-Motor-Decelerate)

With this limit switch function, the axis concerned is decelerated with the stop deceleration {sdec} specified
down to zero velocity. The axis is switched to direct mode, and any spooler entries are discarded. It is no
longer possible to perform further controlled traversing into the limit switch area. The axis can be moved out
of the limit switch area with all traversing commands. This is the multi-purpose limit switch function.

CHAPTER 3 - THE PA8000 PROGRAMMING METHODS 17

3 The PA8000 programming methods

One of the important features of the PA8000 positioning and contouring control system is the realtime multi-
task operating system rw_TOS (Transputer Operating System). This is contained in the rwtos.btl file, and is
loaded, once per PC boot, into the main memory of the TPU-6002 transputer board within a few seconds,
using the mcbt.exe boot program. rw_TOS utilizes the hardware characteristics implemented in the
transputer, like task scheduler and multiprocessor parallel processing with other transputer systems over
what are called transputer link channels.
The rw_TOS operating system software is divided up into various tasks, which basically provide for two
different kinds of user programming.

Note: rwtos.btl and mcbt.exe form part of the PA8000 TOOLSET software. You will find further information in
the Operating Manual.

3.1 PC application programming (PCAP programming, or direct
programming)

The PA8000 application programming (PCAP) is handled with a user program running on the PC. Programs
are written using a higher-level programming language like Turbo C, Microsoft C or Turbo Pascal. By using
the function libraries included in the scope of delivery for these programming languages, you can draw on a
powerful reservoir of commands, enabling you to create your programs quickly and effectively. The
commands available include traversing commands, for example, with and without interpolation, input/output
commands, interrogation commands, spool commands, etc.
A typical application program transmits one or more of these commands to the PA8000 and then waits for
these orders to be processed. After the commands concerned have been autonomously executed by the
PC-Task in the rw_TOS operating system, new command orders can be transferred to the PC-Task. The
time between command order and command processing can be utilized by the application program to
perform other application-specific tasks.
Since programming is performed by directly accessing a PC application program, this programming method
is also referred to as "PC direct programming".
Note: In the following chapters, you will occasionally find the term "PCAP command". This type of command
is based on the programming method outlined above.

3.2 Stand-alone application programming (SAP programming)

In contrast to PC application programming, stand-alone application programming permits a program to be
processed entirely without the aid of a PC application program. An application program written in the
rw_SymPas programming language is compiled using the NCC compiler integrated in the development
environment mcfg.exe, and generates an operating program which the PA8000 can understand.
This operating program can be loaded onto the PA8000 , and is executed autonomously using the CNC-Task
(CNC = Computerized Numerical Control) in rw_TOS. If synchronization is required between a PC application
program and the PA8000 stand-alone program, this can be carried out using predefined system variables,
which both system partners (PC and PA8000) can access.
Note: In the following chapters, you will often encounter the term "SAP command". This type of command is
based on the programming method outlined above.

18 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

3.2.1 SAP-Multitasking

The operating system software rw_TOS can process up to 4 SAP programs simultaneously. All tasks
executed simultaneously have the same priority. The different tasks are addressed by means of numbers.
The smallest task number has the value of 0, and the largest thus the value of 3.
This multi-tasking programming option enables a complex task to be divided up into small, easy-to-handle
subtasks. For example, one task could be used for reference travel, another for monitoring the drive with
appropriate EVENT handlers, and yet another for PLC control pure and simple, with appropriate accessing of
digital I/O or PC communication with predefined registers.
The various SAP programs can be automatically stopped, started or continued by means of various task
control commands.
The CNC tasks are synchronized with each other, synchronization with any parallel-running PCAP application
program, and exchange of data between these, can be carried out using predefined registers, what are
referred to as COMMON variables. 100 common integer and 100 common floating-point registers are
available to all CNC tasks for this purpose.
Each CNC task can also utilize a local memory area of 1000 bytes (COMMON BUFFER), which the PC and
the CNC task involved can access in both read and write modes. This can be used to build up a user-specific
command set, for example.

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 19

4 PC application programming

4.1 Introduction

The PA8000 TOOLSET Software includes library functions for the Turbo Pascal (from Version 5.0), Turbo C
and Microsoft C programming languages. The individual functions are executed using the TSR driver
mcutsr.exe. The significance of the individual function parameters and their data types is identical for both
programming languages.
Integration of the function libraries into the programming language involved is explained below:

Turbo Pascal: The name of the function library is mcutsr.pas. These functions are
used to establish the link between PC application program and the
TSR driver mcutsr.exe. This file is declared as a unit, and is linked to
the application program by means of the uses statement.
Important: Various system parameters possess the data type
double. This means that the user program has to be compiled with
the {$N+} option!

C (Turbo C, Microsoft C): The function library's name is mcutsr.c. These functions are used to
establish a link between PC application program and the TSR driver
mcutsr.exe. This file can also be incorporated into the application
program using the #include statement. An object file could also be
generated from this file, and linked to the application program. In this
case, the header file mcutsr.h, which contains the prototype
definition of the individual functions, should be incorporated in the
application program.

4.2 Example programs for using the function libraries

The example programs included in the PA8000 TOOLSET software show simple applications for the
functions described below. The source texts for the example programs are provided with comments to render
them self-explanatory. So there is no need for a detailed description of these example programs at this point.
The individual example programs for the two programming languages can be found in the subdirectories
specified here, and have the following names:

Turbo Pascal: ld.pas, mcutsr.pas, move.pas etc.
Directory: TP

C: ld.c, mcutsr.c, mcutsr.h, move.c etc.
Directory: C

20 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.3 Definitions, structures and records

Before the individual functions are explained, certain definitions, structures and records will be described,
some of which are required as parameters for these functions. The structure/record data fields required are
always declared in the application program. The advantage of this is that the TSR driver does not take up too
much PC RAM memory.
All the structure/record types and system constants listed below have been defined in the mcutsr.h or
mcutsr.pas files using the programming languages mentioned above.

Note: The system constant REALAXIS (mcutsr.h) must be set to the actual number of axes present in the
system concerned.

4.3.1 Definitions

Table 1: System constants
Name Type Function
softint integer This parameter is necessary for all function calls. It specifies the software interrupt

number under which the TSR driver mcutsr.exe is called.
The default value for softint is 60 hex. This value can be altered with the mcfg.exe
configuration program.

MAXAXIS integer Maximum number of possible axes. Currently, the TOOLSET software supports up
to 18 axes.

LONGINT long/longint Data type long in the C programming language, or longint in the Turbo Pascal
programming language.

4.3.2 Structures and records

Depending on the programming language involved, we speak either of structures (C) or records (Pascal).
The composition and the functioning of these data types is identical in both programming languages. For
easier comprehension, all structure or record types are written in capitals, and their components in lower-
case characters.

4.3.2.1 Structure/record type AS

Tabelle 2: Structure/record type AS
Element Type (Abbr. meaning), Function
unoa LONGINT (used number of axis) Number of axes to be selected at various function

calls.
san Field with MAXAXIS

LONGINT
(selected axis number) Field of the axes to be
selected. This field must be initialized beginning with Index 0, depending
on the number of axes used.

Note: Counting for axis channels begins with the value 0.

Example: Selecting the first and third axes

as.unoa = 2; // number of axes
as.san[0] = 0; // first axis
as.san[1] = 2; // third axis

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 21

4.3.2.2 Structure/record type TSRP

To enable you to work with the individual axis systems, a structure/record type TSRP has to be declared for
each axis. Using the structure/record elements contained in TSRP, data are exchanged with the PA8000 at
various PCAP commands. For example, axis-specific system variables like accelerations, velocities and
positions can be interrogated or set using special read and write commands.
Important: The individual elements of the TSRP structure are not initialized automatically, i.e. you have to
update them by setting them directly, and reading them in beforehand.

Note: You must be careful to make sure that when more than one axis channel is being used the TSRP
structures/records are located directly behind each other in memory, since the TSR driver mcutsr.exe
sometimes accesses the various axis parameters using address computations. Correct arrangement in the
PC's main memory is reliably achieved by declaring TSRP as a field variable. The size of the field here
depends on the number of axes in the system.

Tabelle 3: Structure/record type TSRP (axis-specific parameters)
Element Type (Abbr. meaning), Function
an LONGINT (axis number)
kp double (PIDF filter parameter kp)
ki double (PIDF filter parameter ki)
kd double (PIDF filter parameter kd)
kpl double (PIDF filter parameter kpl)
kfca double (PIDF forward compensation acceleration)
kfcv double (PIDF forward compensation velocity)
jac double (jog acceleration)
jvl double (jog velocity)
jtvl double (jog target velocity)
jovr double (jog override)
hac double (home acceleration)
hvl double (home velocity)
rp double (real position)
dp double (desired position)
tp double (target position)
sll double (software limit left)
slr double (software limit right)
ipw double (in position window)
mpe double (maximum position error)
gf double (gear factor)
mcp LONGINT (motor command port)
axst LONGINT (axis status)
lsm LONGINT (left spool memory)
epc LONGINT (eeprom programming cycle)
digi LONGINT (digital inputs)
digo LONGINT (digital outputs)
ifs LONGINT (interface status)
scratch Field with 4 times

LONGINT
(scratch field) wildcard for next TSRP record

22 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.3.2.3 Structure/record type TRU (Trajectory Units)

This structure or record type is a parameter for the PCAP command ctru().

Table 4: Structure/record type TRU
Element Type (Abbr. meaning), Function
pu LONGINT position unit
tu LONGINT time unit

4.3.2.4 Structure/record type LMP (Linear Motion Parameters)

This structure or record type is a parameter with all linear interpolation commands.

Table 5: Structure/record type LMP
Element Type (Abbr. meaning), Function
ac double (acceleration) trajectory acceleration
vl double (velocity) trajectory velocity
tvl double (target velocity) trajectory target velocity
dtm Field with MAXAXIS

double
(distance to move) This field must be initialized
in accordance with the index of the axes used. Index counting begins with 0.
The traverse distances desired are entered into the
individual elements to suit the positioning mode involved (absolute or
relative). Assignment of these specified traverse distances to the desired
axis channels must agree with the AS structure/record type.

4.3.2.5 Structure/record type CMP (Circular Motion Parameters)

This structure or record type is a parameter with all circular interpolation commands.

Table 6: Structure/record type CMP
Element Type (Abbr. meaning), Function
ac double (acceleration) trajectory acceleration
vl double (velocity) trajectory velocity
tvl double (target velocity) trajectory target velocity
phi double traverse angle in degrees
dtca1 double (distance to center x-axis)
dtca2 double (distance to center y-axis)

The assignment of dtca1 and dtca2 to the desired axis channels is established with the
structure/record type AS. The axis channel entered there in Field 0 is the x-axis.
The y-axis is correspondingly entered in Field 1.

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 23

4.3.2.6 Structure/record type HMP (Helical Motion Parameters)

This structure or record type is a parameter with all helical interpolation commands.

Table 7: Structure/record type HMP
Element Type (Abbr. meaning), Function
ac double (acceleration) trajectory acceleration
vl double (velocity) trajectory velocity
tvl double (target velocity) trajectory target velocity
phi double traverse angle in degrees
dtca1 double (distance to center x-axis)
dtca2 double (distance to center y-axis)
dtma3 double (distance to move z-axis)

The assignment of dtca1, dtca2 and dtma3 to the desired axis channels is established
with the structure/record type AS. The axis channel entered there in Field 0 is the x-axis.
The y-axis is entered correspondingly in Field 1, and the z-axis in Field 2.

4.3.2.7 Structure/record type TOSI (Transputer Operating System Information)

This structure or record type is a parameter for the PCAP initialization command mcuinit(). After successful
initialization of the PA8000, the following rw_TOS data (rwtos.btl) are entered in the TOSI structure:

Table 8: Structure/record type TOSI
Element Type (Abbr. meaning), Function
revision Field with

SIZE_STRREV
characters

Current software revision of the rw_TOS operating system software. This
must agree with REVISION system constant.

number_axis LONGINT Number of axis channels present
sysfile_loaded LONGINT This status variable indicates with the value 1 whether

the system file has already been transferred to the PA8000.

Note: You can use the PCAP load command txbf() to transfer the system.dat system file (which is altered
mainly by means of the TOOLSET program mcfg.exe) to the PA8000 , where it will trigger initialization of
intra-system parameters like accelerations, velocities, filter coefficients, limit values, etc. This load operation
must be run once per system boot.

24 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.3.2.8 Structure/record type CBCNT (Common Buffer CNC-Task)

Each CNC task is provided with a local memory area with a size of 1000 bytes (COMMON BUFFER), which
both the PC and the CNC task involved can access in both read and write modes. This buffer can be used,
for example, to build up a user-specific command set.

The structure/record type CBCNCT is a parameter for the PCAP commands rdcbcnct() and wrcbcnct(), which
can be used to read or write the COMMON BUFFERs.

Table 10: Structure/record type CBCNCT
Element Typ (Abbr. meaning), Function
TaskNr LONGINT Task Number (0..3)
size LONGINT Size of buffer[Bytes]
BuffPtr Pointer Pointer to a buffer which you want transferred to the PA8000, or read in from the

PA8000. The buffer must be at least size bytes in size!

4.3.2.9 Structure/record type CNCTS (Computerized Numerical Control Task Status)

This structure/record type is a parameter for the PCAP status interrogation command rdcncts().

Table 11: Structure/record type CNCTS
Element Type (Abbr. meaning), Function
errnum LONGINT Internal CNC task error number. If no error has occurred, then errnum has the

value 0.
errline LONGINT In connection with errnum, this element is used to display the error-causing source

text line of the stand-alone application program.
stackfree LONGINT Currently free stack areas [bytes] for the CNC task.
running LONGINT This status flag indicates with the value 1 whether the CNC task is currently

processing a program.

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 25

4.4 PCAP high-level language function reference list

4.4.1 Structure of the reference list

The function and command reference list is sorted alphabetically. The descriptions for the individual
commands and functions are structured as follows:

FUNCTION NAME: This is the name which is used to call the function subsequently described.

ABBR. MEANING: Here you will find a detailed description of the function name concerned.

TURBO PASCAL: Here you will find the prototype definitions for the Turbo Pascal programming
language. You will see which parameters are required for the function call involved.

C: Prototype definition for the C programming language, otherwise as for Turbo
Pascal.

TSRP COMPONENTS: Various functions require as parameters components of the structure/record type
TSRP. These are listed here.

DESCRIPTION: Plaintext description of the command.

RETURN VALUE: If the function returns a value, you will find here a description.

NOTE: For recurrent notes and explanations, you will find a cross-reference to the
appropriate chapters here.

EXAMPLE: Occasionally, examples are given for the function calls involved.

4.4.2 General information

All commands and functions, except the spool commands, are executed immediately after being called. For
all move and jog commands, you must make sure before they are executed that the axes involved have been
switched into position control beforehand (PCAP command cl()). In addition, some of the motion functions
require differentiation between absolute and relative traversing commands. The absolute traversing
commands are executed in the absolute measurement system, i.e. are referenced to the machine zero . The
relative traversing commands are executed incrementally, i.e. starting from the current motor position.
The end of profile processing is indicated both in direct mode and in spool mode by the pe flag in the axst
register of the structure/record TSRP [chapter 4.4.27 - rdaxst()].
In the case of the axis-specific motion commands, (jog commands), all system parameters like positions,
traverse distances, accelerations and velocities are specified in the axis-specific units stated in the TOOLSET
program mcfg.exe. For the interpolation commands (move commands), the units selected in the TRU
structure (record) are utilized.
Conversion between application-specific and intra-system units is made automatically, using the factors
specified in mcfg.exe. Conversion is determined by the encoder resolution or step number, the gear factor,
and the distance and time units selected.

26 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.3 azo, activate zero offsets

TURBO PASCAL: procedure azo(set_:integer; softint:integer);

C: void azo(int set, int softint);

DESCRIPTION: Each axis channel can be assigned five different zero offsets. You can use the
azo() command to activate the axis-specific offset parameters you want. In the set
(or set_) parameter, you specify which set of zero offsets you want to have
activated. This variable, with the value 0 .. 4, is used to select the set of zero offsets
you want. But if the variable has a value greater than 4, no zero offsets will be taken
into account any more.

NOTE: Zero offsets are used to specify a new system of coordinates, without having to
influence (new setting) the actual machine zero.

4.4.4 cl, close loop

TURBO PASCAL: procedure cl(var as:AS; softint:integer);

C: void cl(struct AS far *as, int softint);

DESCRIPTION: All axis channels specified in AS are brought into position control with this
command. Note that the actual positions of the axes involved are accepted as
setpoint positions, in order to avoid large system deviations. In addition, all digital
outputs planned with PAE are set. These outputs can, for example, be used for
controlling relays, which in turn can be used to enable power amplifier units.
Depending on what axis channel is selected, the relais K2 (axis channel 1), K3 (axis
channel 2) and K4 (axis channel 3) are switched on [OM / chapter 4.1.2.8].

NOTE: The position control causes the PIDF filter to be processed with the appropriately
set filter coefficients.
When the position control loop is closed, all spooler data for the axis channels
specified will be rejected!

4.4.5 contcnct, continue numeric controller task

TURBO PASCAL: procedure contcnct(TaskNr:integer; softint:integer);

C: void contcnct(int TaskNr, int softint);

DESCRIPTION: You can use this command to continue a SAP program which has previously been
halted with the SAP command STOP, STOPCNCT() or with the PCAP command
stopcnct() . The task selected in TaskNr (values 0..3) will be continued.

NOTE: A SAP program which has been halted with the SAP command ABORT, can only
be restarted (i.e. not continued) with the SAP command STARTCNCT() or the
PCAP command startcnct().

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 27

4.4.6 ctru, change trajectory units

TURBO PASCAL: procedure ctru(var tru:TRU; softint:integer);

C: void ctru(struct TRU far *tru, int softint);

DESCRIPTION: This command can be used to switch over the units for the velocity, acceleration
and position parameters of all interpolation commands (move commands). The
parameters are specified in the units selected.

The following values are permitted for the TRU structure component pu (position
unit):

Index Unit Description
0 mm Millimeter
1 inch Inch
2 m Meter
3 rev Revolution
4 deg Degree
5 rad Radiant
6 counts Counts
7 steps Steps

The following values are permitted for the TRU structure component tu (time unit):

Index Unit Description
0 sec Seconds
1 min Minutes
2 tsample Sampling Time

NOTE: The default value for pu and tu is 0. This means that for all distance particulars the
unit [mm] is assumed, for velocities the unit [mm/s], and for accelerations the unit
[mm/s²]. The units selected are utilized only for interpolation commands (all move
commands)! If the commands involved are axis-specific motion commands (all jog
commands), the axis units specified in mcfg.exe are taken into account.
The units selected are also determinant for any SAP program running in parallel.

28 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.7 dummy, dummy function call

TURBO PASCAL: function dummy(softint:integer):integer;

C: int dummy(int softint);

DESCRIPTION: This command has no effect on the PA8000, but returns the value -1. If this value is
returned, you can assume that the right TSR driver (mcutsr.exe) has been loaded.

4.4.8 InitMcuSystem, initialise mcu system

TURBO PASCAL: function InitMcuSystem(var tsrp:TSRP; softint:integer):integer;

C: int InitMcuSystem(var TSRP far *tsrp, int softint);

DESCRIPTION: This function performs the complete software initialization routine for the drive
system. The function call should be executed at the beginning of every PCAP
application program. Inside this function, various PCAP basic functions are called.
This includes initialization of the axis numbers {an} in the tsrp structure. You must
make sure that the number of axes actually present in the system has been
appropriately set in the REALAXIS system constant. The function also checks
whether the TSR driver mcutsr.exe has been loaded resident into PC main
memory, and whether the driver loaded is in fact the correct one. If the system.dat
system file has not yet been transferred onto the PA8000, this will be done here. At
the end of the function, the axis parameters of all axes are read into the tsrp
structure.

NOTE: PCAP commands txbf(), mcuinit(), structure/record type TOSI

RETURN VALUE: The function can return the following values:

Return value Error description
0 No error
30 TSR driver mcutsr.exe has not been loaded into resident into PC

main memory at softint
31 Wrong TSR driver
32 The PA8000 cannot be accessed. This error may have the following

causes:
- the rw_TOS operating system software has not been loaded
 (mcbt.exe)
- the PA8000 base address has been incorrectly set
 [OM / chapter 4.2]
- the PA8000 has not been installed in the PC

33 Wrong rw_TOS operating system software
lderr Error return value from PCAP command txbf()

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 29

4.4.9 ja, jog absolute

TURBO PASCAL: procedure ja(var as:AS; var tsrp:TSRP; softint:integer);

C: void ja(struct AS far *as, struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].tp
n = 0 .. Number of axes present-1

DESCRIPTION: The axis channels selected in AS are moved absolutely to the target positions
specified in TSRP[n].tp, using a trapezoidal speed profile. The profile is generated
using the axis-specific system parameters jac (jog acceleration), jvl (jog velocity)
and jtvl (jog target velocity). You can set and interrogate these parameters at any
time using write and read commands. The default values are specified in the
mcfg.exe utility program. The trajectory parameters are stated in the axis-specific
units (distance, time) specified in mcfg.exe.

NOTE: If this command is executed simultaneously for more than one axis, these may
(due to the axis-specific system parameters) reach the target positions at different
points in time [chapter 2.2.8.1].
You can set and interrogate the axis-specific parameters like accelerations and
velocities at any time using write and read commands.

30 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.10 jhi, jog home index

TURBO PASCAL: procedure jhi(var as:AS; var tsrp:TSRP; softint:integer);

C: void jhi(struct AS far *as, struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].tp
n = 0 .. Number of axes present -1

DESCRIPTION: You use this command to start the index search run for all the axis channels
selected in AS. The search run is terminated either when the index (zero track)
signal of the incremental encoder is activated or after the distance or angle
particular specified in tp has been exceeded. The search run is carried out using a
trapezoidal speed profile. The parameters for the profile generator are the system
data hac and hvl, which can be set using mcfg.exe or the appropriate write
commands. When the index signal (zero track) is detected, the motor is
decelerated with the deceleration hac to velocity 0. The tp parameter is stated as a
relative traverse distance in the axis-specific position unit. The search direction is
determined by the sign of tp. Generally, the axis system is first run in relation to a
reference switch (cam). To eliminate the mechanical inaccuracy of this cam, the
obvious solution is to perform the index search run afterwards. The command can
be executed with the aid of the profile flag in the axst register and the state of the
index signal interrogated with the digi register [chapter 4.4.34]. The profile flag
remains set to 1 until the end of the search run.

NOTE: To maximize the accuracy of index positioning, the search run should be executed
with as small a traversing velocity as possible. You do, however, also have an
option for performing the search run in two steps. In the first of these steps, the
search run can be started in a positive traversing direction, for example, at a
relatively high search speed. In the second step, the search run is then concluded
in the negative direction at a low search speed. The search speed can be read and
written with the PCAP commands rdhvl() and wrhvl().

4.4.11 jhl, jog home left

TURBO PASCAL: procedure jhl(var as:AS; softint:integer);

C: void jhl(struct AS far *as, int softint);

DESCRIPTION: This command starts the reference search run for all axis channels specified in AS,
in a negative traversing direction. The search run is executed with the aid of an
endless trapezoidal speed profile. The axis-specific system data hac and hvl here
serve as parameters for profile generation. If a digital input of the PA8000 planned
with REF function is activated at the axis channel selected, the search run will be
terminated by decelerating (with hac) the axis to a velocity of 0. This state can be
interrogated in the axst register with the aid of the pe profile flag. The profile flag
remains set to 0 until the end of the search run.

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 31

4.4.12 jhr, jog home right

TURBO PASCAL: procedure jhr(var as:AS; softint:integer);

C: void jhr(struct AS far *as, int softint);

DESCRIPTION: This command functions in an identical way to the PCAP command jhl(), but the
search run is started in the positive traversing direction.

4.4.13 jr, jog relative

TURBO PASCAL: procedure jr(var as:AS; var tsrp:TSRP; softint:integer);

C: void jr(struct AS far *as, struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].tp
n = 0 .. number of existing axes-1

DESCRIPTION: This command is identical to the PCAP command ja(), except that the distance
particular tp is a relative (incremental) traverse distance. Starting from the
instantaneous position, the motor is moved by the specified distance (or angle) to
the left (negative values) or the right (positive values).

4.4.14 js, jog stop

TURBO PASCAL: procedure js(var as:AS; softint:integer);

C: void js(struct AS far *as, int softint);

DESCRIPTION: The axis channels - selected in AS - are decelerated with the axis-specific
time-delay sdec to velocity 0, and are hold in position control. Until the end of
deceleration the pe flag is reset in the axst register. You can set and interrogate the
time-delay sdec at any time using write and read commands. The default values
are specified in the mcfg.exe utility program.

NOTE: If this command is executed simultaneously for more than one axis, these may
(due to the axis-specific system parameters) reach the target positions at different
points in time [chapter 2.2.8.1].

32 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.15 lps, latch position synchronous

TURBO PASCAL: procedure lps(an:integer; mst:integer; softint:integer);

C: void lps(int an, int mst, int softint);

DESCRIPTION: This command can be used to initiate a latch routine synchronized with the scan
cycle of the axis channel selected in an. After call-up, the actual position {rp} is put
into intermediate storage after every mst scan intervals. If a latch procedure has
taken place, this will be displayed in the axst register in the lpsf flag (Bit No. 16).
The PCAP read command rdlp() or the lp SAP axis qualifier can be used to read out
the position from intermediate storage. Readout will also erase the lpsf flag in the
axst register.

NOTE: The command is primarily used when recording contours and teach-in applications,
since it enables position data in real time to be recorded from one or more axes.
Typical values for mst are 10 ... 100 scan intervals (-> 12.8 ms ... 128.0 ms). The
precise value will, however, depend on the processing speed of the application
concerned.

4.4.16 mca, move circular absolute
smca, spool motion circular absolute

TURBO PASCAL: procedure mca(var as:AS; var cmp:CMP; softint:integer);
procedure smca(var as:AS; var cmp:CMP; softint:integer);

C: void mca(struct AS far *as, struct CMP far *cmp, int softint);
void smca(struct AS far *as, struct CMP far *cmp, int softint);

DESCRIPTION: This command causes circular interpolation of the first two axis channels specified
in AS. There are no restrictions regarding axis selection. Circular interpolation is
carried out on the basis of a trapezoidal speed profile, i.e. taking into account
maximum acceleration and maximum velocity. The structure/record components
specified in CMP are utilized as interpolation parameters. These are the trajectory
acceleration ac, the trajectory velocity vl and the trajectory target velocity tvl. The
coordinates entered in dtca1 and dtca2 specify the centre of the circle in an
absolute system of units. Note that dtca1 is assigned to the first axis programmed
in AS, and dtca2 to the second axis specified in AS. The units for the trajectory
parameters are selected with the PCAP command ctru().
The angle phi specifies the traverse angle to be run with the unit degrees. The
sense of rotation is specified by the sign of the angle variable. Positive values
signify clockwise rotation, and negative values signify anti-clockwise rotation. The
traverse angle range is not fixed to defined limits, i.e. part or multiple circles can be
run as well.

NOTE: Chapter 2.3 Interpolation with the PA8000.

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 33

4.4.17 mcr, move circular relative
smcr, spool motion circular relative

TURBO PASCAL: procedure mcr(var as:AS; var cmp:CMP; softint:integer);
procedure smcr(var as:AS; var cmp:CMP; softint:integer);

C: void mcr(struct AS far *as, struct CMP far *cmp, int softint);
void smcr(struct AS far *as, struct CMP far *cmp, int softint);

DESCRIPTION: This command is identical to the PCAP command mca(), except that the
coordinates specified in dtca1 und dtca2 are incrementally (or relatively)
referenced to the current motor position.

NOTE: Chapter 2.3 Interpolation with the PA8000.

4.4.18 mcuinit, motion control unit initialisation

TURBO PASCAL: procedure mcuinit(var tosi:TOSI; softint:integer);

C: void mcuinit(struct TOSI far *tosi, int softint);

DESCRIPTION: This function is used to carry out various initialization routines inside the TSR driver
mcutsr.exe. It checks whether communication is possible between PC and PA8000.
If this is the case, the rw_TOS-specific system data returned by the PA8000 are
entered in the structure/record TOSI, which can then be used to check the
rw_TOS-specific system information for validity.
If it has not proved possible to establish communication to the PA8000, the entire
TOSI structure will have the value 0.

NOTE: This command does not trigger a reset on the PA8000. This must be carried out
with the PCAP commands ra() or rs().
You can use the TOSI.sysfile_loaded return value to ascertain whether the
system.dat system file has already been transferred to the PA8000 with the aid of
the PCAP load command txbf(). If this value is 0, then after a successful mcuinit()
PCAP command the PCAP command txbf() must be executed, so that you can
work with the PA8000 .
The PCAP example programs provided include this command in the
InitMcuSystem() function, where the monitoring mechanism for system initialization
is once more illustrated.

34 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.19 mha, move helical absolute
smha, spool motion helical absolute

TURBO PASCAL: procedure mha(var as:AS; var hmp:HMP; softint:integer);
procedure smha(var as:AS; var hmp:HMP; softint:integer);

C: void mha(struct AS far *as, struct HMP far *hmp, int softint);
void smha(struct AS far *as, struct HMP far *hmp, int softint);

DESCRIPTION: This command is used to perform a helical interpolation; it is an extension of
circular interpolation. This is why the particulars given for the PCAP command
mca() also apply to this command, except that the trajectory parameters are
entered in the structure/record HMP. For the third axis specified in AS, the dtma3
parameter can be programmed as well. This is the absolute traverse distance for
the third axis. While the first two axes perform a circular interpolation, the third
executes a linear movement. All three axes reach their target positions at the same
moment.

NOTE: This command has not yet been implemented at present!

4.4.20 mhr, move helical relative
smhr, spool motion helical relative

TURBO PASCAL: procedure mhr(var as:AS; var hmp:HMP; softint:integer);
procedure smhr(var as:AS; var hmp:HMP; softint:integer);

C: void mhr(struct AS far *as, struct HMP far *hmp, int softint);
void smhr(struct AS far *as, struct HMP far *hmp, int softint);

DESCRIPTION: This command is identical to the PCAP command mha(), except that the distance
particulars programmed in dtca1, dtca2 and dtma3 are referenced to the
instantaneous motor position incrementally (or relatively).

NOTE: This command has not yet been implemented at present!

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 35

4.4.21 mla, move linear absolute
smla, spool motion linear absolute

TURBO PASCAL: procedure mla(var as:AS; var lmp:LMP; softint:integer);
procedure smla(var as:AS; var lmp:LMP; softint:integer);

C: void mla(struct AS far *as, struct LMP far *lmp, int softint);
void smla(struct AS far *as, struct LMP far *lmp, int softint);

DESCRIPTION: This command is used to carry out a linear interpolation with absolute target
particulars. All axes in n-dimensional space are permitted for interpolation. You
specify in AS which axes you want to participate in interpolation. You use LMP to
specify the trajectory acceleration ac, the trajectory velocity vl and the trajectory
target velocity tvl for linear interpolation. The units for the trajectory parameters are
selected with the ctru() command.
Depending on the number of axes involved (unoa), you enter the axes you want in
the san field and the corresponding traverse distances in the dtm field. Note that the
traverse distance in the dtm[n] field is assigned to the axis number n + 1. The
interpolation is referenced to the axes entered in AS. The traverse distances are
interpreted as absolute distance or angle information, i.e. referenced to the machine
zero.

NOTE: Chapter 2.3 Interpolation with the PA8000.

4.4.22 mlr, move linear relative
smlr, spool motion linear relative

TURBO PASCAL: procedure mlr(var as:AS; var lmp:LMP; softint:integer);
procedure smlr(var as:AS; var lmp:LMP; softint:integer);

C: void mlr(struct AS far *as, struct LMP far *lmp, int softint);
void smlr(struct AS far *as, struct LMP far *lmp, int softint);

DESCRIPTION: This command is identical to the PCAP command mla(), except that the traverse
distances specified in the dtm field are interpreted incrementally or relatively to the
instantaneous motor position.

NOTE: Chapter 2.3 Interpolation with the PA8000.

36 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.23 ms, motion stop

TURBO PASCAL: procedure ms(var as:AS; softint:integer);

C: void ms(struct AS far *as, int softint);

DESCRIPTION: The axis channels selected in AS are decelerated with the trajectory acceleration or
axis deceleration currently valid down to zero velocity and kept in position control
mode. The pe flag in the axst register is reset by the time the deceleration
procedure has been completed. The direction vector of a perhaps currently ongoing
interpolation function is not altered by this command. If the axes selected are
currently running a circle, deceleration will be performed on the circular trajectory
with the trajectory acceleration specified..
Axes which traverse with one final velocity are decelerated down to zero velocity
with the axis-specific deceleration sdec.

NOTE: Axes which are not interpolating jointly may reach the target point at different points
in time.

4.4.24 ol, open loop

TURBO PASCAL: procedure ol(var as:AS; softint:integer);

C: void ol(struct AS far *as, int softint);

DESCRIPTION: This command opens the position control loop of all axes selected in AS. On each
of the Motor-Command-Ports, 0 V output voltage is outputted in the case of servo
axes, and 0 Hz stepping frequency in the case of stepping motor axes. All PA8000
digital outputs planned with PAE function are de-activated for the axis channels
programmed.
Depending on the axis channels selected, the relais K2 (axis channel 1), K3 (axis
channel 2) and K4 (axis channel 3) [OM / chapter 4.1.2.8] are switched off.

NOTE: This command is used mainly in exceptional situations, like limit switch limitation,
position error violation, etc.

4.4.25 ra, reset axis

TURBO PASCAL: procedure ra(var as:AS; softint:integer);

C: void ra(struct AS far *as, int softint);

DESCRIPTION: This command can be used to carry out an axis-specific reset operation. This
means that any profile running will be aborted, the position control loop will be
opened, the setpoint value will be switched off, any spooler data will be rejected,
and the position registers set to zero. The digital outputs are set to the default
values planned. The axis-specific override factors (PCAP commands wrjovr() and
wrtrovr()) are set to the value 1.0. Any software limits planned will no longer be
monitored for the axis channels selected in ra().

NOTE: All system data, like accelerations, velocities, filter parameters, etc. remain stored
in memory, and therefore need not be loaded anew.
This command is mainly used at system initialization or in exceptional situations.

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 37

4.4.26 rdap, read axis parameters

TURBO PASCAL: procedure rdap(var tsrp:TSRP; softint:integer);

C: void rdap(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: all, i.e. TSRP[n].an ... TSRP[n].ifs

DESCRIPTION: This command can be used to read in all axis-specific input and output variables of
the structure and/or the TSRP record with one read command.

RETURN VALUE: Once the command has been executed, the input and output variables will be
located in the structure or record components concerned in each case, or in the
TSRP record.

NOTE: The individual structure or record components can also be interrogated, using
special read commands. Normally, these read commands are preferred due to the
shorter access time involved.

4.4.27 rdaxst, read axis status

TURBO PASCAL: procedure rdaxst(var tsrp:TSRP; softint:integer);

C: void rdaxst(struct TSRP far *tsrp, int softint);

TSRP-KOMPONENTEN: TSRP[n].axst

DESCRIPTION: This command can be used to interrogate various axis-specific status and error
flags of the ramp and interpolation task. Normally this command is repeated
cyclically in the PCAP program, in order to check by means of the pe flag described
below whether the traversing commands of the axes involved have been completely
processed. In addition, this command causes a series of error flags in the axst
register to be updated. These should likewise be evaluated cyclically, to guarantee
reliable operating behaviour of the PCAP program.

RETURN VALUE: After this command has been executed, the bit-coded return value is located in the
structure/record component axst, with the structure described in the table below.

NOTE: [OM / chapter 4.4.8.1] and [OM / chapter 4.4.8.3].

38 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

Table 15: Bit-decoded structure of the axst word
Bit No. Name Function
0 Not assigned, this flag always has the value 0.
1 eo Emergency-Out error-flag: has the value 1, when a digital input (as EO-planned) is active.
2 dnr Drive-Not-Ready error-flag: has the value 1, when a digital input (as DR-planned) is

inactive.
3 lslh Limit-Switch Left Hardware error-flag: has the value 1, when a digital input

(as LSL_TOM or LSL_SMA planned) is active.
4 lsrh Limit-Switch Right Hardware error-flag: has the value 1, when a digital input

(as LSR_TOM or LSR_SMA planned) is active.
5 lsls Limit-Switch left software error-flag: has the value 1, when the left software limit is

exceeded. The left software limit is filed in the axis-specific system parameter {sll}. For this
flag to become active, two additional conditions must be satisfied: the software limit must
be planned with one of the functions TOM, SMA or SMD, and the shp() command must
heave been executed bevorehand.

6 lsrs Limit-Switch right software error-flag: has the value 1, when the right software limit is
exceeded. The right software limit is filed in the axis-specific system parameter {slr}. For
this flag to become active, two additional conditions must be satisfied: the software limit
must be planned with one of the functions TOM, SMA or SMD, and the shp() command
must heave been executed bevorehand.

7 mpe Maximum Position error-flag: has the value 1, when the permissible position error has been
exceeded. The maximum permitted position error is specified in system parameter {mpe}.
The PCAP commands wrmpe() and rdmpe() can be used to alter the parameter even
during run time.

8 dhef Data Handling error-flag: has the value 1, when a data error (e.g. inconsistent profile data)
is detected by the rw_TOS operating system.
If this error occurs, the control loops of the axis concerned in each case are opened.
Closing of the control loop is possible only after a system restart (mcbt.exe) or after the ra()
[chapter ra, reset axis4.4.25] or rs() [chapter 4.4.67] has been executed.

9 cef Data Configuration error-flag. The cef flag is set when the information for operating modes,
signal processing or CPU number on the PA8000 do not agree with the system data
(system.dat). The configuration-check is carried out automatically after the following
events:
� after every reset statement (e.g. PCAP-Befehl rs())
� after every transfer of the system.dat system file with the PCAP command txbf().

The cause of the error can be eliminated by saving the system data in the [Save Changes]
menu.

10..11 Not assigned, these flags always have the value 0.
12 pe Profile-End status-flag: has the value 1, when the end of the profile has been reached.
13 cl Closed-Loop status-flag: has the value 1, when the axis channel is in position control.
14 ip In-Position Status-flag: has the value 1, when the profile end has been reached and in

addition the difference of setpoint and actual position of the axis channel is smaller then the
position differential contained in the axis-specific system parameter {ipw}.

15 ui User Input status-flag: has the value 1, when a digital input (as UI-planned) is active.
16 lpsf The Latch Position Synchronous Flag indicates that latching has occured synchronously to

the sampling cycle [chapter 4.4.15], or that a digital input (planned with the LP function) has
been activated [OM / chapter 4.4.3.1].

17..31 Not assigned, these flags always have the value 0.

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 39

4.4.28 rdaxstb, read axis status bit

TURBO PASCAL: function rdaxstb(an:integer; bitnr:integer; softint:integer):boolean;

C: int rdaxstb(int an, int bitnr, int softint);

DESCRIPTION: This function can be used to interrogate one piece of the axis status-information of
the PA8000. The axis number must be specified in the an parameter
(0, 1, ... REALAXIS).

RETURN VALUE: The function returns the value 1 or TRUE, if the relevant input of bitnr is active.
Assignment of bitnr to the axis status information involved is described in Table 15,
but in the case of bitnr counting starts with the value 1, so that to interrogate pe, for
example, bitnr must have the value 13!

NOTE: [OM / chapter 4.4.8.1], [OM / chapter 4.4.8.3] and the PCAP command rdaxst()

4.4.29 rdcbcnct, read common buffer CNC-Task

TURBO PASCAL: function rdcbcnct(var cbcnct:CBCNCT; softint:integer):integer;

C: int rdcbcnct(struct CBCNCT far *cbcnct, int softint);

DESCRIPTION: Each CNC task has a local memory area, referred to as the "Common Buffer",
which can be read and written both by the CNC task involved, and by a PCAP
program.
This function can be used to read in the complete CNC-task-specific buffer (or part
of it). The function parameter cbcnct is used to select the CNC task buffer, the
read-in size in bytes, and the memory address where this block is to be read in.

RETURN VALUE: The rdcbcnct() function has the following bit-coded return value:
Bit 0: 1 when invalid Task Number
Bit 1: 1 when maximum permitted buffer size exceeded

This means that the function normally returns the value 0.

NOTE: The CNC-task-specific buffer size is 1000 bytes.
The record structure of CBCNCT is described in chapter 4.3.2.8.
PCAP command wrcbcnct(), SAP commands RDCBx() and WRCBx()

40 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.30 rdcd, read common double

TURBO PASCAL: procedure rdcd(ndx: integer; var cdbuf:CDBUF; softint:integer);

C: void rdcd(int ndx, struct CDBUF far *cdbuf, int softint);

DESCRIPTION: This function can be used to read in predefined variables of the CNC task. The
variables concerned are the rw_SymPas variables CD0 .. CD99. The first
parameter here specifies the number -index- of the variable you want to have read
in. The value range of index here is 0 to 99. The second parameter is a pointer to a
field with 100 double variables.

RETURN VALUE: The rdcd() command enters the current value of the relevant CD variable in the field
specified with index.

NOTE: The content of all common variables remains stored in memory even after a system
reset operation, executed by the rs() command, for example. If you do not want
this, you should set the variables concerned to the value you want when starting
the program.

4.4.31 rdci, read common integer

TURBO PASCAL: procedure rdci(ndx: integer; var cibuf:CIBUF; softint:integer);

C: void rdci(int ndx, struct CIBUF far *cibuf, int softint);

DESCRIPTION: This command is identical to the PCAP command rdcd(), except that here it is not
values of the double type that are read in, but of the LONGINT type. The values
concerned are the rw_SymPas variables CI0 .. CI99.

4.4.32 rdcncts, read computerized numeric controller task status

TURBO PASCAL: procedure rdcncts(TaskNr:integer; var cncts:CNCTS; softint:integer):integer;

C: void rdcncts(int TaskNr, struct CNCTS far *cncts, int softint);

DESCRIPTION: This command can be used to interrogate the current status of the CNC task
selected in TaskNr (values 0..3). After this command has been executed, the
results can be found in the structure/record CNCTS.

RETURN VALUE: The return values obtained in CNCTS after rdcncts() has been executed are
described in chapter 4.3.2.9.

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 41

4.4.33 rdigi, reset digital inputs

TURBO PASCAL: procedure rdigi(var tsrp:TSRP; softint:integer);

C: void rdigi(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].digi
n = 0 .. number of axes -1

DESCRIPTION: This function can be used to reset axis-specific status information(s) filed in digi.

NOTE: rddigi() [chapter 4.4.34]

4.4.34 rddigi, read digital inputs

TURBO PASCAL: procedure rddigi(var tsrp:TSRP; softint:integer);

C: void rddigi(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].digi
n = 0 .. Number of axes -1

DESCRIPTION: This function you can be used to interrogate the following signal states:

� The current status of the 16 digital inputs of the PA8000
� The current status of the zero-track (index) signal from the incremental

coder
� An error of the measured-value-acquisition system put into intermediate

storage
� An edge of the zero-track (index) signal from the incremental coder put into

intermediate storage
� An edge of the hardware latch signal (strobe) put into intermediate storage

If an input is active, this will be indicated by the bit concerned having the value 1.
As an optional extra, all digital inputs in the mcfg.exe TOOLSET program can be
planned with inversion. It is likewise possible to plan the polarity you want when an
incremental coder with index signal is used.

RETURN VALUE: The bit-encoded return value is located in the digi structure or record component
and is structured as described in the table printed below.

NOTE: There is no specified axis assignment for the digital inputs.
Bits 16 ... 19 can be reset by means of the rdigi() command [chapter 4.4.33].
[OM / chapter 4.4.3.1] and [OM / chapter 4.4.3.2].

42 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.34.1 Axis-qualifier digi

The register digi can be used to check the state of the PA8000’s digital inputs. Active inputs have the value
1 at the concerned bit position.

Table 12: Bit-coded structure of the digi word
Bit No. Function X22/Pin
0 Input 1 9
1 Input 2 10
2 Input 3 11
3 Input 4 12
4 Input 5 13
5 Input 6 14
6 Input 7 15
7 Input 8 16
8 Input 9 42
9 Input 10 43
10 Input 11 44
11 Input 12 45
12 Input 13 46
13 Input 14 and hardware strobe signal for latching the actual position (axis channel 1) 47
14 Input 15 and hardware strobe signal for latching the actual position (axis channel 2) 48
15 Input 16 and hardware strobe signal for latching the actual position (axis channel 3) 49
16 Zero track of incremental encoder, axis-specific --
17 Error of the encoder data acquisition system, axis-specific --
18 Value of the zero-track signal from the incremental coder (axis-specific) put into

intermediate storage
--

19 Value of the latch signal (hardware strobe) (axis-specific) put into intermediate storage --
20..31 Not assigned, these flags always have the value 0 --

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 43

4.4.35 rddigib, read digital input bit

TURBO PASCAL: function rddigib(an:integer; bitnr:integer; softint:integer):boolean;

C: int rddigib(int an, int bitnr, int softint);

DESCRIPTION: This function can be used to interrogate the current state of one PA8000 digital
input and other logic signals. The axis number must be specified in the an
parameter (0, 1, ... REALAXIS).

RETRUN VALUE: The function returns the value 1 or TRUE, if the corresponding input of bitnr is
active.

NOTE: Bit numbers 17..20 can be reset via the rdigi() command [chapter 4.4.33].
[OM / chapter 4.4.3.1], [OM / chapter 4.4.3.2] and PCAP command rddigi()

Tablle 13: Assignment of bitnr to the various PA8000 digital inputs
‘bitnr’ Function X22/Pin
1 Input 1 9
2 Input 2 10
3 Input 3 11
4 Input 4 12
5 Input 5 13
6 Input 6 14
7 Input 7 15
8 Input 8 16
9 Input 9 42
10 Input 10 43
11 Input 11 44
12 Input 12 45
13 Input 13 46
14 Input 14 47
15 Input 15 48
16 Input 16 49
17 Zero track of incremental encoder, axis-specific --
18 Error of the encoder data acquisition system, axis-specific --
19 Value of the zero-track signal from the incremental coder (axis-specific) put into

intermediate storage
--

20 Value of the latch signal (hardware strobe) (axis-specific) put into intermediate storage
Strobe), achsspezifisch

--

21..32 Not assigned, these flags always have the value 0 --

4.4.36 rddigo, read digital outputs

TURBO PASCAL: procedure rddigo(var tsrp:TSRP; softint:integer);

C: void rddigo(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].digo

DESCRIPTION: This command is used to read the current output status of the PA8000 digital
outputs into the axis-specific structure/record component digo. The bits set there
represent outputs set.

RETURN VALUE: After this command has been executed the bit-coded return values are located in
the structure/record component digo. This component has the structure/record
defined in the PCAP-command wrdigo().

44 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.37 rddigob, read digital output bit

TURBO PASCAL: function rddigob(an:integer; bitnr:integer; softint:integer):boolean;

C: int rddigob(int an, int bitnr, int softint);

DESCRIPTION: This function can be used to interrogate the current state of one PA8000 digital
output. The axis number must be specified in parameter an (0, 1, ... REALAXIS).

RETRUN VALUE: This function returns the value 1 or TRUE, if the corresponding output of bitnr is
active. Assignment of bitnr to the outputs involved is shown in the PCAP command
wrdigob().

4.4.38 rddp, read desired position

TURBO PASCAL: procedure rddp(var tsrp:TSRP; softint:integer);

C: void rddp(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].dp

DESCRIPTION: The PA8000 profile generator computes an internal reference variable, referred to
as the "setpoint position" (= desired position). This can be read in with this
command. Normally, in the position control operating mode, the actual position
[chapter 4.4.60 - rdrp()] and this setpoint position must be identical, apart from
tolerable deviations.

RETURN VALUE: After the command has been executed, the setpoint position is available in the dp
field. The value is returned in the axis-specific position unit.

NOTE: This setpoint position is also utilized for setpoint/actual-differential formation, for the
automatic position error monitoring function.

4.4.39 rddv, read desired velocity

TURBO PASCAL: procedure rddv(var tsrp:TSRP; softint:integer);

C: void rddv(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].dv

DESCRIPTION: This function returns the axis-specific setpoint velocity of the PA8000 profile
generator. In best case the value read in corresponds to the real axis velocity
(actual velocity).

RETRUN VALUE: After the command has been executed, the setpoint velocity is available in the dv
register with the axis-specific velocity unit.

NOTE: The setpoint velocity can only be influenced by corresponding traversing
commands.

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 45

4.4.40 rdepc, read EEPROM programming cycle

TURBO PASCAL: procedure rdepc(var tsrp:TSRP; softint:integer);

C: void rdepc(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].epc

DESCRIPTION: This function can be used to read the instantaneous number of PA8000
programming cycles. The cycle number is increased by one in the EEPROM for
every save operation in the TOOLSET programm mcfg.exe. The EEPROM can be
written at least 10000 times.

RETURN VALUE: After this command has been executed, the current programming cycle number is
in the structure/record component epc.

4.4.41 rdf, read filter

TURBO PASCAL: procedure rdf(var tsrp:TSRP; softint:integer);

C: void rdf(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].kp, TSRP[n].ki, TSRP[n].kd, TSRP[n].kpl, TSRP[n].kfca, TSRP[n].kfcv
n = 0 .. number of axes present-1

DESCRIPTION: This command can be used to read in the current axis-specific PIDF filter
coefficients of the PA8000. The default values of these coefficients are specified
using the TOOLSET program mcfg.exe.

RETURN VALUE: After the command has been executed, the return values are in the TSRP
structure/record components listed above.

NOTE: You will find further details on the PIDF filter in chapter 2.1.2, [OM / chapter 4.1.1]
and [CM / chapter 5.2].
PCAP command uf()

4.4.42 rdgf, read gear factor

TURBO PASCAL: procedure rdgf(var tsrp:TSRP; softint:integer);

C: void rdgf(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].gf

DESCRIPTION: This function returns the axis-specific gear factor {gf}. The default value is specified
using the TOOLSET program mcfg.exe.

RETURN VALUE: After the command has been executed, the factor is available in the gf field with the
axis-specific unit.

NOTE: The gear factor can be set at any time with the PCAP command wrgf().

46 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.43 rdhac, read home acceleration

TURBO PASCAL: procedure rdhac(var tsrp:TSRP; softint:integer);

C: void rdhac(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].hac

DESCRIPTION: This command can be used to read in the axis-specific reference travel acceleration
hac. The default value is specified using the TOOLSET program mcfg.exe.

RETURN VALUE: After the command has been executed, the reference travel acceleration is
available in the hac field. The value is returned in the axis-specific acceleration unit.

NOTE: The reference travel acceleration can be set at any time with the PCAP command
wrhac().

4.4.44 rdhvl, read home velocity

TURBO PASCAL: procedure rdhvl(var tsrp:TSRP; softint:integer);

C: void rdhvl(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].hvl

DESCRIPTION: This command can be used to read in the axis-specific reference travel velocity hvl.
The default value is specified using the TOOLSET program mcfg.exe.

RETURN VALUE: After the command has been executed, the reference travel velocity is available in
the hvl field. The value is returned in the axis-specific velocity unit.

NOTE: The reference travel velocity can be set at any time with the PCAP command
wrhvl().

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 47

4.4.45 rdifs, read interface status

TURBO PASCAL: procedure rdifs(var tsrp:TSRP; softint:integer);

C: void rdifs(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].ifs

DESCRIPTION: This command can be used to read in status information of the PA8000.

RETURN VALUE: The bit-coded return value is located in the structure/record component ifs and has
the structure described in the table below.

NOTE: [OM / chapter 4.4.8.5]

4.4.45.1 Axis qualifier ifs

This register can be used to interrogate various pieces of status information for the PA8000. If the status
information concerned is valid, this is indicated by the value 1 at the bit position involved.

Table 14: Bit-coded structure of the ifs word
Bit No. Function
0 edv: the system information and data filed in the EPROM are valid.
16 pfe: The Power Fail Error flag is set to "1" whenever the operating voltage at the PA8000 falls below

a threshold voltage of 4.75 V. After the module is switched on, the flag is likewise set to "1".
17 wdog: The Watchdog flag is set to "1" if the watchdog logic on the PA8000 has been tripped..
18 iae: The Invalid Access Error flag is set to "1" if an invalid access operation has taken place within

the rw_TOS operating system software.
19..31 Not assigned, these flags always have the value 0

Note: In an initialization routine of the rw_TOS firmware, error flags 16 ... 18 are copied from an internal logic
register into the ifs register. The logic register is then erased, i.e. the flags are no longer available after a
second booting routine (mcbt.exe). The flags can also be reset by the rifs() command [chapter 4.4.66].

4.4.46 rdifsb, read interface status bit

TURBO PASCAL: function rdifsb(an:integer; bitnr:integer; softint:integer):boolean;

C: int rdifssb(int an, int bitnr, int softint);

DESCRIPTION: This function can be used to interrogate one piece of PA8000 interface status
information. The axis number must be specified in the an parameter (0, 1, ...
REALAXIS).

RETURN VALUE: This function returns the value 1 or TRUE, if the corresponding input of bitnr is
active.
Assignment of bitnr to the status information concerned is described in Table 14,
but in the case of bitnr counting starts with the value 1, i.e. to interrogate edv, for
example, bitnr has to have the value 1!

NOTE: [OM / chapter 4.4.8.5] and PCAP command rdifs()

48 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.47 rdipw, read in position window

TURBO PASCAL: procedure rdipw(var tsrp:TSRP; softint:integer);

C: void rdipw(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].ipw

DESCRIPTION: This function returns the axis-specific In-Position Window.

NOTE: After the comand has been executed, the In-Position Window is available in the ipw
register in the axis-specific position unit.
PCAP command wripw()

4.4.48 rdirqpc, read interrupt request PC

TURBO PASCAL: function rdirqpc(softint:integer):integer;

C: int rdirqpc(int softint);

DESCRIPTION: This command can be used to interrogate the instantaneous status of the interrupt
source generated on the PA8000. If the interrupt is active, the function returns the
value 1, otherwise the value 0.

NOTE: The interrupt can be set or reset by the system variable IRQPC using an SAP
program [chapter 6.3.1.1 - PC interrupt generation].

4.4.49 rdjac, read jog accleration

TURBO PASCAL: procedure rdjac(var tsrp:TSRP; softint:integer);

C: void rdjac(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].jac

DESCRIPTION: This command can be used to read in the axis-specific jog acceleration jac. The
default value is specified using the TOOLSET program mcfg.exe.

RETURN VALUE: After the command has been executed, the jog acceleration is available in the jac
field. The value is returned in the axis-specific acceleration unit.

NOTE: The jog acceleration can be set at any time with the PCAP command wrjac().

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 49

4.4.50 rdjtvl, read jog target velocity

TURBO PASCAL: procedure rdjtvl(var tsrp:TSRP; softint:integer);

C: void rdjtvl(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].jtvl

DESCRIPTION: This command can be used to read in the axis-specific jog target velocity jtvl. The
default value is specified using the TOOLSET program mcfg.exe.

RETURN VALUE: After the command has been executed, the jog target velocity is available in the jtvl
field. The value is returned in the axis-specific velocity unit.

NOTE: The jog target velocity can be set at any time using the PCAP command wrjtvl().

4.4.51 rdjvl, read jog velocity

TURBO PASCAL: procedure rdjvl(var tsrp:TSRP; softint:integer);

C: void rdjvl(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].jvl

DESCRIPTION: This command can be used to read in the axis-specific jog velocity jvl. The default
value is specified using the TOOLSET program mcfg.exe.

RETURN VALUE: After the command has been executed, the jog velocity is available in the jvl field.
The value is returned in the axis-specific velocity unit.

NOTE: The jog velocity can also be set at any time using the PCAP command wrjvl().

4.4.52 rdledgn, read led green

TURBO PASCAL: function rdledgn(softint:integer):integer;

C: int rdledgn(int softint);

DESCRIPTION: This function can be used to read in the current state of LED D4 (PA8000,
masterboard, green).

RETURN VALUE: The function's return value is 1, provided the LED is switched on, otherwise it is 0.

NOTE: PCAP command wrledgn(), system variable LEDGN

50 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.53 rdledrd, read led red

TURBO PASCAL: function rdledrd(softint:integer):integer;

C: int rdledrd(int softint);

DESCRIPTION: This function can be used to read in the current state of LED D2 (PA8000,
masterboard, red).

NOTE: PCAP command wrledrd(), system variable LEDRD

4.4.54 rdledyl, read led yellow

TURBO PASCAL: function rdledyl(softint:integer):integer;

C: int rdledyl(int softint);

DESCRIPTION: This function can be used to read in the current state of LED D3 (PA8000,
masterboard, yellow).

NOTE: PCAP command wrledyl(), system variable LEDYL

4.4.55 rdlp, read latched position

TURBO PASCAL: procedure rdlp(var tsrp:TSRP; softint:integer);

C: void rdlp(struct TSRP far *tsrp, int softint);

TSRP-KOMPONENTEN: TSRP[n].lp

DESCRIPTION: This function returns the axis-specific latch position. The latching procedure can be
triggered by various mechanisms:
1. When an input planned with LP function is activated. Here, the maximum time
delay is two scan intervals (2.56 ms). A new latching procedure will only be enabled
after the latching input has been de-activated.
2. If an lps() PCAP command [chapter 4.4.15] has previously been executed and
the time delay specified there in the mst parameter has elapsed.
3. In real time (max. 1 µs time delay) by means of default-setting digital inputs of the
PA8000. A new latching procedure will only be enabled after the latching input has
been de-activated.
In all these methods, the actual position {rp} of the motor axis is put into
intermediate storage.

RETURN VALUE: After the function has been executed, the latch position is available in the lp register
in the axis-specific position unit.
The priority of the three methods is the same as the order of their listing, i.e.
realtime latching has top priority.

REMARK: PCAP command wrlp()

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 51

4.4.56 rdlpndx, read latched position index

TURBO PASCAL: procedure rdlpndx(var tsrp:TSRP; softint:integer);

C: void rdlpndx(struct TSRP far *tsrp, int softint);

TS COMPONENTS: TSRP[n].lp

DESCRIPTION: This function returns the axis-specific latch position of the index signal (zero track).
When the incremental coder's zero track is activated, the actual position {rp} of the
motor axis in real time is put into intermediate storage.

RETURN VALUE: After the function has been executed, the latch position is available in the lp register
in the axis-specific position unit.

REMARK: Latching of the incremental coder's zero track is helpful in the coder verification
routine and for reference travel programming.
PCAP coommand wrlpndx()

4.4.57 rdlsm, read left spool memory

TURBO PASCAL: procedure rdlsm(var tsrp:TSRP; softint:integer);

C: void rdlsm(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].lsm

DESCRIPTION: This command returns the free spool area in bytes. By means of a PCAP or SAP-
application program, the freely available spool area can be interrogated at any time
you want, and reloaded if necessary. This enables you to load very large traversing
profiles without interrupting profile generation. The spool area is loaded with spool
commands, using both programming methods (PCAP and SAP). All spool
commands cause the freely available spool area to decrease, and all commands
executed from the spool area cause it to grow again.

NOTE: The spooler size is axis-specific, i.e. the free spool area of the individual axis
channels may vary significantly. Approx. 145 kByte of spool area are available for
each axis channel.

52 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.58 rdmcp, read motor command port

TURBO PASCAL: procedure rdmcp(var tsrp:TSRP; softint:integer);

C: void rdmcp(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].mcp

DESCRIPTION: This command can be used to read in the current command values of the Motor-
Command-Ports.

RETURN VALUE: The return value is available in the mcp field after the command has been
executed.

In the case of servo axes, a value in the range -32767 .. 32767 is returned. This
corresponds to a setpoint output voltage of approx. -10V .. +10V.

In the case of stepping motor axes, this value is a time-delay, which is determinant
for the stepping frequency outputted. The time-delay can be converted into the unit
[s] as follows:

tver = (mcp+1) / CLOCK;

Example: with mcp = 12499 and CLOCK = 25mhz
tver = 0.5ms and f = 1khz

Each time the time-delay tver elapses, the pulse signal is switched over, i.e. after
2*tver a stepping signal with f = 1 / (2*tver) [Hz] is outputted. The value returned in
mcp lies within the range of -1048575 .. +1048575. The sign determines the current
sense of rotation, i.e. for computing tver only the absolute value of mcp must be
utilized. If the value 0 is returned in mcp, this means that no stepping signal is being
outputted, i.e. the motor is at a standstill.

4.4.59 rdmpe, read maximum position error

TURBO PASCAL: procedure rdmpe(var tsrp:TSRP; softint:integer);

C: void rdmpe(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].mpe

DESCRIPTION: This function returns the axis-specific position error limit value.

NOTE: After the function has been executed, the maximum permitted position error is
available in the mpe register in the axis-specific position unit.
PCAP command wrmpe()

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 53

4.4.60 rdrp, read real position

TURBO PASCAL: procedure rdrp(var tsrp:TSRP; softint:integer);

C: void rdrp(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].rp

DESCRIPTION: This function returns the axis-specific current position (= actual position or real
position). The position can be read out at any time you want, even while the axis is
being moved. A new actual value is available in each scan cycle (1.28 ms).

NOTE: After the function has been executed, the current position is available in the rp
register in the axis-specific position unit

4.4.61 rdsdec, read stop deceleration

TURBO PASCAL: procedure rdsdec(var tsrp:TSRP; softint:integer);

C: void rdsdec(struct TSRP far *tsrp, int softint);

TSRP-KOMPONENTEN: TSRP[n].sdec

DESCRIPTION: This command returns the axis-specific stop deceleration sdec.
The default value is specified using the TOOLSET program mcfg.exe.

RETURN VALUE: After the command has been executed the stop deceleration is available in the
sdec field. The value is returned in the axis-specific acceleration unit.

NOTE: The stop deceleration can be set at any time using the PCAP-command wrsdec().

4.4.62 rdsll, read software limit left

TURBO PASCAL: procedure rdsll(var tsrp:TSRP; softint:integer);

C: void rdsll(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].sll

DESCRIPTION: This function returns the axis-specific left software limit position.

NOTE: After the function has been executed, the left software limit position is available in
the sll register in the axis-specific position unit.
PCAP command wrsll()

54 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.63 rdslr, read software limit right

TURBO PASCAL: procedure rdslr(var tsrp:TSRP; softint:integer);

C: void rdslr(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].slr

DESCRIPTION: This function returns the axis-specific right software limit position.

NOTE: After the function has been executed, the right software limit position is available in
the slr register in the axis-specific position unit.
PCAP command wrslr()

4.4.64 rdtp, read target position

TURBO PASCAL: procedure rdtp(var tsrp:TSRP; softint:integer);

C: void rdtp(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].tp

DESCRIPTION: This function can be used to interrogate the axis-specific target position. The target
position is always returned as an absolute distance or angle quantity.

NOTE: After the function has been executed, the target position of the last traversing
command is available in the tp register in the axis-specific position unit. This
command is used for monitoring purposes only.

4.4.65 rdtrovr, read trajectory override

TURBO PASCAL: procedure rdtrovr(var value:double; softint:integer);

C: void rdtrovr(double *value, int softint);

DESCRIPTION: This command reads a state variable of the currently set trajectory velocity
correction value, which is taken into account for all interpolation commands (move
commands) and the correspondingly selected axes (PCAP command utrovr()).

RETURN VALUE: After the command has been executed, the trajectory velocity correction value will
be in the value variable.

NOTE: PCAP commands utrvr(), wrtrovr(), wrjovr(), rdtrovr() and rdjovr()

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 55

4.4.66 rifs, reset interface status register

TURBO PASCAL: procedure rifs(var tsrp:TSRP; softint:integer);

C: void rifs(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].ifs

DESCRIPTION: This command causes various error flags in the PA8000 interface status register ifs
(error bits 16, 17, 18 - pfe, wdog, and iae) to be reset. Resetting should be
performed only in exceptional situations, e.g. in an error monitoring routine.

NOTE: [chapter 4.4.45- rdifs()]

4.4.67 rs, reset system

TURBO PASCAL: procedure rs(softint:integer);

C: void rs(int softint);

DESCRIPTION: This command causes the complete axis system to be reset. The digital outputs
are set to the default values planned with the aid of the TOOLSET program
mcfg.exe. On the setpoint value channels 0 V output voltage is outputted in the
case of servo axes, and 0 Hz stepping frequency in the case of stepping motor
axes. The position control loop is opened for all axes. The spooler data are rejected
in their entirety. All CNC task are halted. All software limits planned will no longer be
monitored. All override factors (PCAP commands wrjovr() and wrtrovr()) are set to
the value 1.0.

NOTE: All system data, like accelerations, velocities, filter parameters, etc. remain stored
in memory, and therefore need not be loaded again.
The status flags in register ifs are not influenced by this command.
The contents of all common integers and double variables are retained.

4.4.68 sdels, spooler delete synchronous

TURBO PASCAL: procedure sdels(var as:AS; softint:integer);

C: void sdels(struct AS far *as, int softint);

DESCRIPTION: All commands entered in the spooler will be rejected. The entire spooler area is
again freely available. Spooler data rejection takes place for the axes specified in
AS.

NOTE: The ongoing operation, like a traversing command, will be concluded.

56 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.69 shp, set home position

TURBO PASCAL: procedure shp(var tsrp:TSRP; softint:integer);

C: void shp(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].tp
n = 0 .. number of axes present-1

DESCRIPTION: This command can be used to set the axis-specific zero (home position). The tp
parameter is stated in the axis-specific position unit. The command is generally
used after a reference search run for setting the machine zero. It can be executed
in both operating modes: control loop open and control loop closed. In order to
prevent jerky motor movements, however, it should not be used while the selected
axis channel is being moved.

NOTE: Until the first time this command is executed, the software limits planned are not
being monitored. This means that before execution of the shp() command a
reference travel can be carried out using all move and jog commands. After the
shp() command has been executed, the software limits are monitored until the next
ra() or RA() or rs() or RS command.

4.4.70 ssms, start spooled motions synchronous

TURBO PASCAL: procedure ssms(var as:AS; softint:integer);

C: void ssms(struct AS far *as, int softint);

DESCRIPTION: Spool commands can be used to transfer commands to the PA8000 individual axis
channels: they are entered in a queue. The PCAP command ssms() causes a
synchronous start for spooler command processing for all axes specified in AS.

NOTE: chapter 2.2.8.2 - Spool-Mode

4.4.71 sstps, spooler stop synchronous

TURBO PASCAL: procedure sstps(var as:AS; softint:integer);

C: void sstps(struct AS far *as, int softint);

DESCRIPTION: This command is used to interrupt command processing from the spooler for all
axis channels selected in AS.

NOTE: The current command will be processed completely.

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 57

4.4.72 startcnct, start numeric controller task

TURBO PASCAL: procedure startcnct(TaskNr:integer; softint:integer);

C: void startcnct(int TaskNr, int softint);

DESCRIPTION: This command can be used to start a previously loaded SAP program. The CNC
task selected in TaskNr (values 0..3) processes the SAP program right from its
beginning. The PCAP command txbf() can be used for loading.

NOTE: A currently running SAP program will be stopped automatically before this
command is executed.
PCAP command txbf()

4.4.73 stepcnct, step numeric controller task

TURBO PASCAL: procedure stepcnct(TaskNr:integer; softint:integer);

C: void stepcnct(int TaskNr, int softint);

DESCRIPTION: This command is used for executing an SAP program line by line.

NOTE: The PCAP command stepcnct() has not yet been implemented at present!

4.4.74 stopcnct, stop numeric controller task

TURBO PASCAL: procedure stopcnct(TaskNr:integer; softint:integer);

C: void stopcnct(int TaskNr, int softint);

DESCRIPTION: This command causes the SAP program currently being run to stop in the CNC
task selected with TaskNr (values 0..3), and de-activates this CNC task. The SAP
program can be continued with the SAP command CONTCNCT() or the PCAP
command contcnct() .

NOTE: Any EVENT handlers enabled in the SAP program will no longer be processed after
the stopcnct() command has been executed. Before this command is executed, the
drive should be put into a safe operating state.

58 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.75 txbf, transmit binary file

TURBO PASCAL: function txbf(var filename:string; softint:integer):integer;

C: int txbf(char far *filename, int softint);

DESCRIPTION: This function is used to transfer the file specified in the string or character
parameter to the PA8000 . Note, however, that only two special file types are
permitted. Firstly, the system.dat system file (or files with a compatible structure)
and secondly the autocode files (CNC files) with the file extension name ".CNC"
generated from the IDE or using the ncc.exe command line compiler.
Transferring the system.dat system file has the following results:
All axis channels will be initialized with the axis-specific system data. The filter
coefficients of the PIDF filter will be recomputed, as with the PCAP command uf().
These system data can also be edited in the TOOLSET program mcfg.exe. Any
system variables previously altered (e.g. axis-specific velocities, accelerations, etc.)
are overwritten again by this command.
Important! Transferring CNC files has the following result: the current program
main memory of a CNC task is overwritten with the contents of the specified
autocode file. This is why the task concerned is automatically halted before the load
operation. The CNC file also contains the information on which task it has to be
loaded into (Task 0..3). After the CNC file has been successfully transferred, it can
be started with the PCAP command startcnct() or the PCAP command
STARTCNCT().

NOTE: Normally, the system.dat system file need be loaded only once per system start.
Please see the particulars given for the PCAP command mcuinit() in this context. If
you want, you can specify drive and path names in the filename parameter.

RETURN VALUE: The function can return the following values:

Return value Error description
0 No error
1 Invalid function code
2 File not found
3 Path not found
4 Too many files opened
5 Access refused
6 Invalid file handle
12 Invalid access
20 File too large for CNC task main memory
21 Invalid file type! (Not an SAP file nor a system file)

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 59

4.4.76 uf, update filter

TURBO PASCAL: procedure uf(var tsrp:TSRP; softint:integer);

C: void uf(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].kp, TSRP[n].ki, TSRP[n].kd, TSRP[n].kpl, TSRP[n].kfca, TSRP[n].kfcv
n = 0 .. number of axes present-1

DESCRIPTION: You can use this command to set the PA8000 PIDF filter for specific axes. Before
the command is executed, you must make sure that all the structure components
listed above have been initialized. This command can be executed at any time,
even during profile generation. This characteristic enables the system to be
matched to different load conditions in real time.

NOTE: You will find more details on the PIDF filter in Chapter 2.1.2, [OM / chapter 4.1.1]
and [CM / chapter 5.2] PCAP command rdf()

4.4.77 utrovr, update trajectroy override

TURBO PASCAL: procedure utrovr(var as:AS; softint:integer);

C: void utrovr(struct AS far *as, int softint);

DESCRIPTION: The velocity override currently set for all axis channels selected in AS is taken into
account.

NOTE: You will find further information under the PCAP command wrtrovr().

4.4.78 wrcbcnct, write common buffer CNC-Task

TURBO PASCAL: function wrcbcnct(var cbcnct:CBCNCT; softint:integer):integer;

C: int wrcbcnct(struct CBCNCT far *cbcnct, int softint);

DESCRIPTION: Each CNC task has a local memory area (referred to as the "Common Buffer"),
which can be read and written both by the CNC task concerned and by a PCAP
program.
This function can be used to write the complete CNC-task-specific buffer (or only a
part of it). The cbcnct function parameter is used to select the CNC task buffer, the
number of bytes to be written, and the start address of the block which is to be
transferred to the PA8000.

RETURN VALUE: The wrcbcnct() function has the following bit-coded return value:
Bit 0: 1 if task number invalid
Bit 1: 1 if maximum permitted buffer size exceeded

This means that the function in normal circumstances returns the value 0.

NOTE: The CNC-task-specific buffer size is 1000 bytes.
The record structure for CBCNCT is shown in Chapter 4.3.2.8. PCAP command
rdcbcnct(), SAP commands RDCBx() and WRCBx()

60 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.79 wrcd, write common double

TURBO PASCAL: procedure wrcd(ndx: integer; var cdbuf:CDBUF; softint:integer);

C: void wrcd(int ndx, struct CDBUF far *cdbuf, int softint);

DESCRIPTION: This function can be used for write access operations to the common variables,
which are predefined variables of the CNC task. The variables concerned are the
rw_SymPas system variables CD0 .. CD99. The first parameter here specifies the
number ndx of the double variable to be written. The value range of ndx here is 0 to
99. The second parameter is a pointer to the CDBUF structure with 100 double
variables. Before the command is executed, the variable to be written must be
initialized with the appropriate value you want.

NOTE: The content of all common variables remains stored in memory even after a system
reset operation, which is executed by the rs() command, for example. If you do not
want this, you should set the variables concerned to the values you want when you
start the program.

4.4.80 wrci, write common integer

TURBO PASCAL: procedure wrci(ndx: integer; var cibuf:CIBUF; softint:integer);

C: void wrci(int ndx, struct CIBUF far *cibuf, int softint);

DESCRIPTION: This command is identical to the PCAP command wrcd(), except that here the
variables concerned are the rw_SymPas system variables CI0 .. CI99 of the
LONGINT type.

NOTE: PCAP command wrcd()

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 61

4.4.81 wrdigo, write digital outputs

TURBO PASCAL: procedure wrdigo(var tsrp:TSRP; softint:integer);

C: void wrdigo(struct TSRP far *tsrp, int softint);

TSR COMPONENTS: TSRP[n].digo

DESCRIPTION: This register can be used to set the digital outputs of the PA8000

Attention! The digital outputs of the PA8000 are not grouped axis-specifically.
If you want to set an output, you do this by setting the bit concerned. The bit-coded
structure of the digo status word can be found in the table below:

Table 16: Bit-coded structure of the status word digo
Bit No. Function Connector X22 / PIN
0 Output 1 26
1 Output 2 27
2 Output 3 28
3 Output 4 29
4 Output 5 30
5 Output 6 31
6 Output 7 32
7 Output 8 33
8..31 Not assigned --

4.4.82 wrdigob, write digital output bit

TURBO PASCAL: procedure wrdigob(an:integer; bitnr:integer; value: boolean; softint:integer);

C: wrdigob(int an, int bitnr, int value, int softint);

DESCRIPTION: This function can be used to set or reset one PA8000 digital output. The axis
number must be specified in the an parameter (0, 1, ... REALAXIS). The output is
reset with the value 0 or FALSE.

NOTE: PCAP command wrdigo()

Table 17: Assignment of bitnr to the PA8000 digital outputs involved
‘bitnr’ Function Connector X22 / PIN
1 Output 1 26
2 Output 2 27
3 Output 3 28
4 Output 4 29
5 Output 5 30
6 Output 6 31
7 Output 7 32
8 Output 8 33
9..32 Not assigned --

62 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.83 wrdp, write desired position

TURBO PASCAL: procedure wrdp(var tsrp:TSRP; softint:integer);

C: void wrdp(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].dp

DESCRIPTION: You can use this command to write the axis-specific setpoint position (dp). This
command is never normally needed, and should be used only in quite exceptional
cases, like testing or commissioning jobs. Alteration of the setpoint position is
operative only in the position control operating mode. If there are significant
differences between this setpoint position (dp) and the current position (rp), you
must anticipate that the motor will be corrected to this position at maximum system
acceleration.

NOTE: Writing the setpoint position (dp) during execution of motion commands may lead to
uncontrolled process behaviour, and should therefore be avoided.
PCAP command rddp()

4.4.84 wrgf, write gear factor

TURBO PASCAL: procedure wrgf(var tsrp:TSRP; softint:integer);

C: void wrgf(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].gf

DESCRIPTION: You can use this command for resetting the axis-specific gear factor in the
appropriate unit. This is necessary, for example, with indexing mechanisms or
runtime-entailed alterations to system variables, like workpiece or tool dimensions
or other correction factors.

NOTE: Remember that (particularly if there are large alterations in the gear factor) the
current axis-specific acceleration and velocity parameters have to be matched to
this new factor, since this is utilized for converting these system parameters.
The value currently set for gf can be read with the PCAP command rdgf().

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 63

4.4.85 wrhac, write home acceleration

TURBO PASCAL: procedure wrhac(var tsrp:TSRP; softint:integer);

C: void wrhac(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].hac

DESCRIPTION: You use this command to set the axis-specific maximum acceleration hac for all
reference travel commands (home commands). If this command is not executed,
the system will work with the system parameter specified in the TOOLSET program
mcfg.exe. The system parameter can be overwritten any time you want.

NOTE: The value currently set for hac can be read with the PCAP command rdhac().

4.4.86 wrhvl, write home velocity

TURBO PASCAL: procedure wrhvl(var tsrp:TSRP; softint:integer);

C: void wrhvl(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].hvl

DESCRIPTION: You use this command to set the axis-specific maximum velocity with the aid of the
hvl variable for all reference travel commands (home commands). If this command
is not executed, the system will work with the system parameter specified in the
TOOLSET program mcfg.exe. The system parameter can be overwritten any time
you want.

NOTE: The value currently set for hac can be read with the PCAP command rdhvl().

4.4.87 wripw, write in position window

TURBO PASCAL: procedure wripw(var tsrp:TSRP; softint:integer);

C: void wripw(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].ipw

DESCRIPTION: This command can be used to alter (during the run time) the In-Position Window
{ipw} specified using the TSW program mcfg.exe. The window is re-specified to the
value set in ipw. The value is stated in the axis-specific position unit.

NOTE: The "In-Position-Window“ is monitored only when a value greater than 0.0 has been
specified.
[OM / chapter 4.4.2.12]
PCAP command rdipw()

64 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.88 wrjac, write jog acceleration

TURBO PASCAL: procedure wrjac(var tsrp:TSRP; softint:integer);

C: void wrjac(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].jac

DESCRIPTION: This command is identical to the PCAP command wrhac(), except that here the
maximum system acceleration is specified for all jog commands using the jac
variable.

NOTE: The value currently set for jac can be read with the PCAP command rdjac().

4.4.89 wrjovr, write jog override

TURBO PASCAL: procedure wrjovr(var trsp:TSRP; softint:integer);

C: void wrjovr(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].jovr

DESCRIPTION: This command sets the axis-specific velocity correction value. This correction value
is taken into account in all jog commands. The jovr parameter must have a value
greater than 0.0. All values smaller than 1.0 will result in a reduction in axis velocity.
If value has a value greater than 1.0, this will be manifested in an increased
velocity.

NOTE: Remember that the specified correction value acts equally on the current axis
acceleration. If the correction value is increased or reduced too rapidly, this may be
manifested in an acceleration jump (jerk) of the axis. The correction factor should
therefore be incremented or decremented in linear mode over time-delay loops,
until the final value you want has been reached. For execution of the PCAP
commands ra(), rs() or SAP commands RA(), RS, the override factor is initialized to
the default value of 1.0.
PCAP command rdjovr()

4.4.90 wrjtvl, write jog target velocity

TURBO PASCAL: procedure wrjtvl(var tsrp:TSRP; softint:integer);

C: void wrjtvl(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].jtvl

DESCRIPTION: This command is used to set the axis-specific target velocity (jog) with the aid of the
jtvl variable for the jog commands ja() and jr(). If this command is not executed, the
system will work with the system parameter specified in the TOOLSET program
mcfg.exe. The system parameter can be overwritten any time you want.

NOTE: The value currently set for jtvl can be read with the PCAP command rdjtvl().

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 65

4.4.91 wrjvl, write jog velocity

TURBO PASCAL: procedure wrjvl(var tsrp:TSRP; softint:integer);

C: void wrjvl(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].jvl

DESCRIPTION: This command is identical to the PCAP command wrhvl(), except that here the
maximum traversing velocity is specified using the jvl variable for all jog commands.

NOTE: The value currently set for jvl can be read with the PCAP command rdjvl().

4.4.92 wrledgn, write led green

TURBO PASCAL: procedure wrledgn(value:integer; softint:integer);

C: void wrledgn(int value, int softint);

DESCRIPTION: This command can be used to switch the green LED D4 (PA8000 masterboard) on
and off. It is switched on with the value 1, and switched off with the value 0.

NOTE: This command is primarily used as a testing and diagnostic tool.

4.4.93 wrledrd, write led red

TURBO PASCAL: procedure wrledrd(value:integer; softint:integer);

C: void wrledrd(int value, int softint);

DESCRIPTION: as for PCAP command wrledgn(), but for the red LED D2

4.4.94 wrledyl, write led yellow

TURBO PASCAL: procedure wrledyl(value:integer; softint:integer);

C: void wrledyl(int value, int softint);

DESCRIPTION: as for PCAP command wrledgn(), but for the yellow LED D3

66 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.95 wrlp, write latched position

TURBO PASCAL: procedure wrlp(var tsrp:TSRP; softint:integer);

C: void wrlp(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].lp

DESCRIPTION: This command is used to set the axis-specific latch position to the value set in lp.
The value is specified in the axis-specific position unit.

NOTE: PCAP-Befehl rdlp()

4.4.96 wrlpndx, write latched position index

TURBO PASCAL: procedure wrlpndx(var tsrp:TSRP; softint:integer);

C: void wrlpndx(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].lp

DESCRIPTION: This command is used to set the axis-specific latch position of the zero track
(index) to the value set in lp. The value is specified in the axis-specific position unit.

NOTE: PCAP command rdlpndx()

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 67

4.4.97 wrmcp, write motor command port

TURBO PASCAL: procedure wrmcp(var tsrp:TSRP; softint:integer);

C: void wrmcp(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].mcp

DESCRIPTION: This command is used to write the Motor-Command-Port to the value set in the
mcp field. You will find this particularly helpful during commissioning work, if you
want to check the drive system's setpoint value channel, for example. In idle mode
(no position control), the motor axis can be moved with this command in
uncontrolled form. This means, for example, that you can check the drive's sense of
rotation, or check the pulse acquisition feature and limit switches for correct
functioning, and so on, before commissioning work is continued in the position
control mode.

In the case of servo axes, mcp can be set to a value between -32767 and +32767.
This value range corresponds to the analog output voltage range of -10 V to +10 V.
It may be necessary to allow for a planned inversion of the analog output signal.

In the case of stepping motor axes, mcp can be used to specify a time-delay, with
the aid of which a stepping signal for stepping motor power output stages is
generated. The frequency of this stepping signal can be computed as follows:

fPulse = CLOCK/2/(mcp+1)
Example: with mcp = 100 and CLOCK = 25mhz
fPulse = 12376[Hz]

The value range of mcp lies between -1048574 and +1048574. The sign selects the
desired traversing direction, and influences the axis-specific directional signal. For
the stepping signal fPulse, only the absolute value of mcp is determinant. Remember
that the value 0 in mcp causes a stepping signal of 0 Hz, i.e. the motor halts.

NOTE: If the axis system is in position control, this command will be effective at most for
the duration of a scan interval, since the Motor-Command-Ports are set to new
values after the PIDF filter has been processed.
PCAP command rdmcp()

68 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.4.98 wrmpe, write maximum position error

TURBO PASCAL: procedure wrmpe(var tsrp:TSRP; softint:integer);

C: void wrmpe(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].mpe

DESCRIPTION: This command can be used to alter, during the run time, the position error limit
{mpe} specified with the aid of the TSW program mcfg.exe. The axis-specific
maximum permitted position error is reset to the value set in mpe. The value is
specified in the axis-specific position unit.

NOTE: Position error monitoring is performed only if a value greater than 0.0 has been
specified and the control loop is closed.
[OM / chapter 4.4.2.10]
PCAP command rdmpe()

4.4.99 wrrp, write real position

TURBO PASCAL: procedure wrrp(var tsrp:TSRP; softint:integer);

C: void wrrp(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].rp

DESCRIPTION: This command sets the axis-specific current position register to the value set in rp,
and is operative only in open-loop mode (no position control). The value is specified
in the axis-specific position unit.

NOTE: This command will cause the machine zero to be shifted automatically!

4.4.100 wrsdec, write stop deceleration

TURBO PASCAL: procedure wrsdec(var tsrp:TSRP; softint:integer);

C: void wrsdec(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].sdec

DESCRIPTION: This command is used to set the axis-specific stop deceleration sdec for the
following: the PCAP command js() [chapter 4.4.14], SAP command JS() [chapter
6.6.25], the software end positions planned with SMD [OM / chapter 4.4.2.11] and
the digital inputs planned with LSL_SMD or LSR_SMD projektierten Digital-
Eingänge [OM / chapter 4.4.3.1]. If wrsdec() is not executed, the system will work
with the system parameter specified in the TOOLSET programm mcfg.exe. The
system parameter can be overwritten any time you want.

NOTE: The value currently set for sdec kann can be read with the PCAP command
rdsdec().
[OM / chapter 4.4.2.11] and [OM / chapter 4.4.3.1]

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 69

4.4.101 wrsll, write software limit left

TURBO PASCAL: procedure wrsll(var tsrp:TSRP; softint:integer);

C: void wrsll(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].sll

DESCRIPTION: This command can be used to alter, during the run time, the axis-specific left
software limit position {sll} defined with the aid of the TSW program mcfg.exe. The
left software limit is reset to the value set in sll. The value is specified in the axis-
specific position unit.

NOTE: The software limit set is taken into account only if the home position of the axis
channel involved has already been defined or is set after execution of this
command.
[OM / chapter 4.4.2.11], PCAP commands rdsll(), shp(), SAP command SHP()

4.4.102 wrslr, write software limit right

TURBO PASCAL: procedure wrslr(var tsrp:TSRP; softint:integer);

C: void wrslr(struct TSRP far *tsrp, int softint);

TSRP COMPONENTS: TSRP[n].slr

DESCRIPTION: This command is identical to the PCAP command wrsll(), but the right software limit
is redefined with the value set in the slr parameter.

4.4.103 wrtrovr, write trajectory override

TURBO PASCAL: procedure wrtrovr(var value:double; softint:integer);

C: void wrtrovr(double *value, int softint);

DESCRIPTION: This command sets the trajectory velocity correction value for all interpolation
commands (move commands). The value parameter must have a value greater
than 0.0. All values smaller than 1.0 result in a reduction in the trajectory velocity. If
value has a value greater than 1.0, this will be manifested in an increase in
trajectory velocity.
The correction value specified in value is placed in intermediate storage on the
PA8000 in a system variable, and does not become operative until after execution
of the PCAP command utrovr(), or the SAP command UTROVR(). The axis
channels selected there will be decelerated or accelerated even during trajectory
travel, depending on the value correction factor.

NOTE: Remember that the specified correction value acts equally on the current trajectory
acceleration. If the correction value is increased or decreased too quickly, this may
be manifested in an abrupt acceleration (jerk) of the axes. The correction factor
should therefore be incremented or decremented over time-delay loops in linear
mode until the final value you want has been reached. When the PCAP command
rs() or the SAP command RS is executed, the override factor is initialized to the
default value of 1.0.
PCAP commands wrtrovr(), wrjovr(), rdtrovr() and rdjovr()

70 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

4.5 Accessing the PA8000 over the I/O address area

The TOOLSET software includes library functions for the Turbo C and Microsoft C programming languages,
enabling you to access the PA8000 directly. In this case, you can create user programs which can do without
the TSR driver mcutsr.exe. Direct access is necessary, for example, if you want to use an operating system
other than DOS, such as Unix, RMX, QNX, LINUX or others. These program files may also be helpful when
using WINDOWS or WINDOWS-NT.
Note: The TOOLSET utility programs like mcfg.exe require the mcutsr.exe device driver.

4.5.1 Function libraries for PA8000 I/O programming

In the C\SRVR directory on the PA8000 TSW floppy, you will find the function libraries mcusrvr.c and
tpulink.c, plus the header files mcusrvr.h and tpulink.h.

The functions and definitions of the mcusrvr.c and mcusrvr.h files are absolutely identical to the mcutsr.c and
mcutsr.h files described in chapter 4.1, except that here the softint parameter is dispensed with for all
functions.

The tpulink.c and tpulink.h files contain library functions with which various data types and data blocks can be
transferred from and to the PA8000. The source text is properly documented, so that you should experience
no difficulty in customizing it for the hardware and software environment required.

Important: Read the information provided for the system constants TPUBASEADRESS (tpulink.h)
DOSCALLALLOWED (tpulink.h) and REALAXIS (mcusrvr.h)!

The move.c program file is the same example program as described in chapter 4.2.

4.5.2 DLL library for the PA8000 I/O programming function

The DLL library MCUDLL.DLL can be found in the DLL directory of the PA8000's TSW floppy disk. PA8000
programming can be performed with the aid of this additional library in the commonly used high-level
languages for WINDOWS programming, such as Microsoft Visual C++, Microsoft Visual Basic, Borland C++
or Borland Delphi. The DLL file runs under the WINDOWS operating systems 3.x and under WINDOWS 95.

4.5.3 Interface library for the Borland DELPHI programming language

The mcusrvr.pas unit file can be found in the DELPHI directory. This function reference library can be used,
together with the mcudll.dll DLL file described above, to write programs for the WINDOWS platforms
mentioned above.

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 71

5 The rw_SymPas programming language
for stand-alone application programming

5.1 Introduction

rw_SymPas is a programming language for creating autonomously running CNC programs (stand-alone
application programs) for the PA8000 positioning control system. The lexical and semantic grammar of
rw_SymPas is very similar to that of the Pascal programming language.

5.2 Lexical grammar

This chapter contains a formal definition of the lexical grammar used in rw_SymPas. This deals with the
word-like units of a language, referred to as »symbols« or »tokens«. The semantic grammar determines the
rules by which symbols can be combined to form expressions, statements or other units.
In rw_SymPas, the symbols are obtained as a result of the operations performed by the NCC compiler with
the user program. An rw_SymPas program is a sequence of ASCII characters representing the source code,
and written with a text editor (e.g. CNC-Edit). The basic program unit in rw_SymPas is the file, which
corresponds to a named DOS file in the memory or on the disk, and has the extension ".SRC".

5.2.1 Whitespace

In the lexical analytical phase of compiling, the source code file is parsed (broken down) into symbols and
»white space«. White space is the collective term for characters categorized as separators: blanks, tabs, line
breaks and comments. White space is used for marking the beginning and end of a symbol, but apart from
this white space is ignored.

5.2.2 Comments

Comments are text lines containing explanations on the program. They are removed from the source text
prior to parsing.
An rw_SymPas comment is a character string located after the character "{". The comment ends at the first
occurrence of the "}" character following the start symbol "{". Comments cannot be nested.
There is also an option for creating a one-line comment with two slashes "//". The comment can begin at any
point, and extends up to the next line.

72 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

5.2.3 Symbole

rw_SymPas recognizes the following kinds of symbol

Symbol:
Keyword
Designator
Qualified designator
Labels
Constant
Operator
Punctuation character (including separators)

5.2.3.1 Keywords

Keywords are words reserved for special purposes, which may not be used as normal designator names. The
table below lists all the rw_SymPas keywords.

Table 18: All rw_SymPas keywords
and begin boolean const
do double downto else
end for goto if
integer label mod module
not or procedure repeat
shl shr single then
timer to until var
while xor

5.2.3.2 Designators

Designators can consist of the following elements:

Designator
Non-figure
Designator non-figure
Designator figure

Non-figure: one of the following characters
a b c d e f g h i j k l m n o p q r s t u v w x y z _
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Figure: one of the following characters
0 1 2 3 4 5 6 7 8 9

Examples:

A, AA, AB, A1, A2, _A // valid
1A, ?B // invalid

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 73

5.2.3.2.1 Name and length restrictions

Designators can be any names of any length for variables, procedures, label names, etc. Designators may
contain the letters A to Z, a to z, the underscore, and the figures 0 to 9. However, the following restrictions
apply:

• The first character must be a letter or an underscore.
• Only the first 32 characters are significant. If the designator contains more than 32 characters, the

remaining characters are ignored. In the case of large rw_SymPas programs, you should keep to short
names, so as not to overload the PC's main memory.

5.2.3.2.2 Designator upper and lower case

rw_SymPas distinguishes between upper and lower-case letters, so that Position, position and positioN are
different designators.

5.2.3.2.3 Unambiguity and validity of designators

Designators can be any names which conform to the applicable rules. Errors may, however, occur if the
same name is used inside the same range of application for several different designators having the same
name range. Identical names are permissible for different name ranges, irrespective of the range of
application involved. The definition of a designator range of application is explained in chapter 5.3.2.2.

5.2.3.3 Standard designators

rw_SymPas already has a series of predefined designators, which are accordingly referred to as "standard
designators". All rw_SymPas standard designators are listed in the table below.

Table 19: All standard designators predefined rw_SymPas
abort cl contcnct disev
enev ja jaw jhi
jhiw jhl jhlw jhr
jhrw jr jrw js
jsw mca mcaw mcr
mcrw mha mhaw mhr
mhrw mla mlaw mlr
mlrw ms msw ol
ra rs shp smca
smcr smha smhr smla
smlr ssms ssmsw startcnct
stop stopcnct uf wt
utrovr

5.2.3.4 Axis designators

Each axis channel is referenced using a symbolic name. This name can be freely chosen by the user, with up
to 8 characters. These axis designators are likewise incorporated in the standard designator list by
rw_SymPas.
Note: Automatic declaration of the axis designators deviates from Standard Pascal.

74 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

5.2.3.5 Qualified designators

Referencing to designators of the same name which have been declared for different axis systems (by
rw_SymPas) is handled in a qualifying routine by prefixing the axis designator.
Examples:

A1.digo := 0; // Reset all outputs of the PA8000
A2.digo := $FFFFFFFF; // Set all outputs of the PA8000

Note: Variable referencing to qualified designators deviates from Standard Pascal.

5.2.3.6 Labels

The same rules apply for the structure of a label as for the designators. Labels are used solely in connection
with the goto statement.

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 75

5.2.3.7 Constants

Constants are symbols which stand for fixed numerical values. rw_SymPas knows two classes of constants:
floating-point and integer. A constant's data type is derived by the NCC compiler on the basis of its numerical
value and its format in the source text. Table 20 shows the formal definition of a constant

Table 20: Formal definition of a constant.
Constant:

Floating-point constant
Integer constant

Floating-point constant:
Fractional constant<exponent>
Digit string exponent

Fractional constant:
<Digit string>.Digit string
Digit string.

Exponent:
e<sign>Digit string
E<sign>Digit string

Sign: one of the following characters
+ -

Digit string:
Digit
Digit string digit

Integer constant:
<sign>Decimal constant
Hexadecimal constant

Decimal constant:
Digit
Decimal constant digit

Hexadecimal constant:
$ Hex digit
Hexadecimal constant hex digit

Digit:
0 1 2 3 4 5 6 7 8 9

Hex digit:
0 1 2 3 4 5 6 7 8 9
a b c d e f
A B C D E F

76 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

5.2.3.7.1 Integer constants

Integer constants can be decimal (base 10) or hexadecimal (base 16) numbers. Remember that different
rules apply for decimal and non-decimal constants.

5.2.3.7.1.1 Decimal constants

Decimal constants of -2147483648 to 2147483647 are permitted. Constants outside this range will
automatically be limited to the appropriate minimum or maximum value.

5.2.3.7.1.2 Hexadecimal constants

All constants which begin with the dollar sign ($) are interpreted as hexadecimal constants. Hexadecimal
constants of $80000000 to $7FFFFFFF are permitted. Constants outside this range will be limited to the
appropriate minimum or maximum value.

5.2.3.7.2 Floating-point constants

A floating-point constant is made up of 4 constituents:

� Places before the decimal point
� Decimal point
� Decimal places
� e or E and a signed integer exponent (optional))

You can omit either the places before the point or after it (but not both). The decimal point or the letter e (E)
can be omitted (but not both). These rules enable you to use both the conventional and the scientific notation
(with exponents).

5.2.3.7.2.1 The type of floating-point constants

Floating-point constants are always handled as double values. They are filed in a double word (8 bytes) in
accordance with IEE. The range is 1.7*10-308 to 1.7*10308.

5.2.3.7.2.2 Declaration of constants

A constant declaration agrees a designator, which inside the block concerned stands for a constant value. An
example of a constant declaration is:

Const one = 1;

Signed constants stand for an integer or floating-point value. Computation of constants is not possible.

5.2.3.7.3 Punctuation characters

Punctuation characters (also referred to as separators) are defined in rw_SymPas as follows:

Punctuation characters: one of the following symbols
() , ; : =

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 77

5.2.3.7.3.1 Parentheses

Parentheses () group expressions together, isolate conditional expressions, and represent procedure calls
and procedure parameters:

d := c * (a + b); // Alter the normal sequence
if (d = z) then ... // Required with a conditional

// statement
proc() // Procedure call without arguments

5.2.3.7.3.2 Comma

The comma (,) separates the elements in a procedure argument list:

mlr (A1, A2);

5.2.3.7.3.3 Semi-colon

The semi-colon (;) is used as the end criterion for a statement. Every valid rw_SymPas expression (including
an empty expression) with a semi-colon at its end will be interpreted as a statement (expression statement).

5.2.3.7.3.4 Equals sign

The equals sign (=) separates constant declarations from the initialization values:

Const one = 1.0;

78 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

5.3 Semantic grammar

This chapter will explain the formal definition of the rw_SymPas language structure. This semantic grammar
determines the rules by which symbols can be combined to form expressions, statements or other
meaningful units.

5.3.1 Declarations

The following section provides a brief summary of subjects involving declarations: objects, types, blocks,
locality and range of application. Locality and range of application define those parts of the program from
which the object linked to the designator can permissibly be accessed.

5.3.1.1 Objects

An object is an identifiable memory area in which a fixed or variable value (or a quantity of values) is located.
Each object has a name and a type (referred to as the "data type"). An object is accessed over its name. This
name can be a simple designator or a complex expression which unambiguously indicates an object. The
type is used in order to:

• specify the correct memory reservation required at the beginning
• check the types so as to ensure that correct assignments are made

The predefined types of rw_SymPas include the Boolean data type, integer numbers with sign, and floating-
point numbers with differing accuracy.
Declarations establish the link between designators and objects. Each declaration links a designator to a data
type. In addition, most declarations (referred to as the "definition declarations") also determine the generation
of the object (where and when), and handle assignment of the memory location.

5.3.1.2 Typens

Every declaration of a variable has to specify the type of this variable. The type specifies the value range of
the variable concerned, and determines the operations which can be performed with it. Thus a type definition
agrees a designator, which in turn stands for a particular type.

Type declaration:
Designator = Typ;

Type:
Boolean type
Integer type
Floating-point type

5.3.1.2.1 Boolean type

The Boolean data type can assume only one of the predefined values FALSE or TRUE. Note that the
following relations apply:

• FALSE < TRUE
• Ordinal number of FALSE = 0
• Ordinal number of TRUE = 1

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 79

5.3.1.2.2 Integer type

rw_SymPas provides the integer types Integer and Timer.

Table 21: The integer type and its value range
Type Range Format
Integer -2147483648 .. 2147483647 32 bits with sign
Timer 0 .. 4294967295 32 bits without sign

5.3.1.2.3 Floating-point types (real types)

rw_SymPas knows two different kinds of floating-point types: Single and Double. These types differ from
each other both in their value ranges and in the accuracy of operations performed with them.
Note: Occasionally the term "real type" is also used for "floating-point type".

Table 22: The floating-point types and their accuracy
Type Range Format
Single -1.2e-38.. 3.4e38 7 to 8 places
Double -2.2e-308 .. 1.8e308 15 to 16 places

5.3.1.2.4 Assignment compatibility of types

Assignment compatibility is essential if a value is to be assigned. The value of a type T2 can be assigned to a
value T1 (i.e. T1:=T2), if one of the following conditions is satisfied:

• T1 and T2 are of the same type.
• T1 has the type double, T2 the value integer or single.
• T1 has the type single, T2 the value integer.

If none of these conditions is satisfied, but assignment compatibility is required, the NCC compiler will report
an error.

80 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

5.3.1.3 Variables

5.3.1.3.1 Automatic type conversion

rw_SymPas executes an automatic type conversion function if there are different types in one expression.
Conversion is performed as follows: integer to single or integer and single to double. Example:

...
Var

i : Integer;
s : Single;
d : Double;

...

d := s * i; // s and i are automatically converted to double

s := i; // i is automatically converted to single

5.3.2 Blocks, locality and range of application

A block consists of declarations and statements arranged at will. Each block is part of a procedure
declaration or of a program. All designators and labels in the block's declaration section are restricted in their
effect to this block - they are local to this block.

5.3.2.1 Syntax

The syntactic structure of each block can be represented as follows:

Block:
Declaration section
Command section

5.3.2.1.1 Declaration section l

Declaration section:
Label declaration section
Constant declaration section
Variable declaration section
Declaration section label declaration section
Declaration section constant declaration section
Declaration section variable declaration section

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 81

5.3.2.1.1.1 Label declaration section

In the Label declaration section, all labels are agreed which are to represent goto jump destinations in the
command section of the block involved. Each label may be defined once only inside the command section
(i.e. each goto must have an unambiguous destination).

Structure of the label declaration section:

label Labels;

Labels:
LabelName
Labels, LabelName

5.3.2.1.1.2 Constant declaration section

The declaration section for constants contains all agreements for constants which are local to the block
involved.

Structure of the constant declaration section:

const constant declarations

Constant declarations:
Constant declaration
Constant declarations constant declaration

5.3.2.1.1.3 Variable declaration section

The declaration section for variables contains all variable declarations which are local to the block involved.

Structure of the variable declaration section:

var variable declarations

Variable declarations:
Variable declaration
Variable declarations variable declaration

5.3.2.1.2 Command section

It is in the command section that all operations are defined which are executed at block activation.

Command section:
Compound statement

Permissible compound statements are explained in chapter 5.3.5.5.

The command section of the main program block is structured as follows:

begin
Statement list;

end.

82 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

5.3.2.2 Range of application

Each designator and each label of a declaration agrees precisely one object or jump destination. This is why
a designator, like a label, must always be in its declaration's range of application when it appears in the
program. The range of application for designators and labels lies between the actual declaration as such and
the end of the block involved, with all those blocks being included which this block encloses. There are,
however, a few exceptions to this, which are explained in the paragraphs below.

5.3.2.2.1 Redeclaration in a subordinate block

With the assumption that a block »outside« encloses a block i.e. is of a higher order, every redeclaration of a
designator from »outside« in the block »inside« restricts this designator's range of application to the »inside«
block. Or to put it another way: if a variable x is declared »outside«, and a variable of the same name is
declared »inside«, then statements in the block »inside« cannot access the variable x declared »outside«.

5.3.2.2.2 The location of a declaration in a block

Designators and labels must be declared before they can be used in a block. The NCC compiler will react to
access attempts before such declaration with Error Number 3.

5.3.2.2.3 Redeclarations inside a block

Designators and labels can each be declared only once on the topmost level of a block, unless they are
redeclared inside a subordinate block.

5.3.2.2.4 Standard designators

rw_SymPas offers a whole series of predefined constants, types and procedures, which work as if they had
been declared inside a block covering the whole program. Consequently their range of application also
covers the entire program.

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 83

5.3.3 Variables

5.3.3.1 The declaration of variables

The variable declaration contains a list of designators, which in their turn stand for new variables and their
types.

Variable declaration:
Designator list: type;

Designator list:
Variable names
Variable names, variable name

Type:
BOOLEAN
INTEGER
SINGLE
TIMER
DOUBLE

Examples of valid variable declarations are:

var
on, off: BOOLEAN;
one: INTEGER;
dvalue: DOUBLE;
ticks: TIMER;

When a designator is located in the designator list of a declaration section, it applies inside the entire block
for which it has been declared. Reference can be made to this variable throughout the block, provided the
same designator is not being used for a different variable in a subordinate block ("redeclaration"). A
redeclared variable uses the name of an already-existing designator, but otherwise represents an
autonomous unit. The value of the original variable is not affected by the redeclaration. Variables declared
outside procedures are referred to as global. Variables declared inside procedures are local.

84 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

5.3.3.1.1 Timer declaration

An entry with the aid of the predefined system variable CLOCK supplies a value of the timer type, which
represents the time. This value is supplied by the transputer's internal clock, which alters its value at regular
intervals. This value continues cyclically, i.e. after the largest positive value the next value supplied is the
smallest negative value. The time interval in which this internal clock is incremented is 64 µs.
CLOCK can be used at any time to assign the counter reading of this clock to an integer or timer variable. If
different times have to be compared with each other, this comparison should be carried out only by means of
timer variables, since here a timer overflow will automatically be taken into account at the comparison
operator >. Likewise, addition and subtraction with timer variables is performed in modulo technique, i.e.
without signs. With integer variables, conversely, there may be an overflow or underflow, which in turn will
cause the transputer error flag to be set, and in certain situations will trigger an abort of the rw_TOS
operating system.
A practical timer application might look like this:

Const
s := 15625; // 15625 ticks = 1s

Var
t: timer

t := CLOCK + 5*s; // Compute time-delay of 5 s from now
...
repeat

...
until CLOCK > t; // wait until 5 s have passed
...

In this example, you can see that the addition of CLOCK and the time-delay results in an overflow at large
values for CLOCK. We therefore recommend using the timer instead of the integer type for declaration of the
variable t. Another reason is the interrogation of whether the computed time-delay has been reached. In the
event of an overflow in computing the time-delay, you see, the content of t is smaller than CLOCK. This
circumstance is likewise handled properly by the declaration as a timer variable.
The value range of a timer variable lies between 0 and 4294967295. Time-delays of up to 38h can be
implemented.

5.3.3.2 Conversion of variable types

The reference to a variable of a particular type can be converted into a reference to a variable of a different
type.

Type conversion:
Type designator (variable reference)

Type designator:
BOOLEAN
INTEGER
SINGLE
DOUBLE

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 85

A few examples for the conversion of variable types:

var
B : BOOLEAN;
I : INTEGER;
D : DOUBLE;

B := BOOLEAN (I);
B := BOOLEAN (D);
D := B;
I := INTEGER (D);
I := B;

5.3.4 Expressions

Expressions consist of operators and operands. Most operators of rw_SymPas link two operands, and are
therefore referred to as binary. The remaining operators work with only one operand, and are therefore
referred to as unary. Binary operators utilize the conventional algebraic form like a+b. A unary operator is
always positioned immediately before its operand, as with -b. In the case of extensive expressions, the order
of precedence shown in Table 23 governs the sequence of computation. Three basic rules apply:

• An operand between two operators of different precedence rankings is always linked to the higher-ranking
operator.

• An operand between equal-ranking operators is always linked to the operator located to the left of it.
• Expressions in brackets are regarded as a single operand, and always evaluated first.

Table 23: Operator precedence
Operators Precedence Category
-, +, not 1 (highest) unary
*, /, mod, shl, shr, and 2 multiplying
+, -, or, xor 3 adding
=, <>, <, >, <=, >= 4 relational

Operations of the same precedence ranking are normally performed from left to right.

86 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

5.3.4.1 Syntax of expressions

The order of precedence for operators follows the syntax for expressions composed of factors, terms and
simple expressions. Factors can be represented by the following syntax:

Factor:
variable reference
unsigned constant
(expression)
not factor
type conversion (values)

unsigned constant:
unsigned numerical value
character string
constant designator

The following particulars represent valid factors:
Dummy variable reference
15 unsigned constant

5.3.4.2 Operators

We distinguish between four groups of operators: arithmetical, logic, boolean and relational operators.

5.3.4.3 Arithmetical operators

The tables below show the types of operand and result involved in binary and unary arithmetical operations.

Table 24: Binary arithmetical operators
Operator Operation Operand type Result type
+ Addition Integer, Real Integer, Real
- Subtraction Integer, Real Integer, Real
* Multiplication Integer, Real Integer, Real
/ Division Integer, Real Integer, Real
mod Modulo Integer Integer

Note: If one of the operands is of the Timer type, addition and subtraction are performed using the modulo
technique. No overflow check is made, since the Timer values are cyclical. You will find more details on the
Timer type in Chapter 5.3.3.1.1.

Table 25: Unary arithmetical operators
Operator Operation Operand type Result type
+ Identity Integer, Real Integer, Real
- Negation Integer, Real Integer, Real

If both of an operator's operands +, -, *, /, or mod have an integer type, the result will likewise be of the
integer type. If one of an operator's operands is +, -, *, or / is of the Real type, then the result will likewise be
of the Real type.
The mod operator returns the rest of the division of its operands as follows:

i mod j = i - (i/j)*j;

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 87

5.3.4.4 Logic operators

Table 26 shows the types of operand involved, and the results of logic operations.

Table 26: Logic operations
Operator Operation Operand type Result type
not bitwise negation Integer Integer
and bitwise AND Integer Integer
or bitwise OR Integer Integer
xor bitwise exclusive OR Integer Integer
shl Shift left Integer Integer
shr Shift right Integer Integer

Note: not is a unary operator.

The i shl j and i shr j operations shift the value of i by j bit positions to the left or the right, and thus correspond
to a multiplication or division by 2j.

5.3.4.5 Boolean operators

Table 27 shows the types of operand involved, and the results of Boolean operations.

Table 27: Boolean operators
Operator Operation Operand type Result type
not logic negation Boolean Boolean
and logic AND Boolean Boolean
or logic OR Boolean Boolean
xor logic exclusive OR Boolean Boolean

Note: the operator not is unary here as well.

In the case of operands of the Boolean type, normal Boolean logic determines the result of these operations.
For example, a and b will only give TRUE when a and b are both true

5.3.4.6 Relational operators

Table 28 shows the operand types involved, and the results of relational operations.

Table 28: Relational operators
Operator Operation Operand type Result type
= equal Integer, Real Boolean
<> unequal Integer, Real Boolean
< smaller than Integer, Real Boolean
> greater than Integer, Real Boolean
<= smaller than/equal Integer, Real Boolean
>= greater than/equal Integer, Real Boolean

Note: If one of the operands is of the Timer type, the greater than (>) operation is performed using the
modulo technique. No overflow check is made, since the Timer values are cyclical. You will find more details
on the Timer type in chapter 5.3.3.1.1.

88 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

5.3.5 Statements

This term stands for all constructs which agree an action which can be executed by the PA8000. In this
manual, the term »statement« is used as a generic term for statements (like begin, end or for) and
commands (like goto, assignments, procedure calls, etc.).
Each statement (i.e. each agreement for an executable action) can be preceded by a label, which in its turn
can be referenced with goto: a goto this label causes a direct jump to this statement and its execution.

Structure of a statement:

Label: statement

Statement:
Assignment
Procedure statement
Goto statement

5.3.5.1 Assignments

Assignments replace the instantaneous value of a variable with a new value, which is specified by mean of an
expression.

Structure of an assignment:

Variable reference := expression

5.3.5.2 Procedure calls

A procedure is called by specifying a procedure designator with which the procedure concerned has been
declared. Parameter transfer to the procedure is not supported.

5.3.5.3 The goto statement

executes a jump to the label specified: the program is continued at a point immediately following the label
concerned. The syntax of goto is:

goto Label

When goto is used, the following rules must be observed:

• The label to which goto is referenced must be located in the same block as the goto statement itself. It is
not possible to jump back and forth at will between procedures with goto.

• Referencing to a structured statement block from a program section outside this block (i.e. a jump to a
deeper nesting level) may have unforeseeable consequences. rw_SymPas cannot detect errors of this
sort.

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 89

5.3.5.4 Structured instructions

consist of several internested levels, which in their turn contain statements. They are executed either in the
order of their appearance (compound statements), conditionally (conditional statements) or repeatedly
(repeat statements or loops).

Structured statement:
block command
conditional statement
repeat statement

5.3.5.5 Compound statements

Compound statements specify that the individual components they contain are to be executed in the order in
which they appear in the source text concerned. All statements contained in the compound are handled as
one single block, and thus satisfy the requirements at points where the syntax of rw_SymPas permits only a
single statement. Beginning and end of a compound are indicated by begin and end, with the individual
components separated from each other by semi-colons.

A compound statement can be represented as follows:

begin statement list end;

Statement list:
statement;
statement list statement;

Example:
// ...
var

i: Integer;
j: Integer;
temp: Integer;

// ...
begin

if (i > 0) then i := 0;
else begin

// interchange j and i
temp := i;
i := j;
j := temp;

end;
end.

90 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

5.3.5.6 Conditional statements

Conditional statements offer one or more options and select one of their components (or none) for an
instruction.

5.3.5.6.1 The if statement

can be represented as follows:

if (conditional expression) then w-statement <else f-statement>

The brackets around Conditional expression are not absolutely necessary. The result of Conditional
expression must be of the standard Boolean type. If Conditional expression is TRUE, then w-statement will
be executed; otherwise w-statement will be ignored.
If the optional else f-statement is present, and Conditional expression is true, then w-statement will be
executed; otherwise w-statement will be ignored and f-statement executed.
The statements f-statement and w-statement may themselves be if-statements, thus enabling a nested
conditional test to be implemented in almost any depth you want. You have to be very cautious in using
nested if..else constructs - make absolutely sure that the correct statements are chosen. Else ambiguities are
resolved by assigning an else to the last if-without-else occurring on the same nesting depth. Compound
statements are also permissible for w-statement and f-statement.

5.3.5.7 Loops

Loops (or repeat statements) specify the repeated execution of defined program sections.

Loop:
while statement
repeat statement
for statement

5.3.5.7.1 The while statement

The format for a while statement is:

while (conditional expression) do w-statement;

The brackets around Conditional expression are not absolutely necessary. The loop statement w-statement
will be executed as long as the Conditional expression gives the value FALSE. The Conditional expression is
evaluated and tested beforehand. If the value obtained is TRUE, then w-statement will be executed. If the
program does not encounter any jump statements, causing it to leave the loop, the Conditional expression will
be evaluated anew. This operation is repeated until Conditional expression gives the value FALSE. If there
are no jump statements, then w-statement must influence the value of Conditional expression, or Conditional
expression itself must alter during evaluation, so as to avoid endless loops. Compound statements are also
permissible for w-statement.

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 91

5.3.5.7.2 The repeat statement

The format for a repeat statement reads:

repeat r-statement until (conditional expression);

The brackets around Conditional expression are not absolutely necessary. The r-statement is executed as
long as Conditional expression has the value FALSE. In contrast to the while statement, Conditional
expression is tested not before, but after every execution of the loop statement. r-statement will accordingly
be executed at least once.
Compound statements are also permissible for r-statement.

5.3.5.7.3 The for statement

The format for a for statement reads:

for controlled variable := Start value to/downto final value do f-statement;

The controlled variable must be the designator of an integer-type variable, which has been declared either
inside the same block locally like the for statement, or globally for the entire program. The definition of a loop
with for includes the specification of a start and final value as well. Both these values must likewise be of the
integer type, which is assignment-compatible to that of the controlled variable.
When the loop is started, the controlled variable is set to the start value, and increased or reduced by one
each time the loop is run - until the final value is reached. In each run, the f-statement or compound
statement contained in the rump of the loop is executed once. If the final condition of the loop is already given
before the first run (i.e. final value < start value or final value > start value when downto is being used), then
the loop and its rump will be skipped completely.

92 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

5.3.6 Procedures and functions

In formal terms, procedures and functions represent additional levels inside the main program block, i.e. a
nesting feature. A procedure is activated by a procedure call (i.e. specification of a designator), and does not
return a direct value. A function is activated during the computation of an expression in which its designator
appears, and normally has a result which can for this call be equated with the function designator.

5.3.6.1 Procedure declarations

A declaration initiated with the reserved word procedure links a designator and a block of statements for a
procedure. Procedures declared in this manner can be activated (i.e. called) by specifying their designator. A
procedure declaration has the following formal structure:

Procedure header; procedure block;

The procedure header names the procedure (i.e. assigns a designator to it). Under Pascal standard, the
declaration of formal parameters would be permitted at this point. This is not supported in rw_SymPas.
However, data can be exchanged between the main program and a procedure can be performed over global
variables. A procedure is activated by specifying its designator: the actions defined in the command section of
the procedure declaration involved are executed.
A procedure which contains its own statement as part of its command section is executed recursively, i.e. it
calls itself repeatedly. In this context, a suitable criterion must be found for aborting the recursion before the
internal CNC task stack overflows.
It is not possible to nest procedures in rw_SymPas.

5.3.6.2 Function declarations

Note: The function declaration implemented to Pascal standard is not possible in rw_SymPas, but there are
various predefined system functions.

These functions are activated during the computation of expressions in which their designator appears, and
stand there for the value they return. A function designator can be inserted anywhere in an expression in
place of an operand, provided the type of the function result concerned is compatible with that of the operand
replaced.
Assignments to a function designator are not permitted.
A function is called by specifying its designator, followed by a list of current parameters, which in type and
sequence must conform to the formal parameters of the correspondingly predefined function.

5.3.7 The syntax of an rw_SymPas program

An rw_SymPas program is similar in form to a procedure declaration. The differences are merely in the
program descriptor.

rw_SymPas program:

Program descriptor; program block

CHAPTER 5 - THE RW_SYMPAS PROGRAMMING LANGUAGE FOR SAP PROGRAMMING 93

5.3.7.1 The program descriptor

The program descriptor specifies the name of a program, but has no special significance of its own.

Program descriptor:
program designator

Example:

program Test;

5.3.7.2 The program block

Program block:
Implementation section
Procedure command section
Initialization section

Implementation section:
Constant declaration
Variable declaration
Implementation section constant declaration
Implementation section variable declaration

Initialization section:
begin
Command section
end

The initialization section is the final constituent part of an rw_SymPas program, and represents the main
program. It consists of a block initiated with begin, which contains statements and is concluded by a
terminating end. The entire program block is concluded with the (.) character.

94 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

6 Stand-alone application programming

6.1 Introduction

The rw_SymPas programming language incorporates a comprehensive set of commands, which you can use
for flexible, efficient program creation. The procedure calls are performed in accordance with Pascal
convention, apart from a few exceptions.
Since the procedure names and also the functioning of the individual procedures are identical for the two
programming methods involved - stand-alone application programming [SAP] and PC application
programming [PCAP], a detailed description is provided here only for the commands involved in PCAP
programming.
The individual commands are listed in alphabetical order.

6.2 rw_SymPas example programs

The rw_SymPas example programs included in the PA8000 TOOLSET software show how simple it is to use
the functions described below. The source texts for the example programs incorporate comments to make
them self-explanatory. So there is no need to go into a detailed description of these example programs here.
They all have the file extension .SRC and can be found in the SAP subdirectory of the PA8000 TOOLSET
software floppy.

6.3 Abbreviations, system parameters, axis specifiers and axis
qualifiers

For the SAP function reference list printed below, we will start off by explaining the various abbreviations and
types involved, some of which are used as parameters for the different functions in question.

CHAPTER 6 SAP PROGRAMMING 95

6.3.1 System parameters

The system parameters predefined by the rw_SymPas programming language are listed in tabular form, with
an explanation of how they function. Remember that the NCC compiler distinguishes between upper and
lower case for these parameters.

Table 29: rw_SymPas predefined system parameters
Name Type Abbr. meaning Function
CI0..CI99 integer Common Integer 0..99 100 predefined integer variables for data exchange or

for synchronization with a PC application program
running in parallel. Further information at the PCAP
commands rdci() and wrci().

CD0..
CD99

double Common Double 0..99 100 predefined double variables. Otherwise as for
CI0..CI99. Further information at the PCAP
commands rdcd() and wrcd().

LEDGN boolean Led green Green LED (D4) on PA8000, switched on when TRUE
LEDRD boolean Led red Red LED (D2), otherwise as for LEDGN
LEDYL boolean Led yellow Yellow LED (D3), otherwise as for LEDGN
IRQPC boolean Interrupt Request PC PC interrupt request, active when TRUE
PHI double Traverse angle for circular and helical profiles
PU integer Position Unit Index for position unit
TRAC double Trajectory Acceleration Trajectory acceleration for linear, circular, and helical

profiles
TROVR double Trajectory Override Trajectory velocity correction value
TRTVL double Trajectory Target Velocity Trajectory target velocity for linear, circular, and

helical profiles
TRVL double Trajectory Velocity Trajectory velocity for linear, circular, and helical

profiles
TU integer Time Unit Index for time unit

6.3.1.1 PC interrupt generation

You can use the IRQPC system parameter to trigger a hardware interrupt on the PC. This option offers an
efficient approach for using the two programming methods: PC application and stand-alone application
programming. A stand-alone program can be used for largely autonomous process sequence, which needs
to interrupt the parallel-running PC program only if necessary, or in the event of an error. The program is then
interrupted with the aid of this interrupt generation feature. After the PC program has detected the hardware
interrupt, the common variables listed above can be used for exchanging data between the two parallel-
running programs.

Note: The hardware configuration for PC interrupt generation is described in the Commissioning Manual. You
must also remember that in the PC application program the hardware interrupt selected is enabled in the
Interrupt Mask Register (I/O Address 21 hex), and an interrupt handler is set up for the corresponding
interrupt code number.

96 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

6.3.1.2 System parameters for unit processing

All move commands of the rw_SymPas programming language require specification of the acceleration
(TRAC), velocity (TRTVL, TRVL) and position parameters, each in selected distance and time units. You can
use the two system parameters listed below to switch over the path unit (PU) and time unit (TU) parameters
any time you want.

Table 30: System parameter PU
Value Unit Abbr. meaning
0 mm Millimeter
1 inch Inch
2 m Meter
3 rev Revolution
4 deg Degree
5 rad Radiant
6 counts Counts
7 steps Steps

Table 31: System-Parameter TU
Value Unit Abbr. meaning
0 sec Seconds
1 min Minutes
2 tsample Sampling Time

Note: The default values for TU and PU are specified in the [Setup][Set CNC-specific parameters] menu in
the CNC Editor environment.
The units selected are utilized only for interpolation commands (all move commands)! If the commands
concerned are axis-specific motion ones (all jog commands), the axis units specified in mcfg.exe are taken
into account. There is no option here for switching over during the run time.

6.3.2 Axis specifiers

The various axis channels are referenced with a symbolic name. You can choose these names quite freely in
the mcfg.exe program. In the rw_SymPas programming language, these names are predefined automatically,
and serve in the user program as parameters for various commands. Remember that the NCC compiler
distinguishes between upper and lower case for the axis specifiers.

CHAPTER 6 SAP PROGRAMMING 97

6.3.3 Axis qualifiers

The system parameters listed below are used as axis qualifiers, and are therefore available for all the axis
channels in the system, and thus for all axis specifiers. You can use these parameters to interrogate or set
various axis-specific data. Remember that the NCC compiler distinguishes between upper and lower case for
these parameters. An axis qualifier is referenced by stating an axis specifier, the character "." and the axis
qualifier. The example below illustrates this.

...
var

input: integer;
...
input := A2.digi; // Read in digital inputs from

// Axis Channel 2
...

98 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

Table 32: Axis qualifiers
Name Typ Abbr. meaning Function
epc integer EEPROM programming

cycles
Number of programming cycles

digi integer digital inputs Digital inputs of the PA8000 (wordwise)
Various flags of this register can be erased by assigning
any desired value to this register [chapter 4.4.33].

digo integer digital outputs Digital outputs of the PA8000 (wordwise)
ifs integer interface status Interface status flags of the PA8000 (wordwise)

Various flags of this register can be erased by assigning
any desired value to this register [chapter 4.4.66].

axst integer axis status Error, status and profil flags (wordwise)
dp double desired position Setpoint position of axis channel
dv double desired velocity Setpoint velocity of axis channel
hac double home acceleration Acceleration for home commands
hvl double home velocity Velocity for home commands
ipw double in position window Position-dependent target window
jac double jog acceleration Acceleration for jog commands
jovr double jog override Velocity factor
jtvl double jog target velocity Target velocity for jog commands
jvl double jog velocity Velocity for jog commands
kd double PIDF filter coefficient for differentiation
ki double PIDF filter coefficient for integration
kp double PIDF filter coefficient for amplification
kpl double PIDF filter coefficient for add. phase lead
kfca double PIDF filter coefficient for forward compensation for

acceleration
kfcv double PIDF filter coefficient for forward compensation for velocity
lp double latched position latchted position value
lpndx double latched position index latchted position value with index signal (zero track)
lsm integer left spool memory free spool area [Bytes]
mcp integer Motor Command Port Servo motors: setpoint value for analog port,

value range -32767 .. +32767 (-10V .. +10V)
Stepping motors: stepping signal for stepping motor power
output stages, value range -1048575 .. +1048575

mpe double maximum position error Maximum permitted position error
rp double real position Actual position of the axis channel
sdec double stop deceleration Stop decelaration of the axis channel
sll double software limit left Left software limit
slr double software limit right Right software limit
tp double target position Target position of axis channel

The function of these qualifiers can be found at the relevant rdxxxx() and wrxxxx() commands in the function
reference list for PCAP programming. The significance of the qualifier digo, for example, is explained under
the wrdigo() command.
Exception: The PIDF filter coefficients become operative together with the SAP command UF(). These
coefficients are read and written on PCAP level using the rdf() and uf() commands.

CHAPTER 6 SAP PROGRAMMING 99

6.3.4 Structured axis qualifiers

The system parameters listed below are used as structured axis qualifiers, and are therefore available for all
the axis channels in the system, and thus for all axis specifiers. You can use these parameters for bitwise
interrogation and setting of various axis-specific data. Remember that the NCC compiler distinguishes
between upper and lower case for these parameters. Referencing to a structured axis qualifier is illustrated
by the example below:

...
const

enable = 1;
var

input: boolean;
...
input := A2.digib.enable; // read digital input 1 of axis

// channel 2 (I1)
A1.digob.7 := TRUE; // Set digital output 7 (O7)
...

Table 33: Structured axis qualifiers
Name Type Abbr. meaning Function
digib boolean digital-input-bit Digital inputs of the PA8000 (bitwise)
digob boolean digital-output-bit Digital outputs of the PA8000 (bitwise)
ifsb boolean interface-status-bit Status flags of the PA8000 (bitwise)
axstb boolean axis status-bit Error, status and profile flags (bitwise)

The function of these qualifiers can be found at the relevant rdxxxxb() and wrxxxxb() commands in the
function reference list for PCAP programming. The significance of the qualifier digib, for example, is
explained in the rddigib() command.
Note: Bit counting for the structured axis qualifiers begins at 1!

6.3.5 Abbreviations

Some of the abbreviations used in the function reference list will be explained to start with:

Table 34: Abbreviations
A1 Symbolic name for the first axis channel. This name can be freely

selected in mcfg.exe. Is mainly used for examples
A2 Symbolic name for the second axis channel. Otherwise as for A1.
Spec Axis specifier, such as A1 or A2
Qual Axis qualifier, such as digi, digib, digo, digob, axst etc.
Pos Position setpoint value (data type: double)
Event Procedure with function as event handler

100 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

6.4 Reserved procedure names with event function

rw_SymPas incorporates a series of predefined procedure names with event function. If there are procedure
definitions with these procedure names in the user program, the CNC task can be made by means of an
enable command to call these procedures automatically if a procedure-specific event occurs. These
procedures are accordingly also referred to as "event handlers".
Note: The events are checked after every execution of an rw_SymPas statement.

6.4.1 Event procedure EVEO

The EVEO event procedure is processed automatically after the definition of the procedure EVEO and the
release of the corresponding event. The EO (Emergency Out) event occurs when a digital input planned with
EO function is activated. If the system includes more than one EO inputs, the axst status register can be
used to check which EO input is causing the error concerned. A simple example program for implementing
an EO-handler is listed below:

...
procedure EVEO; // predefined name for

// Timeout EVENT hHandler
begin

CI0 := 999; // Common Variable
// signals program abort

abort; // Abort application program
end;

...
begin

...
CI0 := 0; // Delete common

// Variable
enev(EVEO); // Enable timeout handler
...

end.

6.4.2 Event-Prozedur EVDNR

The EVDNR event procedure also operates like EVEO, except that this procedure is processed automatically
when the Drive Not Ready event occurs. The DNR event occurs when a digital input planned with DR function
becomes inactive [OM / chapter 4.4.3.1].

6.4.3 Event procedure EVLSH

The EVLSH event procedure also operates like EO, except that this procedure is processed automatically
when the Limit Switch Hardware event occurs. The LSH event occurs when a digital input planned with
LSL_TOM, LSL_SMA, LSL_SMD, LSR_TOM, LSR_SMA or LSR_SMD function is activated [OM / chapter
4.4.3.1].

CHAPTER 6 SAP PROGRAMMING 101

6.4.4 Event procedure EVLSS

The EVLSS event procedure also operates like EVEO, except that this procedure is processed automatically
when the Limit Switch Software (software limit) event occurs. The LSS event occurs when the current
position of an axis system exceeds a limit value specified in the TOOLSET program mcfg.exe and the limit
value concerned has been planned with the TOM, SMA or SMD function [OM / chapter 4.4.3.1].

6.4.5 Event procedure EVMPE

The EVMPE event procedure also operates like EVEO, except that this procedure is processed automatically
when the Maximum Position Error event occurs. The MPE event occurs when the control loop is closed and
the difference between setpoint and actual positions of an axis system exceeds the limit value specified in the
TOOLSET program mcfg.exe [OM / chapter 4.4.2.10].

6.4.6 Event procedure EVUI

The EVUI event procedure also operates like EVEO, except that this procedure is processed automatically
when the User Input event occurs. The UI event occurs when a digital input planned with UI is activated [OM /
chapter 4.4.3.1]. You have an option for building up user-specific special functions with UI-planned digital
inputs in the SAP program. Alternative cyclical polling can be dispensed with.

6.4.7 Priority and processing sequence for the event procedures

It is possible that different events will occur at the same point in time. In this case, the following priorities
apply:

EVEO highest priority
EVDNR
EVLSH
EVLSS
EVMPE
EVUI lowest priority

If one event procedure (Event 1) is currently being processed, the occurrence of another event (Event 2) with
lower or higher priority will be ignored; this event will not be executed until the current event handler (Event 1)
has been processed. But Event 2 must still be active then!
Note: After the STOP and ABORT SAP commands, and during execution of the WT() SAP command, no
event handlers will be processed!

102 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

6.5 SAP block commands

The command reference list provided below contains a series of commands which can be used to achieve a
block-oriented program structure. All these commands have names which end with the character "W".
Examples include the SAP commands MLAW(), JAW() or SSMSW(). These commands automatically wait for
the profile end of all axes involved, i.e. the next statement will not be processed until the target positions of
the selected axes have been reached. For this purpose, the CNC task polls the profile end flags of these
axes, and continues the program at the next statement when appropriate. This check routine takes the
above-enabled EVENT handlers into account, and processes them automatically when and as required.
Note: Another option for profile end checking is to evaluate the axst axis qualifier.

CHAPTER 6 SAP PROGRAMMING 103

6.6 rw_SymPas SAP command reference list

6.6.1 Structure of the reference list

The reference list is structured as follows:

FUNCTION NAME: This is the name which is used to call the function subsequently described.

ABBR. MEANING: Here you will find a detailed description of the function name concerned.

FUNCTION PARAMETERS: If the function demands a parameter transfer, these are listed here.

SYSTEM PARAMETERS: Various functions are executed by taking various system parameters into account.
These are listed here.

SIMULTANEOUS FUNCTION: With various functions, it is permitted to specify one or more axes for which the
function concerned is to be executed.

REFERENCES: Refers to other functions and chapters.

DECLARATION: The formal declaration of predefined system functions; user-defined elements are
shown in italics.

RESULT TYPE: The type of the value returned (with system functions only).

DESCRIPTION: Plaintext description of the command concerned.

NOTE: Recurrent notes and explanations here indicate the chapters you should consult.

EXAMPLE: An example of the function involved.

6.6.2 ABORT, abort

DESCRIPTION: This command causes a running SAP program to be aborted. In contrast to the
STOP statement, the program cannot be continued with the PCAP command
contcnct() or the SAP command CONTCNCT(). This is possible only with the PCAP
command startcnct() or the PCAP command STARTCNCT().

NOTE: After the command has been executed, the enabled EVENT handler procedures
will no longer be processed.

EXAMPLE: ABORT;

104 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

6.6.3 ABS, absolute function

DECLARATION: abs(value:double)

RESULT TYPE: double

DESCRIPTION: The function returns the absolute value of value.

EXAMPLE: ...
var

d1, d2: double;
...
d1 := -5.0;
d2 := ABS(d1); // d2 := 5.0

6.6.4 ACOS, arc cosine function

DECLARATION: acos(value:double)

RESULT TYPE: double

DESCRIPTION: The function returns the arc cosine of value. The argument Value must lie within the
range [-1..+1]. The return value has the unit rad, and lies within the limits [0..pi].

6.6.5 ASIN, arc sine function

DECLARATION: asin(value:double)

RESULT TYPE: double

DESCRIPTION: The function returns the arc sine of value. The argument Value must lie within the
range [-1..+1]. The return value has the unit rad, and lies within the limits [-
pi/2..+pi/2].

6.6.6 ATAN, arc tangent function

DECLARATION: atan(value:double)

RESULT TYPE: double

DESCRIPTION: The function returns the arc tangent of value. The return value has the unit rad, and
lies within the limits [-pi/2..+pi/2].

6.6.7 AZO, activate zero offsets

FUNCTION PARAMETERS: Integer constant in the value range of 0..4

DESCRIPTION: PCAP command azo()

EXAMPLE: const Offsets1 = 1;

azo(Offsets1); // Activate zero offsets Set 1

CHAPTER 6 SAP PROGRAMMING 105

6.6.8 CL, close loop

FUNCTION PARAMETERS: Spec

SIMULTANEOUS FUNCTION: yes

DESCRIPTION: PCAP command cl() [chapter 4.4.4]

EXAMPLE: CL(A1, A2); // Bring Axis Channels 1 and 2 into position control

6.6.9 CONTCNCT, continue CNC-Task

FUNCTION PARAMETERS: Integer constant in the range of 0..3

DESCRIPTION: This command continues the CNC task transferred in the parameter.

NOTE: The command can be used to continue a stopped SAP program.
An SAP program which has been stopped with the SAP command ABORT can only
be restarted (i.e. not continued) with the SAP command STARTCNCT() or the
PCAP command startcnct(). Automatic continuation of stopped tasks is not possible
either.

EXAMPLE: ...
const

TASK0 = 0;
...
CONTCNCT(TASK0); // continue Task 0
CONTCNCT(1); // continue Task 1

6.6.10 COS, cosine function

DECLARATION: cos(value:double)

RESULT TYPE: double

DESCRIPTION: The function returns the cosine of value. The argument Value is interpreted as an
angle in the unit rad (0..2Pi = 0..360) degrees.

NOTE: Sin(), Tan() -function

EXAMPLE: ...
var

d1, d2: double;
...
d1 := 3.1415;
d2 := COS(d1); // d2 := -1.0 (rounded)

6.6.11 COSH, hyperbolic cosine function

DECLARATION: cos(value:double)

RESULT TYPE: double

DESCRIPTION: The function returns the hyperbolic cosine of value.

106 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

6.6.12 DISEV, disable event

FUNCTION PARAMETERS: Event

REFERENCES: Chapter 6.4 and SAP command ENEV()

DESCRIPTION: disables the event handler specified

EXAMPLE: DISEV(EVEO); // ignore emergency out handler

6.6.13 ENEV, enable event

FUNCTION PARAMETERS: Event

REFERENCES: Chapter 6.4 and SAP command DISEV()

DESCRIPTION: enables the event handler specified

EXAMPLE: ENEV(EVEO); // enable emergency out handler

6.6.14 EXP, exponential function

DECLARATION: exp(value:double)

RESULT TYPE: double

DESCRIPTION: The function returns the value evalue, where e is the base of the natural logarithm
(2.718281...).

NOTE: Function Ln()

6.6.15 JA, jog absolute

FUNCTION PARAMETERS: Spec and Pos

SYSTEM PARAMETERS: Qualifiers: jac, jvl and jtvl

SIMULTANEOUS FUNCTION: yes

REFERENCES: PCAP command ja(), SAP command JAW()

DESCRIPTION: The axis channel(s) selected is/are moved absolutely to the position setpoints
specified. For this purpose, the motor is accelerated with the axis-specific
acceleration jac to the velocity jvl, and moved to the specified target position Pos. In
addition, you can use the jtl parameter to specify a target velocity. The trajectory
parameters are specified in the axis-specific units.

NOTE: PCAP command ja()

EXAMPLE: JA(A1:=100.0); // Move Axis 1 absolutely to Position 100
JA(A1:=100.0, A2:=100.0);

CHAPTER 6 SAP PROGRAMMING 107

6.6.16 JAW, jog absolute waiting

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: Qualifiers: jac, jvl and jtvl

SIMULTANEOUS FUNCTION: yes

REFERENCES: JA

DESCRIPTION: This command is identical to the SAP command JA() and PCAP command ja(),
except that the system also waits for the profile end of all axes involved. The use of
this command gives the SAP program a block-like form of the kind found in
commercially available CNC controls.

NOTE: You should use EVENT handlers to ensure that the drive is operated properly even
in exceptional situations, since the CNC program dwells concomitantly long on this
command, particularly when very time-consuming positioning operations are
involved.

EXAMPLE: JAW(A2:=-1000.0); // Move Axis 1 absolutely to Position -1000.0 and
// wait until the profile end is reached

JAW(A1:=1e3, A2 := 1.3e4);

6.6.17 JHI, jog home index

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: Qualifiers: hac and hvl

SIMULTANEOUS FUNCTION: yes

REFERENCES: PCAP command jhi(), SAP command JHIW()

DESCRIPTION: The reference search run for the zero track (index) of the rotary transducer or the
linear scale for all selected axis channels is started. The search run will be aborted
if the traverse distance or angle specified in Pos is exceeded.

EXAMPLE: JHI(A1 := 1.0, A2 := 1.5); // Start reference search run for axes 1 and 2.

6.6.18 JHIW, jog home index waiting

FUNCTION PARAMETERS: Spec

SYSTEM PARAMETERS: Qualifiers: hac and hvl

SIMULTANEOUS FUNCTION: yes

DESCRIPTION: This command is identical to PCAP command jhi() and SAP command JHI(). In
addition, the system waits for the profile end of the axes involved.

NOTE: SAP command JA()

EXAMPLE: JHIW(A1 := 5.0);

108 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

6.6.19 JHL, jog home left

FUNCTION PARAMETERS: Spec

SYSTEM PARAMETERS: Qualifiers: hac and hvl

SIMULTANEOUS FUNCTION: yes

REFERENCES: PCAP command jhl(), SAP command JHLW()

DESCRIPTION: The reference search run on a digital input planned with REF for all selected axis
channels is started towards the left traversing direction.

EXAMPLE: JHL(A1);

6.6.20 JHLW, jog home left waiting

FUNCTION PARAMETERS: Spec

SYSTEM PARAMETERS: Qualifiers: hac and hvl

SIMULTANEOUS FUNCTION: yes

REFERENCES: PCAP command jhl(), SAP command JHL()

DESCRIPTION: This command is identical to the PCAP command jhl() and SAP command JHL(). In
addition, the system waits for the profile end of the axes involved.

NOTE: SAP command JA()

EXAMPLE: JHLW(A2);

6.6.21 JHR, jog home right

FUNCTION PARAMETERS: Spec

SYSTEM PARAMETERS: Qualifiers: hac and hvl

SIMULTANEOUS FUNCTION: yes

REFERENCES: PCAP command jhr(), SAP command JHRW()

DESCRIPTION: The reference search run on a digital input planned with REF for all selected axis
channels is started towards the right traversing direction.

EXAMPLE: JHR(A2);

CHAPTER 6 SAP PROGRAMMING 109

6.6.22 JHRW, jog home right waiting

FUNCTION PARAMETERS: Spec

SYSTEM PARAMETERS: Qualifiers: hac and hvl

SIMULTANEOUS FUNCTION: yes

DESCRIPTION: This command is identical to the PCAP command jhr() and SAP command JHR().
In addition, the system waits for the profile end of the axes involved.

NOTE: SAP command JA()

EXAMPLE: JHRW(A1);

6.6.23 JR, jog relative

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: Qualifiers: jac, jvl and jtvl

SIMULTANEOUS FUNCTION: yes

DESCRIPTION: For description, please consult PCAP command jr().

EXAMPLE: JR(A1);

6.6.24 JRW, jog relative waiting

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: Qualifiers: jac, jvl and jtvl

SIMULTANEOUS FUNCTION: yes

REFERENCES: JR

DESCRIPTION: This command is identical to the PCAP command jr() and the SAP command JR().
In addition, the system waits for the profile end of the axes involved.

6.6.25 JS, jog stop

FUNCTION PARAMETERS: Spec

SYSTEM PARAMETERS: Qualifiers: sdec

SIMULTANFUNKTION: yes

DESCRIPTION: For description, please consult PCAP command js().

EXAMPLE: JS(A1);

110 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

6.6.26 JSW, jog stop waiting

FUNCTION PARAMETERS: Spec

SYSTEM PARAMETERS: Qualifiers: sdec

SIMULTANFUNKTION: yes

DESCRIPTION: This command is identical to the PCAP command js() and the SAP command JS().
In addition, the system waits for the profile end of the axes involved.

EXAMPLE: JSW(A1);

6.6.27 LN, natural logarithm function

DECLARATION: ln(value:double)

RESULT TYPE: double

DESCRIPTION: The function returns the natural logarithm of value, i.e. the power by which the
constant 2.71828... must be raised to obtain value.

NOTE: Values smaller than/equal to 0.0 for value are not defined mathematically. In this
case the function has no valid return value.
Function Exp()

6.6.28 MCA, move circular absolute
SMCA, spool motion circular absolute

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI

DESCRIPTION: PCAP command mca(), smca()

EXAMPLE: MCA(A1 := 50.0, A2 := 0.0, PHI := 720.0);
SMCA(A1 := 0.0, A2 := 10.0, PHI := 0.1);

6.6.29 MCAW, move circular absolute waiting

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI

REFERENCES: PCAP command mca()

DESCRIPTION: This command is identical to the SAP command MCA(), except that here the
system also waits for the profile end of the two axes involved.

CHAPTER 6 SAP PROGRAMMING 111

6.6.30 MCR, move circular relative
SMCR, spool motion circular relative

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI

DESCRIPTION: PCAP command mcr(), smcr()

EXAMPLE: MCR(A1 := 50.0, A2 := 0.0, PHI := 360.0);
SMCR(A1 := 0.0, A2 := 10.0, PHI := 45.0);

6.6.31 MCRW, move circular relative waiting

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI

DESCRIPTION: This command is identical to the SAP command MCR(), except that here the
system also waits for the profile end of the two axes involved.

6.6.32 MHA, move helical absolute
SMHA, spool motion helical absolute

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI

DESCRIPTION: PCAP command mha(), smha()

NOTE: This command has not yet been implemented at present.

6.6.33 MHAW, move helical absolute waiting

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI

DESCRIPTION: This command is identical to the SAP command MHA(), except that here the
system also waits for the profile end of the three axes involved.

NOTE: This command has not yet been implemented at present.

6.6.34 MHR, move helical relative
SMHR, spool motion helical relative

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI

DESCRIPTION: PCAP command mhr(), smhr()

NOTE: This command has not yet been implemented at present.

112 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

6.6.35 MHRW, move helical relative waiting

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI

DESCRIPTION: This command is identical to the SAP command MHR(), except that here the
system also waits for the profile end of the three axes involved.

NOTE: This command has not yet been implemented at present.

6.6.36 MLA, move linear absolute
SMLA, spool motion linear absolute

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: TRAC, TRVL, TRTVL

SIMULTANEOUS FUNCTION: yes

DESCRIPTION: The description is provided at the PCAP commands mla() and smla().

EXAMPLE: MLA(A1:=1000.0, A2:=3.2e2);
SMLA(A1:=100.0, A2:=-335.0);

6.6.37 MLAW, move linear absolute waiting

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: TRAC, TRVL, TRTVL

SIMULTANEOUS FUNCTION: yes

DESCRIPTION: This command is identical to the SAP command MLA(), except that here the system
also waits for the profile end of the axes involved.

EXAMPLE: MLAW(A1:=-0.3e3, A2:=100.4);

6.6.38 MLR, move linear relative
SMLR, spool motion linear relative

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: TRAC, TRVL, TRTVL

SIMULTANEOUS FUNCTION: yes

DESCRIPTION: The description is provided at the PCAP commands mlr() and smlr().

EXAMPLE: MLR(A1:=2000.0, A2:=3.2e2);
SMLR(A1:=300.0, A2:=-35.3);

CHAPTER 6 SAP PROGRAMMING 113

6.6.39 MLRW, move linear relative waiting

FUNCTION PARAMETERS: Spec, Pos

SYSTEM PARAMETERS: TRAC, TRVL, TRTVL

SIMULTANEOUS FUNCTION: yes

DESCRIPTION: This command is identical to the SAP command MLRW(), except that here the
system also waits for the profile end of the axes involved.

EXAMPLE: MLRW(A1:=-3.45e3, A2:=100.4e-1);

6.6.40 MS, motion stop

FUNCTION PARAMETERS: Spec

SYSTEM PARAMETERS: None

SIMULTANEOUS FUNCTION: yes

DESCRIPTION: PCAP command ms() [chapter 4.4.23].

EXAMPLE: MS(A1, A2);

6.6.41 MSW, motion stop waiting

FUNCTION PARAMETERS: Spec

SYSTEM PARAMETERS: None

SIMULTANEOUS FUNCTION: yes

DESCRIPTION: This command is identical to the PCAP command ms() and the SAP command
MS(). In addition, the system waits for the profile end of the axes involved.

EXAMPLE: MSW(A1, A2);

6.6.42 OL, open loop

FUNCTION PARAMETERS: Spec

SIMULTANEOUS FUNCTION: yes

DESCRIPTION: PCAP command ol() [chapter 4.4.24]

EXAMPLE: OL(A1, A2); // Open position control loop of A1 and A2

114 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

6.6.43 RA, reset axis

FUNCTION PARAMETERS: Spec

SIMULTANEOUS FUNCTION: yes

DESCRIPTION: PCAP command ra()

EXAMPLE: RA(A1, A2); // Reset Axes A1 and A2

6.6.44 RDCBD, read COMMON BUFFER double function

DECLARATION: RDCBS(offset:integer)

RESULT TYPE: double

DESCRIPTION: The function returns a floating-point value with double accuracy from the CNC-task-
specific COMMON BUFFER. The offset parameter is a byte offset referenced to the
first element (Element 0) of the COMMON BUFFER.

The double data type occupies 8 bytes in the COMMON BUFFER.
To enable the PA8000 CPU system to access this correctly, offset must always be
word-oriented, i.e. have a value which is divisible by 4.

NOTE: The CNC-task-specific buffer size is 1000 bytes.
PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx()

EXAMPLE: ...
var

cbd: double;
...
cbd := RDCBI(500); // Read in double variable from offset 500

6.6.45 RDCBI, read COMMON BUFFER integer function

DECLARATION: RDCBI(offset:integer)

RESULT TYPE: integer

DESCRIPTION: The function returns an integer value from the CNC-task-specific COMMON
BUFFER. The offset parameter is a byte offset referenced to the first element
(Element 0) of the COMMON BUFFER.
The integer data type occupies 4 bytes in the COMMON BUFFER.
To enable the PA8000 CPU system to access this correctly, offset must always be
word-oriented, i.e. have a value which is divisible by 4.

NOTE: The CNC-task-specific buffer size is 1000 bytes.
PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx()

EXAMPLE: ...
var

cbi: integer;
...
cbi := RDCBI(500); // Read in integer variable from offset 500

CHAPTER 6 SAP PROGRAMMING 115

6.6.46 RDCBS, read COMMON BUFFER single function

DECLARATION: RDCBS(offset:integer)

RESULT TYPE: single

DESCRIPTION: The function returns a floating-point value with single accuracy from the CNC-task-
specific COMMON BUFFER. The offset parameter is a byte offset referenced to the
first element (Element 0) of the COMMON BUFFER.
The single data type occupies 4 bytes in the COMMON BUFFER.
To enable the PA8000 CPU system to access this correctly, offset must always be
word-oriented, i.e. have a value which is divisible by 4.

NOTE: The CNC-task-specific buffer size is 1000 Bytes.
PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx()

EXAMPLE: ...
var

cbs: single;
...
cbs := RDCBI(500); // Read in single variable from offset 500

6.6.47 RS, reset system

DESCRIPTION: PCAP command rs()

NOTE: Once this command has been executed, no more monitoring can be performed by
the stand-alone application program, since the CNC task is halted by this
command.

EXAMPLE: RS; // reset complete axis system

6.6.48 SHP, set home position

FUNCTION PARAMETERS: Spec, Pos

SIMULTANEOUS FUNCTION: yes

DESCRIPTION: PCAP command shp()

EXAMPLE: SHP(A2:=1000.0);

116 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

6.6.49 SIN, sine function

DECLARATION: sin(value:double)

RESULT TYPE: double

DESCRIPTION: The function returns the sine of value. The argument Value is interpreted as an
angle in the unit rad (0..2Pi = 0..360) degrees.

NOTE: Cos(), Tan() function

EXAMPLE: ...
var

d1, d2: double;
...
d1 := 3.1415;
d2 := SIN(d1); // d2 := 0.0 (rounded)

6.6.50 SINH, hyperbolic sine function

DECLARATION: cos(value:double)

RESULT TYPE: double

DESCRIPTION: The function returns the hyperbolic sine of value.

6.6.51 SQRT, square root function

DECLARATION: sqrt(value:double)

RESULT TYPE: double

DESCRIPTION: The function returns the square root of value.

NOTE: Negative values of value are not defined mathematically. In this case, the function
does not have a valid return value.

EXAMPLE: ...
var

d1, d2: double;
...
d1 := 9.0;
d2 := SQRT(d1); // d2 := 3.0

CHAPTER 6 SAP PROGRAMMING 117

6.6.52 SSMS, start spooled motions synchronous

FUNCTION PARAMETERS: Spec

SIMULTANEOUS FUNCTION: yes

REFERENCES: PCAP command ssms(), SAP command SSMSW()

DESCRIPTION: Spool commands can be used to transfer commands to the individual axis channels
of the PA8000; they are entered in a queue. The SSMS() command causes a
synchronized start for spooler command processing at all the axes specified in AS.

EXAMPLE: ...
SMLA(A1:=1000.0, A2:= 1000.0); // Spool traversing command
SMLR(A1:=200.0, A2:=500.0); // Spool traversing command
...
SSMS(A1, A2); // Start spooler

6.6.53 SSMSW, start spooled motions synchronous waiting

FUNCTION PARAMETERS: Spec

SIMULTANEOUS FUNCTION: yes

REFERENCES: SAP command SSMS()

DESCRIPTION: Synchronized start of all axes selected, and wait until all spooled motion profiles of
these axes have been run completely and the profile end of all axes involved has
been reached.

NOTE: SPOOL mode

EXAMPLE: ...
SMLR(A1:=1000.0, A2:= 1000.0); // Spool traversing command
SMLR(A1:=200.0, A2:=500.0); // Spool traversing command
...
SSMSW(A1, A2); // Start spooler

6.6.54 STARTCNCT, start CNC-Task

FUNCTION PARAMETERS: Integer constant in the range of 0..3

DESCRIPTION: This command starts the CNC task transferred in the parameter, and executes the
SAP program stored there from its beginning.

NOTE: An SAP program can also start itself automatically from the beginning with this
command.

EXAMPLE: ...
const

Task1 = 1;
...
STARTCNCT(Task1);

118 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

6.6.55 STOP, stop

DESCRIPTION: This command causes the currently running stand-alone application program to
stop. In addition, the corresponding CNC task (Task 0, 1, 2, or 3) is put into idle
state.
The application program can be resumed by means of the contcnct()-PCAP
command, the CONTCNCT()-SAP command or in the TOOLSET program
mcfg.exe.

NOTE: Any EVENT handling procedures enabled will no longer be processed after
execution of the Stop command. The drive should therefore be put into a safe
operating state before this command is executed.

EXAMPLE: STOP; // stops the SAP program

6.6.56 STOPCNCT, stop CNC-Task

FUNCTION PARAMETERS: Integer constant in the range of 0..3

DESCRIPTION: This command halts the CNC task transferred in the parameter, and thus halts the
SAP program stored in it as well.

NOTE: Any EVENT handling procedures enabled will no longer be processed by the
correspondingly selected task after executing STOPCNCT().

EXAMPLE: ...
const

Task3 = 3;
...

STOPCNCT(Task3);

6.6.57 TAN, tangent function

DECLARATION: tan(value:double)

RESULT TYPE: double

DESCRIPTION: The function returns the tangent of value. The argument Value is interpreted as an
angle in the unit rad (0..2Pi = 0..360) degrees.

NOTE: Sin(), Cos() function

EXAMPLE: ...
var

d1, d2: double;
...
d1 := 0.5;
d2 := TAN(d1); // d2 := 0.5463 (rounded)

CHAPTER 6 SAP PROGRAMMING 119

6.6.58 TANH, hyperbolic tangent function

DECLARATION: tan(value:double)

RESULT TYPE: double

DESCRIPTION: The function returns the hyperbolic tangent of value.

6.6.59 UF, update filter

FUNCTION PARAMETERS: Spec

SYSTEM PARAMETERS: Qualifiers: kp, ki, kd, kpl, kfca, kfcv

SIMULTANEOUS FUNCTION: yes

DESCRIPTION: PCAP command uf()

NOTE: For updating the PIDF filter coefficients, all the qualifiers listed above must be
initialized before executing the command.

EXAMPLE: ...
A1.kp := 5.0; // Alter proportional amplification
A1.ki := 0.0;
A1.kd := 0.0;
A1.kpl := 0.0;
A1.kfca := 0.0;
A1.kfcv := 0.0;
UF(A1);
...

6.6.60 UTROVR, update trajectory override

FUNCTION PARAMETERS: Spec

SYSTEM PARAMETER: TROVR

SIMULTANEOUS FUNCTION: yes

DESCRIPTION: PCAP command utrovr()

EXAMPLE: ...
TROVR := 0.9; // Trajectory velocity override = -10%
UTROVR(A1, A2); // Reduced trajectory velocity for axes A1 and A2
...

120 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

6.6.61 WRCBI, write COMMON BUFFER integer procedure

DECLARATION: WRCBI(offset:integer; value:integer)

DESCRIPTION: The procedure describes a memory location of the integer type with the value of
value in the CNC-task-specific COMMON BUFFER. The offset parameter is a byte
offset referenced to the first element (Element 0) of the COMMON BUFFER.
The integer data type occupies 4 bytes in the COMMON BUFFER.
To enable the PA8000 CPU system to access this correctly, offset must always be
word-oriented, i.e. have a value which is divisible by 4.

NOTE: The CNC-task-specific buffer size is 1000 Bytes.
PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx()

EXAMPLE: WRCBI(500, -1000); // Write integer variable from offset 500
// with value -1000

6.6.62 WRCBS, write COMMON BUFFER single procedure

DECLARATION: WRCBS(offset:integer; value:single)

DESCRIPTION: The procedure describes a memory location of the single type (floating-point
number with single accuracy) with the value of value in the CNC-task-specific
COMMON BUFFER. The offset parameter is a byte offset referenced to the first
element (Element 0) of the COMMON BUFFER.
The single data type occupies 4 bytes in the COMMON BUFFER.
To enable the PA8000 CPU system to access this correctly, offset must always be
word-oriented, i.e. have a value which is divisible by 4.

NOTE: The CNC-task-specific buffer size is 1000 Bytes.
PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx()

EXAMPLE: WRCBS(500, 3.99); // Write single variable from offset 500
// with value 3.99

6.6.63 WRCBD, write COMMON BUFFER double procedure

DECLARATION: WRCBD(offset:integer; value:double)

DESCRIPTION: The procedure describes a memory location of the "double" type (floating-point
number with double accuracy) with the value of value in the CNC-task-specific
COMMON BUFFER. The offset parameter is a byte offset referenced to the first
element (Element 0) of the COMMON BUFFER.

The double data type occupies 8 bytes in the COMMON BUFFER.
To enable the PA8000 CPU system to access this correctly, offset must always be
word-oriented, i.e. have a value which is divisible by 4.

NOTE: The CNC-task-specific buffer size is 1000 bytes.
PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx()

EXAMPLE: WRCBD(500, 100.2e-128); // Write double variable from offset 500
// with value 100.2e-128

CHAPTER 6 SAP PROGRAMMING 121

6.6.64 WT, wait timer

FUNCTION PARAMETERS: Integer values with a unit of 64 µs

DESCRIPTION: Wait for the wait time transferred as a parameter before continuing the SAP
program again. This command de-activates the CNC task, and therefore does not
need any CPU time. To reduce the workload on the master CPU system, this
command may be used in queues, etc.

NOTE: The EVENT handling procedures are not processed while this command is being
executed. But if you want these to be monitored, this can, for example, be achieved
by means of several WT() calls with shorter wait times (perhaps in a loop).

EXAMPLE: ...
CONST sec = 15625;
...
WT(5*sec); // wait 5 s
...

122 PM / PROGRAMMING AND REFERENCE MANUAL FOR THE PA8000

6.7 Compiler commands

As the name implies, a compiler command instructs the compiler, while it is compiling a source text, to
execute (or not to execute) certain operations. In rw_SymPas, a compiler command is activated as follows:

Inside the SAP source text program, a special syntax is formulated inside a comment: The opening bracket
({) is followed directly by a dollar sign ($) and the name of the command, which consists of one or more
letters. These "comments" can (apart from a few exceptions) appear at any position in the source text at
which a normal comment would also be permissible.

6.7.1 Include file

SYNTAX: {$I Filename}

This compiler command instructs the compiler to read in the file designated by filename. Basically, the
compiler behaves as if the text read is in place of the {$I} command. rw_SymPas permits include files to be
nested up to 15 levels. A file inserted by means of {$I} can thus itself insert further files, which in turn contain
{$I} commands.
Note: If in the mcfg.exe NCC editor environment an include file has already been opened in one of the three
editor windows, the SAP source text of this editor will be incorporated, and not the content of the file
concerned.

6.7.2 Compiler commands, task selection

SYNTAX: {$TASK TaskNr}

DESCRIPTION: You can use this compiler command to specify the task (TaskNr, values 0..3) in
which the SAP program involved is to be run. The information is stored in the
autocode file "filename.cnc". The PCAP command txbf() is used to transfer this file
automatically into the right task.

NOTE: If the SAP program concerned does not contain this statement, the task number
currently selected will be utilized for compiling. But if the ($TASK) command is
given, the correspondingly selected task number also becomes the default task
number for all subsequent display, start and stop commands.
chapter 3.2

EXAMPLE: ...
const
Task1 = 1;
...

{$TASK Task1}; // or
{$TASK 1};

CHAPTER 6 SAP PROGRAMMING 123

