

 DIN EN ISO 9001:2000
 certified

ADDI-DATA GmbH
Dieselstraße 3

 D-77833 OTTERSWEIER

Technical support:

+49 (0)7223 / 9493 – 0

Technical description

MSX-Box

S7 communication

Edition: 01.01 – 02/2007

Product information

This manual contains the technical installation and important instructions for correct commissioning
and usage, as well as production information according to the current status before printing.
The content of this manual and the technical product data may be changed without prior notice.
ADDI-DATA GmbH reserves the right to make changes to the technical data and the materials
included herein.

Warranty and liability

The user is not permitted to make changes to the product beyond the intended use, or to interfere with
the product in any other way.
ADDI-DATA shall not be liable for obvious printing and phrasing errors. In addition, ADDI DATA, if
legally permissible, shall not be liable for personal injury or damage to materials caused by improper
installation and/or commissioning of the board by the user or improper use, for example, if the board is
operated despite faulty safety and protection devices, or if notes in the operating instructions regarding
transport, storage, installation, commissioning, operation, thresholds, etc. are not taken into
consideration. Liability is further excluded if the operator changes the board or the source code files
without authorisation and/or if the operator is guilty of not monitoring the permanent operational
capability of working parts and this has led to damage.

Copyright

This manual, which is intended for the operator and its staff only, is protected by copyright.
Duplication of the information contained in the operating instructions and of any other product
information, or disclosure of this information for use by third parties, is not permitted, unless this right
has been granted by the product licence issued. Non-compliance with this could lead to civil and
criminal proceedings.

ADDI-DATA software product licence

Please read this licence carefully before using the standard software. The customer is only granted the
right to use this software if he/she agrees with the conditions of this licence.
The software must only be used to set up the ADDI-DATA boards.
Reproduction of the software is forbidden (except for back-up and for exchange of faulty data
carriers). Disassembly, decompilation, decryption and reverse engineering of the software are
forbidden. This licence and the software may be transferred to a third party if this party has acquired a
board by purchase, has agreed to all the conditions in this licence contract and the original owner does
not keep any copies of the software.

Trademarks
- ADDI-DATA is a registered trademark of ADDI-DATA GmbH.
- Turbo Pascal, Delphi, Borland C, Borland C++ are registered trademarks of Borland Insight

Company.
- Microsoft C, Visual C++, Windows XP, 98, Windows 2000, Windows 95, Windows NT,

EmbeddedNT and MS DOS are registered trademarks of Microsoft Corporation.
- LabVIEW, LabWindows/CVI, DasyLab, Diadem are registered trademarks of National Instruments

Corp.
- CompactPCI is a registered trademark of PCI Industrial Computer Manufacturers Group.
- VxWorks is a registered trademark of Wind River Systems Inc.

WARNING

The following risks result from improper implementation
and from use of the board contrary to the regulations:

♦ Personal injury

♦ Damage to the board, MSX-Box, PC and
peripherals

♦ Pollution of the environment

♦ Protect yourself, the others and the environment!

♦ Read carefully the safety precautions
(yellow leaflet).

If this leaflet is not with the documentation, please contact us
and ask for it.

♦ Observe the instructions of the manual.

Make sure that you do not forget or skip any step. We are not
liable for damages resulting from a wrong use of the board.

♦ Used symbols:

i IMPORTANT!
Designates hints and other useful information.

WARNING!
It designates a possibly dangerous situation.
If the instructions are ignored the board, PC and/or peripheral may
be destroyed.

 3

Contents MSX-Box: S7 communication

1 INTRODUCTION.. 7

1.1 About this documentation..7

1.2 Requirements ...7

1.3 Description ...7

2 OPEN MODBUS TCP ... 9

2.1 Introduction..9

2.2 Type definition..9

2.3 Header description ..9

2.4 Class 0: Read multiple registers (FC3)...........................10

2.4.1 Request... 10
2.4.2 Response .. 10
2.4.3 Exception.. 10

2.5 Class 0: Write multiple registers (FC16)11

2.5.1 Request... 11
2.5.2 Response .. 12
2.5.3 Exception.. 12

3 MSX-BOX... 13

3.1 OPEN MODBUS TCP Slave package13

3.2 Steps to follow ..14

3.3 Skeleton functions ..15

3.3.1 Introduction... 15
3.3.2 skel_MODBUSTCPServerStart .. 15
3.3.3 skel_MODBUSTCPServerStop .. 16
3.3.4 skel_MODBUSTCPReadMultipleRegisters.............................. 17
3.3.5 skel_MODBUSTCPWriteMultipleRegisters 18

3.4 Compilation ...21

3.5 Execution..21

3.6 Installation ...22

3.7 Boot script ..22

3.7.1 Description.. 23
3.7.2 Use of the script... 23

4 S7 PROGRAM... 24

4.1 Introduction..24

4.2 Configuration ...24

4.3 Program description ..28

4

Contents MSX-Box: S7 communication

4.3.1 OB1 ...28
4.3.2 OB100 ...29
4.3.3 FB100...30
4.3.4 FC10..32

5 COMMENTS ...40

5.1 S7 programs ...40

5.1.1 Program execution speed...40

 5

Contents MSX-Box: S7 communication

Figures

... 24 Fig. 4-1: SIMATIC Manager
.. 25 Fig. 4-2: NetPro

.. 26 Fig. 4-3: Properties – TCP connection
.. 28 Fig. 4-4: OB1

.. 29 Fig. 4-5: OB100
... 30 Fig. 4-6: FB100

.. 32 Fig. 4-7: FC10

Tables

............................9 Table 2-1: Open Modbus TCP: Header description
............................. 10 Table 2-2: Read multiple registers FC3: Request

........................... 10 Table 2-3: Read multiple registers FC3: Response
.......................... 10 Table 2-4: Read multiple registers FC3: Exception

............................ 11 Table 2-5: Write multiple registers FC16: Request
.......................... 12 Table 2-6: Write multiple registers FC16: Response

........................ 12 Table 2-7: Read multiple registers FC16: Exception

6

MSX-Box: S7 communication Introduction

1 INTRODUCTION

1.1 About this documentation

This documentation describes how to control a MSX-Box with a Siemens S7 over
Ethernet.

It is based on a sample using the APCI-1500 (a board with 16 digital inputs and
outputs) as hardware to be managed (in the MSX-Box) through the S7.

The S7 is reading the status of the 16 digital inputs of the APCI-1500.

Hardware:
o MSX-Box
o APCI-1500 (16 digital inputs / outputs)
o Siemens S7 + CP343-1 Lean

The Siemens S7 has to read and write digital inputs from the APCI-1500 (located
in the MSX-Box).

1.2 Requirements

Please make sure that the following requirements are fulfilled:

o Siemens CPU313C-2DP (The PLC device)
o Siemens CP343-1 Lean (Ethernet module for the PCL)
o FC5 (AG_SEND) and FC6 (AG_RECV) blocks for S7-300 (asynchrony

communication function)
o MSX-Box OPEN MODBUSTCP Slave package
o S7 sample for Step 7

1.3 Description

The Siemens S7 is used as a master to remote the slave MSX-Box by using the
OPEN MODBUS TCP protocol. The MSX-Box is running an OPEN MODBUS
TCP Slave server which is waiting for the master request.

ADDI-DATA provides a MSX-Box OPEN MODBUS TCP slave server servicing
Class 0 functions.

This class is the minimal set of functions that has to be available on a device
providing the OPEN MODBUS TCP protocol.

 7

Introduction MSX-Box: S7 communication

Class 0 includes a set of 2 functions:

- Read multiple registers
- Write multiple registers

On the MSX-Box side, OPEN MODBUS TCP telegrams do not need to be
manipulated directly. This is already done by the server. Read and write skeletons
functions have to be filled with the code they have to execute once the S7 asks for
reading or writing. On the S7, OPEN MODBUS TCP telegrams have to be set
(See S7 Program).

8

MSX-Box: S7 communication OPEN MODBUS TCP

2 OPEN MODBUS TCP

2.1 Introduction

The OPEN MODBUS TCP protocol is based on the widely known MODBUS
protocol.

OPEN MODBUS TCP is an open protocol and is not manufacturer dependent.

It is mainly used to connect PLC and I/O devices.

The OPEN MODBUS TCP protocol is using the connection oriented TCP
protocol in order to ensure security features and simplify the server and client
codes. Data are encoded in big-endian (for data larger as bytes, the most
significant byte is sent first).

The OPEN MODBUS TCP telegram is composed of two parts, a header and a
body.

2.2 Type definition

Please note:
1 x byte = 8-bit
1 x word = 16-bit = 2 x bytes

2.3 Header description

The header is always composed of 6 bytes:

Table 2-1: Open Modbus TCP: Header description

Byte Signification Value Comment

0 Transaction identifier MSB 0 Copied by server

1 Transaction identifier LSB 0

2 Protocol identifier MSB 0

3 Protocol identifier LSB

OPEN MODBUS TCP =
0 0

4 Length field MSB 0 0 Because messages are
smaller than 256 5 Length field LSB Number of bytes of the

body

MSB: Most significant byte
LSB: Least significant byte

 9

OPEN MODBUS TCP MSX-Box: S7 communication

2.4 Class 0: Read multiple registers (FC3)

2.4.1 Request

Table 2-2: Read multiple registers FC3: Request

Byte Signification Value Comment

0 Unit identifier Index of the slave to be controlled

1 Function code 3 Code of the function to execute

2 Reference number MSB First register to be read

3 Reference number LSB

4 Word count MSB

5 Word count

1-125 Number of words to be read from
the reference register

LSB

MSB: Most significant byte
LSB: Least significant byte

2.4.2 Response

Table 2-3: Read multiple registers FC3: Response

Byte Signification Value Comment

0 Unit identifier Index of the slave to be controlled

1 Function code 3 Code of the function to execute

2 Byte count of response Number of words from the response
converted in byte.

3 Register values Read words
…

2.4.3 Exception

Table 2-4: Read multiple registers FC3: Exception

Byte Signification Value Comment

0 Unit identifier Index of the slave to be controlled

1 Function exception code 83 Function code + Exception
modifier

1: Illegal function 2 Exception code 1
 or
2: Illegal data address 2

10

MSX-Box: S7 communication OPEN MODBUS TCP

Sample:

Read 2 registers at reference 8 slave 5.

Reference Register value (Hex)

8 5678

9 4897

Request: 00 00 00 00 00 06 05 03 00 08 00 02
Response: 00 00 00 00 00 07 05 03 04 56 78 48 97

OPEN MODBUS TCP Header

2.5 Class 0: Write multiple registers (FC16)

2.5.1 Request

Table 2-5: Write multiple registers FC16: Request

Byte Signification Value Comment

0 Unit identifier Index of the slave to be controlled

1 Function code 16 Code of the function to execute

2 Reference number MSB First register to be written

3 Reference number LSB

4 Word count MSB

5 Word count

1-100 Number of words to be written
from the reference register LSB

6 Byte count Number of bytes to be written
from the reference register

7 Register values Words to be written from the
reference register …

MSB: Most significant byte
LSB: Least significant byte

 11

OPEN MODBUS TCP MSX-Box: S7 communication

2.5.2 Response

Table 2-6: Write multiple registers FC16: Response

Byte Signification Value Comment

0 Unit identifier Index of the slave to

1 Function code 16 Code of the function to execute

2 Reference number MSB This is the first written register

3 Reference number LSB

4 Word count MSB

5 Word count LSB

The number of written words

MSB: Most significant byte
LSB: Least significant byte

2.5.3 Exception

Table 2-7: Read multiple registers FC16: Exception

Byte Signification Value Comment

0 Unit identifier Index of the slave to

1 Function exception code 90 Function code + Exception modifier

2 Exception code 1 1: Illegal function
or
2 2: Illegal data address

Sample:

Write 2 registers at reference 8 slave 5.

Reference Register value (Hex)

8 5678

9 4897

Request: 00 00 00 00 00 0C 05 10 00 08 00 02 00 04 56 78 48 97
Response: 00 00 00 00 00 06 05 10 00 08 00 02

OPEN MODBUS TCP Header

12

MSX-Box: S7 communication MSX-Box

3 MSX-BOX

3.1 OPEN MODBUS TCP Slave package

On the MSX-Box, the slave server contains all requested functions for the
communication between Siemens S7, MSX-Box and other peripherals.
It is composed of the following parts:

MODBUSTCP_com.c: Contains all functions to realise the TCP
 communication.

MODBUSTCP_com.h: Header of the previous c file.

MODBUSTCP_fc.c: Contains MODBUS TCP Class 0 functions and
 exceptions management.

MODBUSTCP_fc.h: Header of the previous c file.

MODBUSTCP_server.c: This is where the main functions are located.

MODBUSTCP_skel.c: Contains read / write skeletons functions which have
 to be filled.

MODBUSTCP_skel.h: Header of the previous c file.

MODBUSTCP.h: Header for MODBUS TCP specific information.

 13

MSX-Box MSX-Box: S7 communication

Relation between the different parts:

MODBUSTCP com

MODBUSTCP fc

MODBUSTCP server

MODBUSTCP_skel

Network

Siemens S7

Device driver

Device

MSX-Box

Parts running in the user level are in yellow (yellow). The device driver kernel
level is in green (green).

The code is written so that only the skeleton parts of the slave have to be filled.

3.2 Steps to follow

In order to realise a slave server, the following steps have to be done:
1. Fill the hook functions located in MODBUSTCP_skel.c:

o skel_MODBUSTCPServerStart
o skel_MODBUSTCPServerStop
o skel_MODBUSTCPReadMultipleRegisters
o skel_MODBUSTCPWriteMultipleRegisters

2. Compile the slave server.

14

MSX-Box: S7 communication MSX-Box

3.3 Skeleton functions

3.3.1 Introduction

Skeleton functions are like hook functions which are called when the defined task
is done. You have to fill the body of these hook functions as you require.

Four functions are available in this slave version:
o skel_MODBUSTCPServerStart
o skel_MODBUSTCPServerStop
o skel_MODBUSTCPReadMultipleRegisters
o skel_MODBUSTCPWriteMultipleRegisters

3.3.2 skel_MODBUSTCPServerStart

Prototype:

int skel_MODBUSTCPServerStart (void)

When it is called:

- Once the slave application is started
 - Initialization and request waiting.

Has to be used for:

Allows you to make your own initialization before the slave starts. This is
a good place to open and/or initialize the hardware that has to be managed
by the S7.

Parameters:

No parameter.

Return value:

If you return a value different from 0, the server does not start.
E.g.: If the hardware to use is not available, a value different of 0 can be
returned. The slave server does not start.

Sample:

In this sample the used hardware is an ADDI-DATA APCI-1500 board. The
apci1500_find_cards functions searches for an APCI-1500 in the MSX-Box and
returns the number of boards found.

If no board was found, it returns 1 (error) and the slave server will not go on
running.

 15

MSX-Box MSX-Box: S7 communication

int skel_MODBUSTCPServerStart (void)
{
 /* Search all APCI-1500 boards and return the
number of boards */
 if ((nbr = apci1500_find_cards(&fd)) < 1)
 {
 return 1;
 }

 return 0;

}

3.3.3 skel_MODBUSTCPServerStop

Prototype:

int skel_MODBUSTCPServerStop (void)

When it is called:

Just before the slave server quits (because of error or user has quit it).

Has to be used for:

Allows to release before the slave is quitting. This is a good place to close
and/or release the hardware that has to be managed by the S7.

Parameters:

No parameter.

Return value:

Not used.

Sample:

In this sample the used hardware is an ADDI-DATA APCI-1500 board.
Set all digital outputs of the APCI-1500 to 0 before quitting the slave
server.

int skel_MODBUSTCPServerStop (void)
{
 APCI1500_WriteAllDigitalOutput (&fd, 0);

 return 0;

}

16

MSX-Box: S7 communication MSX-Box

3.3.4 skel_MODBUSTCPReadMultipleRegisters

Prototype:

uint16_t skel_MODBUSTCPReadMultipleRegisters(uint16_t reference, uint16_t
length, uint16_t *value)

When it is called:

Once the slave received a valid (valid = the telegram is tested from the
slave server) FC3 request telegram. FC3 is reading multiple registers.

Has to be used for:

Read something or do an action.

Parameters:

Input:

Reference Index of the first register to be read.
Length Number of words to read from the reference register.

Output:

Value This is a word array in which you have to return read words.
The array size is "length" size!

Return value:

0: No error
1: ILLEGAL_FUNCTION
2: ILLEGAL_DATA_ADDRESS
3: ILLEGAL_DATA_VALUE (Not specified for this FC in the
 MODBUSTCP specification, but can be useful in some case)

Sample:

In this sample, the reference is used as a function index. Here reference = 0 calls
the APCI1500_ReadAllDigitalInput function. Length is used as an index to
specify the board to use; it is the minor number of the board. Value will contains
the status of the 16 digital inputs of the APCI-1500.

Remark: Data in the value array do not have to be converted in big-endian for
the communication. The slave server does this automatically for you.

uint16_t skel_MODBUSTCPReadMultipleRegisters(uint16_t reference, uint16_t
length, uint16_t *value)
{

 17

MSX-Box MSX-Box: S7 communication

 ference" is the index of the function to execute */ /* "re
 switch (reference)
 {
 /*
 * Read all digital inputs of the APCI-1500.
 * There are 16 digital inputs, each input is to see
 * as a bit, so they can be stored in a word (16 bit).
 * The length is used to select the board to use.
 * (length-1) while the board index begins to 0.
 */
 case 0:
 if ((length > nbr) || (APCI1500_ReadAllDigitalInput
(fd[(length-1)], &value[0]) != 0))
 {
 value = 0;

 /* Fail to read digital inputs, generate an
exception */
 return ILLEGAL_DATA_ADDRESS;
 }
 break;

 default:
 /* Bad function */
 return ILLEGAL_FUNCTION;
 break;
 }

 return 0;

}

3.3.5 skel_MODBUSTCPWriteMultipleRegisters

Prototype:

uint16_t skel_MODBUSTCPWriteMultipleRegisters(uint16_t reference, uint16_t
length, uint16_t *value)

When it is called:

Once the slave receives a valid (valid = the telegram is tested from the
slave server) FC16 request telegram. FC16 is writing multiple registers.

Has to be used for:

Write something or do an action.

Parameters:

Input:
reference Index of the first register to be written.
length Number of words to write from the reference register.
value This is a word array in which you will find words to write
The array size is "length" size!

 Return value:

0: No error
1: ILLEGAL_FUNCTION

18

MSX-Box: S7 communication MSX-Box

2: ILLEGAL_DATA_ADDRESS
3: ILLEGAL_DATA_VALUE (Not specified for this FC in the
 MODBUSTCP specification, but can be useful in some case)

 19

MSX-Box MSX-Box: S7 communication

Sample:

In this sample, the reference is used as a function index. The reference = 0 calls
the APCI1500_WriteAllDigitalInput function. Length is used as an index to
specify the board to use. It is the minor number of the board. Value contains the
status value to write on the 16 digital outputs of the APCI-1500.

Comment: Data in the value array do not have to be converted from big-endian
due to the communication. The slave server does it automatically for you.

uint16_t skel_MODBUSTCPWriteMultipleRegisters(uint16_t
reference, uint16_t length, uint16_t *value)
{
 /* "reference" is the index of the function
to execute */
 switch (reference)
 {
 /*
 * Write all digital outputs of the
APCI-1500.
 * There are 16 digital outputs, each
output is to see
 * as a bit, so they can be stored in a
word (16 bit).
 * The length is used to select the
board to use.
 * (length-1) while the board index
begins to 0.
 */
 case 0:
 if ((length > nbr) ||
(APCI1500_WriteAllDigitalOutput (fd[(length-1)],
value[0]) != 0))
 {
 value = 0;

 /* Fail to write digital
outputs, generate an exception */
 return ILLEGAL_DATA_ADDRESS;
 }
 break;

 default:
 /* Bad function */
 return ILLEGAL_FUNCTION;
 break;
 }

 return 0;

}

20

MSX-Box: S7 communication MSX-Box

3.4 Compilation

Once skeletons functions are ready to work, just use the Makefile to compile the
complete slave server.

In the slave server directory type “make”. The resulting executable is called
MODBUSTCP_server.exe (compiled under Cygwin) or MODBUSTCP_server
(compiled under Linux).

Note:
For more information about compiling with the MSX-Box see
“Introduction to C Programming for the MSX-Box.pdf”.

3.5 Execution

Transfer the MODBUSTCP_server.exe on the MSX-Box (by e.g.: ftp) and use
Telnet or the serial connection to open a console on the MSX-Box.

The file has to be executable:

[root@MSXBOX:/tmp]# chmod +x MODBUSTCP_server.exe

Usage: %s <slaveAddress> <deamon>

Parameters:

 slaveAddress: This is the Unit ID of slave on which the slave server is running.

 deamon : 0 = Start a non deamon, 1 = start as deamon. Deamon means that
the slave server is running in background and the console on which
it is started is free for key inputs.

Sample:

To start it as daemon with Unit ID 2:

[root@MSXBOX:/tmp]# ./MODBUSTCP_server.exe 2 1

To stop it:

[root@MSXBOX:/tmp]# kill MODBUSTCP_server.exe

This daemon logs a big part of the actions that it does. The log is available under
/var/log/message:

Feb 8 14:16:15 (none) daemon.warn MODBUS_slave: ...

Note:
For more information about ftp and telnet connections see
QuickInstallation_e.pdf.

 21

MSX-Box MSX-Box: S7 communication

3.6 Installation

If you want to start the server with the boot script:
o the apci1500.o driver has to be located under:

 /lib/modules/2.4.xx-x/addidata/
o the MODBUSTCP_server.exe server has to be located under:

 /home/MODBUSTCP/

You can modify the boot script for other locations.

3.7 Boot script

It is possible to load automatically the slave server by using a script like the
following. This sample script loads in first the driver of the APCI-1500 board.

#!/bin/sh

Starting / Stopping...

(C) ADDI-DATA GmbH 2007

Module to load
modulesload="apci1500"

auto build unload string from load string
for i in $modulesload ; do
 modulesunload="$i $modulesunload"
done

Check presence of all kernel module files listed in "modulesload"
for i in $modulesload ; do
 module="/lib/modules/`uname -r`/addidata/$i.o"
 if [! -f $module] ; then
 echo "$0: $module does not exist!"
 exit 11
 fi
done

start() {
 # Load the APCI-1500 driver
 echo -n "Starting MODBUSTCP server: "

 for i in $modulesload ; do
 modprobe $i
 done

 # Start the MODBUSTCP server as a deamon with slave ID 0
 /home/MODBUSTCP/./MODBUSTCP_server.exe 0 1

 echo "done."
}

stop() {
 # Unload the APCI-1500 driver
 echo -n "Stopping FireWire: "
 for i in $modulesunload ; do
 modprobe -r $i
 done

 # Stop the MODBUSTCP server
 killall MODBUSTCP_server.exe

 echo "done."
}

restart() {
 # Restart
 Stopp

22

MSX-Box: S7 communication MSX-Box

 start
}

case "$1" in
 start)
 start
 ;;
 stop)
 stop
 ;;
 restart|reload)
 restart
 ;;
 *)
 echo $"Usage: $0 {start|stop|restart}"
 exit 1
esac

exit $?

3.7.1 Description

When the MSX-Box is booting, this script is automatically called with the “start”
argument (because the link name is SXX like Start).

The “start” function
o loads the apci1500 driver
o executes the MODBUSTCP_server as a deamon (deamon = is running in

background)

To stop manually

[root@MSXBOX:/]# MODBUSTCP stop

To start manually

[root@MSXBOX:/]# MODBUSTCP start

3.7.2 Use of the script

The script e.g.: MODBUSTCP has to be copied in /etc/init.scripts (by using ftp
and a consol).

A symbolic link has to be created under /etc/init.d/:

[root@MSXBOX:/tmp]# ln –s /etc/init.scripts/MODBUSTCP /etc/init.d/S98MODBUSTCP

The script will be called and executed at each start of the MSX-Box.

Note:
For more information about ftp and telnet connections see
QuickInstallation_e.pdf.

 23

S7 Program MSX-Box: S7 communication

4 S7 PROGRAM

4.1 Introduction

The software package contains a sample to read and write values.
The documentation describes the sample to read values.

4.2 Configuration

Samples are written for the S7-300 and CP343-1 for the Ethernet communication.

Open the SIMATIC Manager, open the mTCPRead Project.

Fig. 4-1: SIMATIC Manager

♦ Double-click on Ethernet.

24

MSX-Box: S7 communication S7 Program

Fig. 4-2: NetPro

Click the CPU313C-2DP. In the table, double-click on the marked line (here in
black).

Content: The Ethernet connection is a TCP connection.

 25

S7 Program MSX-Box: S7 communication

Fig. 4-3: Properties – TCP connection

Active connection establishment has to be selected so that the S7 does the
connection on the slave.

You can see right over the Block Parameters that has to be used with the FC5
and FC6 block functions.

Click on Addresses.

26

MSX-Box: S7 communication S7 Program

IP and PORT Local are parameters of the S7. 502 is the right port number for
OPEN MODBUS TCP.

In Remote, set the IP address of the MSX-Box and the port. Note that the port is
always 502, and the IP address has to be compatible with the S7 IP address.

 27

S7 Program MSX-Box: S7 communication

4.3 Program description

The program is located under the CPU and Blocks.

4.3.1 OB1

What is OB1: OB1 is executed periodically. Once finished it starts again. OB1 is
started after the start-up has been completed.

Task: OB1 call the FB100. FB100 (Function Block 100) contains other function
calls. M1.0 is here as a flag to test if connection has been initialized once.

Fig. 4-4: OB1

28

MSX-Box: S7 communication S7 Program

Task: When FB100 returns, it resets M1.0, connection is already initialized!
It has not to be initialised for the next execution of OB1.

4.3.2 OB100

What is OB100: It is called when the CPU is restarted (Warm restart).

Task: The code of OB100 forces the communication blocks to be restarted after a
CPU restart. It sets M1.0 so that OB1 initializes the connection.

Fig. 4-5: OB100

 29

S7 Program MSX-Box: S7 communication

4.3.3 FB100

What is FB100? This is a function block.

Fig. 4-6: FB100

Task: The first network tests if the connection is initialized and resets the
SND_BUSY flag so that no communication action can be done.

The second network tests the M10.1.

M10.1 is a clock memory. M10.1 stands for 100 ms. Each 100 ms the status of
M10 bit 1 is changing (0/1).

So this network is determining the cycle of the communication between the S7
and the MSX-Box.

I M10.1 is equal to 1, communication can be done because SND_BUSY and
ACT_SEND are set.

30

MSX-Box: S7 communication S7 Program

Task: Is seen in the previous network, ACT_SEND and SND_BUSY are set.
Both are the input parameters of the FC10 (READ_DIG_INPUT). Here FC10 is
called.

Task: Once FC10 returns, FB100 return value is saved.

 31

S7 Program MSX-Box: S7 communication

4.3.4 FC10

What is FC10: In our sample, FC10 is the function to read all digital input status.

Task: At first the S7 sends the MODBUS telegram to call MODBUS TCP
function FC3 (Read multiple registers).

The telegram to send is predefined in a DB structure. Here DB101.

Fig. 4-7: FC10

ACT: ACT_SEND is an input parameter of the FC10 function. It was
previously set. This enables sending data, it has to be seen as a
trigger.

ID: 1 is the number of the communication identifier.

LADDR: This value W#16#100 is the value of the TCP Properties window:

32

MSX-Box: S7 communication S7 Program

SEND: This is a pointer on the data to send. Here
“SEND_BUFFER”.REQUEST_READ. In fact
“SEND_BUFFER”.REQUEST_READ is another name for an
array defined in DB101.

This array contains the telegram to send.

 33

S7 Program MSX-Box: S7 communication

DB101, REQUEST_READ_Array:

DB101

REQUEST_READ Array

Telegram description

B#16# stand for a hexadecimal byte value.

B#16#0

B#16#0

B#16#0

B#16#0

B#16#0

B#16#6

B#16#0

B#16#3

B#16#0

B#16#0

34

MSX-Box: S7 communication S7 Program

B#16#0

B#16#1

00 00 06 is the header. 06 indicate that the body is 6 bytes length.

0 is the slave ID.

3 function code.

00 reference number.

01 word count.

Mean: Read 1 word up reference 0 in the slave 0.

LEN: 12 is the number of byte to send. The telegram in
REQUEST_READ means 12 byte length.

Task: If the communication succeeds, reset the SND_BUSY flag to enable a
future communication. Here the telegram was sent without errors.

Task: If an error occurred, save the error status and the SND_BUSY flag to
enable a future communication.

 35

S7 Program MSX-Box: S7 communication

Task: Before an FC3 MODBUS request has been done. Now it is time to get
reading values!

ID: 1 the communication ID like the AG_SEND function.

36

MSX-Box: S7 communication S7 Program

LADDR: This value W#16#100 is the value of the TCP Properties window:

RECV: This is a pointer on the place in which the response has to be saved,
and the number of byte to read. Here the place used to save data is
an array of 11 byte located in DB102.

DB102

As you can find it in the OPEN MODBUS TCP description, the response telegram
is:

Telegram description

B#16# stand for a hexadecimal byte value.

B#16#0

B#16#0

B#16#0

B#16#0

B#16#0

B#16#6

 37

S7 Program MSX-Box: S7 communication

B#16#0

B#16#3

B#16#2

B#16#X

B#16#X

00 00 06 is the header. 06 indicate that the body is 6 bytes length.

0 is the slave ID.

3 function code.

2 number of byte constituting the data words.

XX one word. XX is the value of the read referen ce.

Mean: Read 1 word (value XX) in reference 0 in the slave 0.

38

MSX-Box: S7 communication S7 Program

Task: If errors by receiving the telegram save the error status. Please note that in
this sample, the telegram viability is NOT tested. But you are free to do so.

Task: If no errors by receiving the telegram save the number of reading data.
Please note that in this sample, the telegram viability is NOT tested. But you are
free to do so.

Task: In order to see the reading value, the first 8 byte of this value is written on
the digital output of the S7. So when no error has occurred in the communication,
the status of the 8 first digital inputs of the APCI-1500 can be seen on the S7
digital outputs LEDs.

“RECV_BUFFER”.RESPONSE[10] is byte 11 of the reading telegram. As you
can see it above, this byte is the LSB of the word corresponding of the read value.

 39

COMMENTS MSX-Box: S7 communication

5 COMMENTS

5.1 S7 programs

5.1.1 Program execution speed

o It is defined by the M10.1 “Clock memory byte” (memento). This clock

memory is used to define an execution cycle. It is set on 100 ms. This is
the minimal cyclic time that can be set with this memento. Please refer to
Step7 that helps to know how to change the “Clock memory byte” cycle.

o A S7 has no real cycle time that can be set. The cycle can be defined with
a memento like in samples.

40

	Contents
	Figures and Tables

	1 INTRODUCTION
	1.1 About this documentation
	1.2 Requirements
	1.3 Description
	2 OPEN MODBUS TCP
	2.1 Introduction
	2.2 Type definition
	2.3 Header description
	2.4 Class 0: Read multiple registers (FC3)
	2.4.1 Request
	2.4.2 Response
	2.4.3 Exception

	2.5 Class 0: Write multiple registers (FC16)
	2.5.1 Request
	2.5.2 Response
	2.5.3 Exception

	3 MSX-BOX
	3.1 OPEN MODBUS TCP Slave package
	3.2 Steps to follow
	3.3 Skeleton functions
	3.3.1 Introduction
	3.3.2 skel_MODBUSTCPServerStart
	3.3.3 skel_MODBUSTCPServerStop
	3.3.4 skel_MODBUSTCPReadMultipleRegisters
	3.3.5 skel_MODBUSTCPWriteMultipleRegisters

	3.4 Compilation
	3.5 Execution
	3.6 Installation
	3.7 Boot script
	3.7.1 Description
	3.7.2 Use of the script

	4 S7 PROGRAM
	4.1 Introduction
	4.2 Configuration
	4.3 Program description
	4.3.1 OB1
	4.3.2 OB100
	4.3.3 FB100
	4.3.4 FC10

	5 COMMENTS
	5.1 S7 programs
	5.1.1 Program execution speed

