



ADDI-DATA GmbH Dieselstraße 3 D-77833 OTTERSWEIER





Attention! product discontinuation due to EC RoHS directive More Into: WHWL addi-data.com Technical description ADDICOM APCI-7800 8-port serial interface

Edition: 05.02-1/2006

#### Product information

This manual contains the technical installation and important instructions for correct commissioning and usage, as well as production information according to the current status before printing. The content of this manual and the technical product data may be changed without prior notice. ADDI-DATA GmbH reserves the right to make changes to the technical data and the materials included herein.

#### Warranty and liability

The user is not permitted to make changes to the product beyond the intended use, or to interfere with the product in any other way.

ADDI-DATA shall not be liable for obvious printing and phrasing errors. In addition, ADDI DATA, if legally permissible, shall not be liable for personal injury or damage to materials caused by improper installation and/or commissioning of the board by the user or improper use, for example, if the board is operated despite faulty safety and protection devices, or if notes in the operating instructions regarding transport, storage, installation, commissioning, operation, thresholds, etc. are not taken into consideration. Liability is further excluded if the operator changes the board or the source code files without authorisation and/or if the operator is guilty of not monitoring the permanent operational capability of working parts and this has led to damage.

#### **Copyright**

This manual, which is intended for the operator and its staff only, is protected by copyright. Duplication of the information contained in the operating instructions and of any other product information, or disclosure of this information for use by third parties, is not permitted, unless this right has been granted by the product licence issued. Non-compliance with this could lead to civil and criminal proceedings.

#### ADDI-DATA software product licence

Please read this licence carefully before using the standard software. The customer is only granted the right to use this software if he/she agrees with the conditions of this licence.

The software must only be used to set up the ADDI-DATA boards.

Reproduction of the software is forbidden (except for back-up and for exchange of faulty data carriers). Disassembly, decompilation, decryption and reverse engineering of the software are forbidden. This licence and the software may be transferred to a third party if this party has acquired a board by purchase, has agreed to all the conditions in this licence contract and the original owner does not keep any copies of the software.

#### **Trademarks**

- ADDI-DATA is a registered trademark of ADDI-DATA GmbH.
- Turbo Pascal, Delphi, Borland C, Borland C++ are registered trademarks of Borland Insight Company.
- Microsoft C, Visual C++, Windows XP, 98, Windows 2000, Windows 95, Windows NT, EmbeddedNT and MS DOS are registered trademarks of Microsoft Corporation.
- LabVIEW, LabWindows/CVI, DasyLab, Diadem are registered trademarks of National Instruments Corp.
- CompactPCI is a registered trademark of PCI Industrial Computer Manufacturers Group.
- VxWorks is a registered trademark of Wind River Systems Inc.

CE



# Declaration of Conformity

Document-Number/Month-Year: B-25804 / 02.1999

Manufacturer/Importer: ADDI-DATA GmbH Dieselstraße 3 D-77833 OTTERSWEIER

Type: **APCI-7800** 

Product description: Board to be inserted in a PCI 32-bit/5 V slot of a PC 8-port serial interface for SI modules PM232 (-G), PM422(-G), PM485(-G), PMTTY

The above named product complies with the following European directives:

Directive 72/23/EEC of 19 February 1973 on the harmonization of the laws of Member States relating to electrical equipment designed for use within certain voltage limits.

Directive 89/336/EEC of 3 May 1989 on the approximation of the laws of the Member States relating to electromagnetic compatibility.

The following norms have been applied:

IEC 61010-1 2002-08 IEC 61326-2 2004

2004/11/10

Date

H. Hauf

Legally valid signature of the manufacturer

ADDI-DATA GmbH ● Dieselstraße 3 ● D-77833 Ottersweier Phone: +49 (0)7223/9493-0 ● Fax: + 49 (0)7223/9493-92

# WARNING

In case of wrong uses and if the board is not used for the purpose it is intended:

- people may be injured,
- the board, PC and peripheral may be destroyed,
  - the environment may be polluted
- Protect yourself, the others and the environment!
- Read carefully the safety precautions (yellow leaflet).

If this leaflet is not with the documentation, please contact us and ask for it.

• Observe the instructions of the manual.

Make sure that you do not forget or skip any step. We are not liable for damages resulting from a wrong use of the board.

Used symbols:

### **IMPORTANT!**

designates hints and other useful information.



### WARNING!

It designates a possibly dangerous situation. If the instructions are ignored the board, PC and/or peripheral may be destroyed.

| 1                                                                                                  | INTENDED PURPOSE OF THE BOARD8                                                                                                                                                                                                                                                                                                                                                   | }                                                                  |
|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 1.1                                                                                                | Limits of use10                                                                                                                                                                                                                                                                                                                                                                  | )                                                                  |
| 2                                                                                                  | USER 11                                                                                                                                                                                                                                                                                                                                                                          |                                                                    |
| 2.1                                                                                                | Qualification11                                                                                                                                                                                                                                                                                                                                                                  | l                                                                  |
| 2.2                                                                                                | Personal protection11                                                                                                                                                                                                                                                                                                                                                            | I                                                                  |
| 3                                                                                                  | HANDLING OF THE BOARD                                                                                                                                                                                                                                                                                                                                                            | 2                                                                  |
| 4                                                                                                  | TECHNICAL DATA13                                                                                                                                                                                                                                                                                                                                                                 | }                                                                  |
| 4.1                                                                                                | Electromagnetic compatibility (EMC)13                                                                                                                                                                                                                                                                                                                                            | 3                                                                  |
| 4.2                                                                                                | Physical set-up of the board13                                                                                                                                                                                                                                                                                                                                                   | 3                                                                  |
| 4.3                                                                                                | Limit values14                                                                                                                                                                                                                                                                                                                                                                   | ŀ                                                                  |
| 4.3.1                                                                                              | RS232                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |
| 4.3.2                                                                                              | RS422, RS485                                                                                                                                                                                                                                                                                                                                                                     | ,<br>                                                              |
|                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                  | ·                                                                  |
| 4.3.3                                                                                              | 20mA current loop16                                                                                                                                                                                                                                                                                                                                                              | ò                                                                  |
| 4.3.3<br><b>4.4</b>                                                                                | 20mA current loop                                                                                                                                                                                                                                                                                                                                                                | ,<br>)<br>/                                                        |
| 4.3.3<br><b>4.4</b><br><b>5</b>                                                                    | 20mA current loop    16      Component scheme    17      INSTALLATION OF THE BOARD    19                                                                                                                                                                                                                                                                                         | 5                                                                  |
| 4.3.3<br>4.4<br>5<br>5.1                                                                           | 20mA current loop    16      Component scheme    17      INSTALLATION OF THE BOARD    19      Opening the PC    19                                                                                                                                                                                                                                                               | ,<br>,<br>,<br>,                                                   |
| 4.3.3<br>4.4<br>5<br>5.1<br>5.2                                                                    | 20mA current loop       16         Component scheme       17         INSTALLATION OF THE BOARD       19         Opening the PC       19         Selecting a free slot       19                                                                                                                                                                                                   | ,<br>,<br>,<br>,                                                   |
| 4.3.3<br>4.4<br>5<br>5.1<br>5.2<br>5.3                                                             | 20mA current loop16Component scheme17INSTALLATION OF THE BOARD19Opening the PC19Selecting a free slot19Plugging the board into the slot20                                                                                                                                                                                                                                        | 5<br>7<br>)<br>)<br>)                                              |
| 4.3.3<br>4.4<br>5<br>5.1<br>5.2<br>5.3<br>5.4                                                      | 20mA current loop16Component scheme17INSTALLATION OF THE BOARD19Opening the PC19Selecting a free slot19Plugging the board into the slot20Closing the PC20                                                                                                                                                                                                                        | ·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>·<br>· |
| 4.3.3<br>4.4<br>5<br>5.1<br>5.2<br>5.3<br>5.4<br>6                                                 | 20mA current loop16Component scheme17INSTALLATION OF THE BOARD19Opening the PC19Selecting a free slot19Plugging the board into the slot20Closing the PC20SOFTWARE21                                                                                                                                                                                                              | ·<br>·<br>·<br>·<br>·<br>·<br>·<br>·                               |
| 4.3.3<br>4.4<br>5<br>5.1<br>5.2<br>5.3<br>5.4<br>6<br>6.1                                          | 20mA current loop16Component scheme17INSTALLATION OF THE BOARD19Opening the PC19Selecting a free slot19Plugging the board into the slot20Closing the PC20SOFTWARE21Board registration unter Windows NT22                                                                                                                                                                         |                                                                    |
| 4.3.3<br>4.4<br>5<br>5.1<br>5.2<br>5.3<br>5.4<br>6<br>6.1<br>6.1.1<br>6.1.2<br>6.1.3               | 20mA current loop16Component scheme17INSTALLATION OF THE BOARD19Opening the PC19Selecting a free slot19Plugging the board into the slot20Closing the PC20SOFTWARE21Board registration unter Windows NT22"More information" dialog box for serial interfaces26Registering a new board27Changing the registration of a board27                                                     |                                                                    |
| 4.3.3<br>4.4<br>5<br>5.1<br>5.2<br>5.3<br>5.4<br>6<br>6.1<br>6.1.1<br>6.1.2<br>6.1.3<br>6.2        | 20mA current loop16Component scheme17INSTALLATION OF THE BOARD19Opening the PC19Selecting a free slot19Plugging the board into the slot20Closing the PC20SOFTWARE21Board registration unter Windows NT22"More information" dialog box for serial interfaces26Registering a new board27Changing the registration under Windows XP/2000/9829                                       |                                                                    |
| 4.3.3<br>4.4<br>5<br>5.1<br>5.2<br>5.3<br>5.4<br>6<br>6.1<br>6.1.1<br>6.1.2<br>6.1.3<br>6.2<br>6.3 | 20mA current loop16Component scheme17INSTALLATION OF THE BOARD19Opening the PC19Selecting a free slot19Plugging the board into the slot20Closing the PC20SOFTWARE21Board registration unter Windows NT22"More information" dialog box for serial interfaces26Registering a new board27Changing the registration of a board27Configuration under Windows XP/2000/9829Board test30 |                                                                    |

| 7                                | CONNECTING THE PERIPHERAL                                                                                                                        | 31                                              |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| 7.1                              | Connector pin assignment                                                                                                                         | 31                                              |
| 7.2                              | Connection cables                                                                                                                                | 34                                              |
| 7.3                              | Connection examples                                                                                                                              | 35                                              |
| 7.3.1<br>7.3.2<br>7.3.3<br>7.3.4 | RS232 cabling<br>RS422 cabling<br>RS485 cabling<br>Current loop (20 mA) cabling                                                                  | 35<br>35<br>36<br>36                            |
|                                  |                                                                                                                                                  |                                                 |
| 8                                | TESTING THE BOARD                                                                                                                                | 38                                              |
| 8<br>8.1                         | TESTING THE BOARD                                                                                                                                | 38<br>38                                        |
| 8<br>8.1<br>8.2                  | TESTING THE BOARDConnecting a shorting plugTesting the board with the MTTTY program                                                              | 38<br>38<br>40                                  |
| 8<br>8.1<br>8.2                  | TESTING THE BOARDConnecting a shorting plugTesting the board with the MTTTY programRS422, RS232 and 20 mA Current LoopRS485                      | <b>38</b><br><b>38</b><br><b>40</b><br>40<br>41 |
| 8<br>8.1<br>8.2<br>9             | TESTING THE BOARDConnecting a shorting plugTesting the board with the MTTTY programRS422, RS232 and 20 mA Current LoopRS485REPLACING THE MODULES |                                                 |

# Figures

| Fig. | 3-1: Correct handling                                           | 12 |
|------|-----------------------------------------------------------------|----|
| Fig. | 4-1: Component scheme of the APCI-7800 (left side)              | 17 |
| Fig. | 4-2: Component scheme of the APCI-7800 (right side)             | 18 |
| Fig. | 5-1: PCI-5V slot (32-bit)                                       | 19 |
| Fig. | 5-2: Inserting the board                                        | 20 |
| Fig. | 5-3: Fastening the board at the back cover                      | 20 |
| Fig. | 6-1: ADDIREG registration program (example)                     | 22 |
| Fig. | 6-2: Board list under ADDIREG                                   | 24 |
| Fig. | 6-3: Communication board                                        | 26 |
| Fig. | 6-4: FIFO settings with the Device Manager                      | 29 |
| Fig. | 6-5: Setting example with the Device Manager: RS485             | 30 |
| Fig. | 7-1: 78-pin SUB-D male connector                                | 31 |
| Fig. | 7-2: Connection cable ST7809 (8 x 9-pin)                        | 34 |
| Fig. | 7-3: Connection cable ST7825 (8 x 25-pin)                       | 34 |
| Fig. | 7-4: RS232 cabling                                              | 35 |
| Fig. | 7-5: RS422 cabling                                              | 35 |
| Fig. | 7-6: RS485 cabling                                              | 36 |
| Fig. | 7-7: Active transmission/active reception                       | 36 |
| Fig. | 7-8: Active transmission/passive reception                      | 37 |
| Fig. | 7-9: Passive transmission/active reception                      | 37 |
| Fig. | 7-10: Passive transmission/passive reception                    | 37 |
| Fig. | 8-1: Connection of the shorting plug for the RS422 mode         | 38 |
| Fig. | 8-2: Connection of the shorting plug for the RS422 mode         | 38 |
| Fig. | 8-3: Connection of the shorting plug for the 20 mA current loop | C  |
|      | active transmission/passive reception                           | 39 |
| Fig. | 8-4: Connection of the shorting plug for the 20 mA current loop | C  |
|      | passive transmission/active reception                           | 39 |
| Fig. | 8-5: The MTTTY program                                          | 40 |
| Fig. | 8-6: Handshake configuration for the board test                 | 41 |
| Fig. | 9-1: Inserting the SI module                                    | 42 |
| Fig. | 9-2: Removing a SI module                                       | 42 |

### Tables

| Table 1-1: Intended purpose depending on the operating m | 10de9 |
|----------------------------------------------------------|-------|
| Table 7-1: Pin assignment of port 1                      | 31    |
| Table 7-2: Pin assignment of port 2                      | 31    |
| Table 7-3: Pin assignment of port 3                      |       |
| Table 7-4: Pin assignment of port 4                      | 32    |
| Table 7-5: Pin assignment of port 5                      | 32    |
| Table 7-6: Pin assignment of port 6                      |       |
| Table 7-7: Pin assignment of port 7                      |       |
| Table 7-8: Pin assignment of port 8                      |       |
|                                                          |       |

### 1 INTENDED PURPOSE OF THE BOARD

The board **APCI-7800** must be inserted in a PC with PCI 5V/32-bit slots, which is used as electrical equipment for measurement, control and laboratory use as defined in the norm IEC 61010-1.

The PC is to comply with the norm IEC61326 for measurement, control and laboratory use and with the specifications for EMC protection.

Products complying with these specifications bear the CE mark.

The board **APCI-7800** provides the personal computer (PC) with 8-port asynchronous serial interface for the communication with external devices. The operating mode of the interface depends on the SI modules installed.

The board is to be connected to the peripheral through a shielded cable, which shielding should be grounded on both ends.

Minimum specifications of the connection cable:

- metallized plastic hoods
- shielded cable
- cable shield folded back and firmly screwed to the connector housing.

The board supports serial communication through 8 asynchronous serial ports. The intended purpose of the board depends on the following parameters (See Table 1-1).

| Module <sup>1</sup> | Operating<br>mode        | Port<br>configuration                                                                               | Distance between<br>transmitter and<br>receiver <sup>2</sup> | Environment                             |
|---------------------|--------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|
| PM232               | RS232                    | modem control signals connected<br>on the board (through ADDIREG)<br>or externally to the connector | 30 m                                                         | industry                                |
| PM232-G             | RS232                    | modem control signals connected<br>on the board (through ADDIREG)<br>or externally to the connector | 30 m                                                         | noisy<br>industrial<br>environment      |
| PMTTY               | 20 mA<br>Current<br>loop | current flows in rest state                                                                         | 1 km                                                         | very noisy<br>industrial<br>environment |
| PM422               | RS422                    |                                                                                                     | 1.2 km                                                       | noisy industrial<br>environment         |
| PM422-G             | RS422                    |                                                                                                     | 1.2 km                                                       | very noisy<br>industrial<br>environment |
| PM485               | RS485                    | automatic transmitter control                                                                       | 200 m                                                        | industry                                |
|                     |                          | transmitter control<br>DTR, RTS or data bit                                                         | 1.2 km                                                       | noisy industrial<br>environment         |
| PM485-G             | RS485                    | automatic transmitter control                                                                       | 200 m                                                        | industry                                |
|                     |                          | transmitter control<br>DTR, RTS or data bit                                                         | 1.2 km                                                       | very noisy<br>industrial<br>environment |

Table 1-1: Intended purpose depending on the operating mode

<sup>&</sup>lt;sup>1</sup> PMxxx-G: ex. PM232-G: module for the mode RS 232 with option G (optical isolation) PMTTY: module for the mode 20 mA current loop. It is optically isolated as a standard.

<sup>&</sup>lt;sup>2</sup> The max. lengths are for standard interface cables

### 1.1 Limits of use

If the basic board is used with optically isolated modules and non isolated modules, then the safety built by the creeping distance of 3.2 mm is not ensured for the non isolated modules.

The use of the board in a PC could change the PC features regarding noise emission and immunity. Increased noise emission or decreased noise immunity could result in the system not being conform anymore.

Check the shielding capacity of the PC housing and cable prior to putting the device into operation.

The use of the board according to its intended purpose includes observing all advises given in this manual and in the safety leaflet.

Uses beyond these specifications are not allowed. The manufacturer is not liable for any damages which would result from the non-observance of this clause.

Make sure that the board remains in the protective blister pack **until it is used**.

Do not remove or alter the identification numbers of the board. If you do, the guarantee expires.

**For all operating modes**, the signal lines are to be twisted in pairs with GND. Use exclusively connection cable with twisted pairs.

The housing of the peripheral connector

- is to be firmly screwed together with the shield of the cable.
- is to assure a low-resistance connection (< 100 m $\Omega$ ) between the shield and the housing of the PC.

The shield of the cable is to be earthed on both ends.

# The APCI-7800 board is not to be used as safety related part for securing emergency stop functions.

The emergency stop functions are to be secured separately. This securing must not be influenced by the board or the PC.

# The installation of the board APCI-7800 in sites lying under risk of explosion is excluded.

Make sure that the board remains in its protective blister pack until it is used.

Do not remove or alter the identification numbers of the board. If you do, the guarantee expires.

# 2 USER

## 2.1 Qualification

Only persons trained in electronics are entitled to perform the following works:

- installation
- use,
- maintenance.

# 2.2 Personal protection

Consider the country-specific regulations about:

- the prevention of accidents
- electrical and mechanical installations
- radio interference suppression.

# 3 HANDLING OF THE BOARD

### Fig. 3-1: Correct handling



# 4 TECHNICAL DATA

### 4.1 Electromagnetic compatibility (EMC)

The board has been subjected to EMC tests in an accredited laboratory. The board complies with the limit values set by the norms IEC61326 as follows:

|                                | True value | Set value |
|--------------------------------|------------|-----------|
| ESD (Discharge by contact/air) | . 4/8 kV   | 4/8 kV    |
| Fields                         | . 10 V/m   | 10 V/m    |
| Burst                          | . 4 kV     | 2 kV      |
| Conducted radio interferences  | . 10 V     | 10 V      |
| Noise emissions                | . B class  |           |

## 4.2 Physical set-up of the board

The board is assembled on a 4-layer printed circuit card.

#### **Dimensions:**



| Width:                                      | 19.2 mm                         |
|---------------------------------------------|---------------------------------|
| Weight:                                     | approx. 300 g                   |
| Installation in:                            | 32/64-bit PCI slot 5 V          |
| Connection to the peripheral <sup>1</sup> : |                                 |
| ST7809:                                     | 8 x 9-pol. SUB-D male connector |
| ST7825:                                     | 8 x 25-pin SUB-D male connector |

<sup>&</sup>lt;sup>1</sup> Not included in the delivery. Please order separately

### 4.3 Limit values

| Max. altitude:         | 2000 m                    |
|------------------------|---------------------------|
| Operating temperature: | 0 to 60°C                 |
| Storage temperature:   | -25 to 70°C               |
| Relative humidity:     | 30% to 99% non condensing |

#### Minimum PC requirements:

### PCI BIOS from Version 1.0

| Bus speed:        | < 33 MHz                 |
|-------------------|--------------------------|
| Operating system: | Windows NT, 98, 2000, XP |

#### **Energy requirements:**

- Current consumption (without load): ..... typ. see table  $\pm 10\%$

| _             | APCI-7800 |
|---------------|-----------|
| + 5 V from PC | 425 mA    |

Add to this data the current consumption of the used modules according to the following table:

|        | PMxxx <sup>1</sup> | PMxxx-G |
|--------|--------------------|---------|
| RS 232 | 21 mA              | 48 mA   |
| RS 422 | 5 mA               | 42 mA   |
| RS 485 | 5 mA               | 54 mA   |
| 20 mA  | 51 mA              | -       |

<sup>&</sup>lt;sup>1</sup> Module **PMTTY or MXTTY (20 mA)** is optically isolated as a standard.

### 4.3.1 RS232

| CCITT-Empfehlung: | V.2 | 4   |
|-------------------|-----|-----|
| US-Norm EIA:      | RS  | 232 |

### Without optical isolation (PM 232)

| Max. transfer rate:      | 115.2 kBaud |
|--------------------------|-------------|
| Transfer rate on request | -           |
| ESD protection           | -           |

#### With optical isolation (PM232-G)

| Max. transfer rate:       | 115.2 kBaud |
|---------------------------|-------------|
| Transfer rate on request  | <b>-</b>    |
| ESD protection            | 15 kV       |
| Creeping distance:        | 3.2 mm      |
| Test voltage:             | 1000 VAC    |
| Short-circuit protection: |             |

#### 4.3.2 RS422, RS485

| CCITT recommendation: | V.11         |
|-----------------------|--------------|
| US norm EIA:          | RS422, RS485 |

#### Without optical isolation (PM422, PM485)

| Max. transfer rate:       | 115.2 kBaud |
|---------------------------|-------------|
| Transfer rate on request  |             |
| ESD protection            |             |
| Transorb diodes:          | 400 W       |
| Absorption power          | 1ms         |
| Short-circuit protection: | РТС         |
|                           |             |

#### With optical isolation (PM422-G, PM485-G)

| Max. transfer rate:       | 115.2 kBaud |
|---------------------------|-------------|
| Transfer rate on request  | -           |
| ESD protection            | -           |
| Transorb diodes:          | 400 W       |
| Absorption power          | 1ms         |
| Creeping distance:        | 3.2 mm      |
| Test voltage:             | 1000 VAC    |
| Short-circuit protection: | PTC         |

### 4.3.3 20mA current loop

#### PMTTY

| Max. Baudrate:               | 19.2 kBaud                 |
|------------------------------|----------------------------|
| Transorb diodes:             | 400 W                      |
| Absorption power             | 1ms                        |
| Creeping distance:           | 3.2 mm                     |
| Test voltage:                | 1000 VAC                   |
| Load:                        | 500 Ω                      |
| Voltage reversal and short-c | circuit protection through |
| Transorb diodes              |                            |

The basic board has a transfer rate of max. 115.2 kBd in its standard delivery (with standard quartz). If you wish to transmit at 1MBaud, then the basic board has to be configured again in our house.

<u>1MBd configuration</u>: Please consider that the divider factors for programming the transfer rate do not comply with the PC standard anymore. The 1M Bd transfer rate can only be programmed with the device drivers delivered with the board.

**RS 485**: transfer at 1 MBaud only works when the transmitter is controlled through DTR, RTS or data bit.

## 4.4 Component scheme



# Fig. 4-1: Component scheme of the APCI-7800 (left side)



Fig. 4-2: Component scheme of the APCI-7800 (right side)

# 5 INSTALLATION OF THE BOARD

# • **IMPORTANT!** Do observe the s

Do observe the safety precautions (yellow leaflet)!

# 5.1 Opening the PC

- Switch off your PC and all the units connected to the PC.
- ◆ Pull the PC mains plug from the socket.
- Open your PC as described in the manual of the PC manufacturer.

### 5.2 Selecting a free slot

Insert the board in a free PCI-5V slot (32-bit).



**Remove the back cover of the selected slot** according to the instructions of the PC manufacturer. Keep the back cover. You will need it if you remove the board.

Discharge yourself from electrostatic charges.

Take the board out of its protective pack.

# 5.3 Plugging the board into the slot

• Insert the board **vertically into the chosen slot**.

Fig. 5-2: Inserting the board



- Fasten the board to the rear of the PC housing with the screw which was fixed on the back cover.
  - Fig. 5-3: Fastening the board at the back cover



♦ Tighten all the loosen screws.

### 5.4 Closing the PC

◆ Close your PC as described in the manual of the PC manufacturer.

1

# 6 SOFTWARE

In this chapter you will find a description of the delivered software and its possible applications.

### **IMPORTANT!**

Further information for installing and uninstalling the different drivers is to be found in the delivered description **"Instatllations instructions for the PCI bus".** 

A link to the corresponding PDF file is available in the navigation pane (Bookmarks) of Acrobat Reader.

The board is supplied with a driver CD-ROM (CD 1) containing:

- ADDICOM programming samples with API function for the ADDI-DATA boards in 32 bits.
- ADDIREG for Windows NT 4.0

• IMPO If you

### **IMPORTANT!**

If you run the board unter Windows XP/2000/98, the ADDIREG configuration programm shall not be used.

The device manager of Windows XP/2000/98 sets the configuration of the inserted board.

ĺ

## 6.1 Board registration unter Windows NT

### **IMPORTANT!**

First insert the board to be registered, before you start ADDIREG.

If the board is not inserted in the PC, the registration cannot be tested.

When starting ADDIREG, the following window is displayed:

| / | 🖊 ADDI-DATA GmbH registration program. Version 0302 / 0546 |                       |                |                          |                  |               |                 |              |
|---|------------------------------------------------------------|-----------------------|----------------|--------------------------|------------------|---------------|-----------------|--------------|
| B | source file Syst                                           | em info <u>A</u> bout |                |                          |                  |               |                 |              |
| Г | Board list configuration                                   |                       |                |                          |                  |               |                 |              |
|   | Board name                                                 | Base addres           | s Access       | PCI<br>bus/device/(slot) | Interrupt        | DMA           | More inform     | ation 🔺      |
|   | APCI1516                                                   | D480,DC78,<br>DC40    | . 32-bit       | 2/9/3                    | Not<br>available | Not available | ADDIDriver      | board        |
|   | APCI1710                                                   | D800,DC70             | 32-bit         | 2/8/2                    | 17               | Not available |                 |              |
|   |                                                            |                       |                |                          |                  |               |                 |              |
|   |                                                            |                       |                |                          |                  |               |                 | <u> </u>     |
|   | Insert                                                     |                       |                | <u>E</u> di              | t                |               |                 | Clear        |
| 5 | Roard configur                                             | ntinn                 |                |                          |                  |               |                 |              |
| Γ | Base address                                               | name :                | Interrupt name | e: D                     | MA name:         |               |                 |              |
| L |                                                            | Ψ.                    |                | v.                       |                  | Ψ.            | Pet             | Lancel       |
| L | Rase address                                               |                       | Interrunt ·    | ,<br>                    | MA channel       |               |                 | Mara         |
| L |                                                            |                       |                |                          |                  |               | <u>D</u> efault | information  |
| L | Access mode                                                |                       | ,              |                          |                  |               |                 |              |
| L | Access mode                                                |                       |                |                          |                  |               | ADDIDriver b    | pard manager |
| L | ,                                                          |                       |                |                          |                  |               |                 |              |
|   |                                                            |                       | Test           | Deine                    |                  | Drink         |                 | <u> </u>     |
|   | Save                                                       | Restore               | registrat      | ion registra             | tion             | registration  | Quit            |              |
| 1 |                                                            |                       |                |                          |                  |               |                 | ADDI-DATA    |

| Fia.  | 6-1:  | <b>ADDIRFG</b> | registration | program | (exam  | ple) |
|-------|-------|----------------|--------------|---------|--------|------|
| · ·g· | • • • | <b>NDDINEO</b> | registiation | program | (Chann | picj |

#### **Table:**

#### **Board name:**

Names of the different registered boards (e.g.: APCI-1710). When you start the program for the first time, no board is registered in this table.

#### **Base address:**

Selected base address of the board. For PCI boards the base address is allocated through BIOS.

#### Access:

Selection of the access mode for the ADDI-DATA digital boards. Access in 8-bit or 16-bit or 32-bit mode.

#### PCI bus/device/(slot):

Number of the used PCI bus, slot, and device. If the board is no PCI board, the message "NO" is displayed.

#### **Interrupt:**

Used interrupt of the board. If the board supports no interrupt, the message "Not available" is displayed. For PCI boards the interrupt is allocated through BIOS.

#### DMA (ISA boards only):

Indicates the selected DMA channel or "Not available" if the board uses no DMA or if the board is no ISA board.

#### More information:

Additional information like the identifier string or the installed COM interfaces. It also displays whether the board is programmed with ADDIDRIVER or if a **PCI DMA** memory is allocated to the board.

#### **Text boxes:**

#### **Base address name:**

Description of the used base addresses for the board. Select a name through the pull-down menu. The corresponding address range is displayed in the field below (Base address).

#### **Interrupt name:**

Description of the used IRQ lines for the board. Select a name through the pull-down menu. The corresponding interrupt line is displayed in the field below (Interrupt).

#### DMA name (for ISA boards only):

When the board supports 2 DMA channels, you can select which DMA channel is to be changed.

#### DMA channel (for ISA boards only):

Selection of the used DMA channel.

#### **Buttons:**

#### <u>E</u>dit:

Selection of the highlighted board with the different parameters set in the text boxes.

#### Insert:

When you want to insert a new board, click on "Insert". The following dialog window appears:

| Board type list                                                                                                                 |                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Board type list :<br>PA370<br>PA3000<br>PA3100<br>PA3110<br>PA3500<br>APCI3001<br>APCI3120<br>PA731<br>PA732<br>PA755<br>PA7200 | A/D converter, 16 single-ended or 8 differential input channels, 12-bit, 100 kHz,<br>DMA, programmable amplifier, D/A converter, 2 to 8 output channels, 12-bit,<br>unipolar/bipolar, timer, 24 TTL 1/0. |
| <u>0</u> k                                                                                                                      | ADDI-DATA                                                                                                                                                                                                |

Fig. 6-2: Board list under ADDIREG

All boards you can register are listed on the left. Select the wished board. (The corresponding line is highlighted).

On the right you can read technical information about the board(s). Activate with "OK"; You come back to the former screen.

#### **Clear:**

You can delete the registration of a board. Select the board to be deleted and click on "Clear".

#### <u>S</u>et:

Sets the parametered board configuration. The configuration should be set before you save it.

#### Cancel:

Reactivates the former parameters of the saved configuration.

#### **D**efault:

Sets the standard parameters of the board.

#### More information (not available for the boards with ADDIPACK)

You can change the board specific parameters like the identifier string, the COM number, the operating mode of a communication board, etc... (See 6.1.1)

If your board does not support these information, you cannot activate this button.

1

### • IMPORTANT!

The configuration is only set once you activated it with OK **and** confirm through "Set" and then "Save" in the main window of ADDIREG.

#### ADDIDriver Board Manager (for ADDIPACK boards only)

Under Edit/ADDIDriver Board Manager you can check or change the current settings of the board set through the ADDEVICE Manager. ADDevice Manager starts and displays a list of all resources available for the virtual board.

#### Save:

Saves the parameters and registers the board.

#### **Restore:**

Reactivates the previous parameters and registration.

#### Test registration:

Controls if there is a conflict between the board and other devices installed in the PC. A message indicates the parameter which has generated the conflict. If no conflict has occurred, "Test of device registration OK" is displayed.

#### Deinstall registration:

Deinstalls the registrations of all boards listed in the table and deletes the entries of the boards in the Windows Registry.

#### **<u>P</u>rint registration:**

Prints the registration parameter on your standard printer.

#### Quit:

Ends the ADDIREG program.

### 6.1.1 "More information" dialog box for serial interfaces

ADDIREG can differentiate a PCI serial interface from the other standard PCI boards.

The following figure is the example of 2 serial interfaces. If you use the standard driver for Windows, you can select the COM number. Several options like "Module selection" and the different parameters can only be activated if the functions are available.

| Serial-2 Information                                                                                                                                                        |                                                                                                                                                                             |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Serial port 1 configuration<br>APCI7420 - COM1<br>Modul selection : PM485<br>Modem control signal<br>Current flows (send)<br>Current flows (reception)<br>RS485 echo enable | Serial port 2 configuration<br>APCI7420 - COM2<br>Modul selection : PM485<br>Modem control signal<br>Current flows (send)<br>Current flows (reception)<br>RS485 echo enable |  |  |  |
| Board quartz selection :           Dk         Cancel                                                                                                                        |                                                                                                                                                                             |  |  |  |

Fig. 6-3: Communication board

# i

### **IMPORTANT!**

You can change the quartz frequency only if you have required the option "Quarz modification" on your board.

In "Board quartz selection" you can adapt the quartz frequency (in Hz). The ADDI-DATA boards are set with a standard quartz frequency of 1843200 Hz.

### 6.1.2 Registering a new board

### • IMPORTANT!

To register a new board, you must have administrator rights. Only an administrator is allowed to register a new board or change a registration.

#### ◆ Call up the ADDIREG program.

The Fig. 6-1 is displayed on the screen.

#### ♦ Click on "Insert". Select the wished board.

#### ♦ Click on "OK".

The default address, interrupt and the other parameters are automatically set in the lower fields. The parameters are listed in the lower fields. If the parameters are not automatically set by the BIOS, you can change these parameters. Click on the wished scroll function(s) and choose a new value.

- ♦ Activate your selection with click.
- Once the wished configuration is set, click on "Set".
- ♦ Save the configuration with "Save".

You can test if the registration is "OK".

This test controls if the registration is right and if the board is present. If the test has been successfully completed you can quit the ADDIREG program.

The board is initialised with the set parameters and can now be operated. In case the registration data is to be modified, it is necessary to boot your PC again.

A message asks you to do so. When it is not necessary you can quit the ADDIREG program and directly begin with your application.

### 6.1.3 Changing the registration of a board

### • IMPORTANT!

To register a new board, you must have administrator rights. Only an administrator is allowed to register a new board or change a registration.

#### • Call up the ADDIREG program.

#### • Select the board to be changed.

The board parameters (Base address, DMA channel, ..) are listed in the lower fields.

- Click on the parameter(s) you want to set and open the scroll function(s).
- Select a new value. Activate it with a click.
- Repeat the operation for each parameter to be modified.
- Once the wished configuration is set, click on "Set".
- ♦ . Save the configuration with "Save".

You can test if the registration is "OK". This test controls if the registration is right and if the board is present. If the test has been successfully completed you can quit the ADDIREG program.

The board is initialised with the set parameters and can now be operated. In case the registration data is to be modified, it is necessary to boot your PC again. A message asks you to do so. When it is not necessary you can quit the ADDIREG program and directly begin with your application.

#### **Registration test**

Under "Test registration" you can test if the registration is "OK". This test controls if the registration is right and if the board is present. If the test has been successfully completed you can quit the ADDIREG program. The board is initialised with the set parameters and can now be operated.

In case the registration data is to be modified, it is necessary to boot your PC again. A message asks you to do so. When it is not necessary you can quit the ADDIREG program and directly begin with your application.

### 6.2 Configuration under Windows XP/2000/98

In the Windows device manager you can set the different interfaces according to your requirements through double clic.

Start the device manager of your operating system under Start/(Settings)/Control panel/System

In the "FIFO" register the following settings are possible:

|                                                            | Eigenschaften von APCI-7500 communications port 2 (COM4)          |
|------------------------------------------------------------|-------------------------------------------------------------------|
|                                                            | Allgemein FIFOs Setting Treiber                                   |
|                                                            | APCI-7500 port 2 bus: 2 device: 9<br>PCI bus and<br>device number |
| Management of<br>the transmitter<br>and receiver<br>buffer | FIFO Interrupt Trigger levels<br>Transmitter:<br>Receiver:<br>60  |
|                                                            | Receiver FIFO Flow Control Thresholds                             |
| Data flow                                                  | Flow On: 16                                                       |
| control                                                    | Flow Off: 68                                                      |
|                                                            | <u>R</u> estore defaults                                          |
|                                                            | OK Abbrechen                                                      |

#### Fig. 6-4: FIFO settings with the Device Manager

Reset the standard settings

In "Setting" you adapt the operating mode to the used interface.

You can select the quartz frequency for example and decide whether the modem control signals for RS232 are internally connected.

| Eigenschaften von APCI-7500 communic | ations port 2 (COM4)             |
|--------------------------------------|----------------------------------|
| Allgemein FIFOs Setting Treiber      |                                  |
| APCI-7500 port 2 bus: 2 device: 9    |                                  |
| Default communications parameters    | COM<br>COM number COM4           |
| Bits per second: 9600                | Module configuration<br>PM485-G  |
| Data bits: 8                         | RS485 echo enable                |
| Parity: None                         | Input clock<br>Crystal frequency |
| Stop bits: 1                         | Desired frequency                |
| Elow control: None                   | Detect crystal frequency         |
|                                      | <u>R</u> estore defaults         |
|                                      | OK Abbrechen                     |

| L: C | 6 E. Cattina | avampla | uuith tha  | Daviaa | Managar  | DCIOE |
|------|--------------|---------|------------|--------|----------|-------|
| FIQ. | o-p: setting | example | e with the | Device | Manager: | K3400 |
|      |              |         |            |        |          |       |

### 6.3 Board test

You can test if you board is not correctly installed with a shorting plug and the test software MTTTY.

The setup file for the test software MTTTY is supplied on the CD-ROM under CD/MMTTY. The program is described in the chapter 8.

### 6.4 Questions and software downloads on the web

Do not hesitate to e-mail us your questions. per e-mail: info@addi-data.de or hotline@addi-data.de

#### Free downloads of standard software

You can download the latest version of the software for the board **APCI-7800.** 

http://www.addi-data.com

### **IMPORTANT!**

Before using the board or in case of malfunction during operation, check if there is an update of the product (technical description, driver). The current version can be found on the internet or contact us directly.

# 7 CONNECTING THE PERIPHERAL

## 7.1 Connector pin assignment



Fig. 7-1: 78-pin SUB-D male connector

Table 7-1: Pin assignment of port 1

| Pin | RS 232 | RS 422 | RS 485    | Current Loop  |
|-----|--------|--------|-----------|---------------|
| 20  | TxD    | RA     | Tx / Rx + | +RCV-CL-DATA  |
| 19  | RxD    | TB     |           | -XMIT-CL-DATA |
| 18  | GND    |        |           | GND           |
| 39  | RTS    |        |           | Tsource       |
| 38  | CTS    |        |           | Rsource       |
| 59  | DCD    | TA     |           | +XMIT-CL-DATA |
| 58  | DSR    | 100Ω   | 120Ω      |               |
| 78  | DTR    | Rab    |           |               |
| 77  | RI     | RB     | Tx / Rx - | -RCV-CL-DATA  |

| Pin | RS 232 | RS 422 | RS 485    | Current Loop  |
|-----|--------|--------|-----------|---------------|
| 75  | TxD    | RA     | Tx / Rx + | +RCV-CL-DATA  |
| 76  | RxD    | TB     |           | -XMIT-CL-DATA |
| 57  | -      |        |           |               |
| 74  | GND    |        |           | GND           |
| 56  | RTS    |        |           | Tsource       |
| 55  | CTS    |        |           | Rsource       |
| 37  | DCD    | TA     |           | +XMIT-CL-DATA |
| 36  | DSR    | 100Ω   | 120Ω      |               |
| 17  | DTR    | Ra     | b         |               |
| 16  | RI     | RB     | Tx / Rx - | -RCV-CL-DATA  |

| Pin | RS 232 | RS 422 | RS 485    | Current Loop  |
|-----|--------|--------|-----------|---------------|
| 14  | TxD    | RA     | Tx / Rx + | +RCV-CL-DATA  |
| 15  | RxD    | TB     |           | -XMIT-CL-DATA |
| 35  | -      |        |           |               |
| 13  | GND    |        |           | GND           |
| 34  | RTS    |        |           | Tsource       |
| 33  | CTS    |        |           | Rsource       |
| 54  | DCD    | TA     |           | +XMIT-CL-DATA |
| 53  | DSR    | 100Ω   | 120Ω      |               |
| 73  | DTR    | Rab    |           |               |
| 72  | RI     | RB     | Tx / Rx - | -RCV-CL-DATA  |

#### Table 7-3: Pin assignment of port 3

### Table 7-4: Pin assignment of port 4

| Pin | RS 232 | RS 422 | RS 485    | Current Loop  |
|-----|--------|--------|-----------|---------------|
| 70  | TxD    | RA     | Tx / Rx + | +RCV-CL-DATA  |
| 71  | RxD    | TB     |           | -XMIT-CL-DATA |
| 69  | GND    |        |           | GND           |
| 52  | -      |        |           |               |
| 51  | RTS    |        |           | Tsource       |
| 50  | CTS    |        |           | Rsource       |
| 32  | DCD    | TA     |           | +XMIT-CL-DATA |
| 31  | DSR    | 100Ω   | 120Ω      |               |
| 12  | DTR    | Rab    |           |               |
| 11  | RI     | RB     | Tx / Rx - | -RCV-CL-DATA  |

### Table 7-5: Pin assignment of port 5

| 1   | 1      | 1      |           | 1             |
|-----|--------|--------|-----------|---------------|
| Pin | RS 232 | RS 422 | RS 485    | Current Loop  |
| 9   | TxD    | RA     | Tx / Rx + | +RCV-CL-DATA  |
| 10  | RxD    | TB     |           | -XMIT-CL-DATA |
| 8   | GND    |        |           | GND           |
| 30  | -      |        |           |               |
| 29  | RTS    |        |           | Tsource       |
| 28  | CTS    |        |           | Rsource       |
| 49  | DCD    | TA     |           | +XMIT-CL-DATA |
| 48  | DSR    | 100Ω   | 120Ω      |               |
| 68  | DTR    | Rab    |           |               |
| 67  | RI     | RB     | Tx / Rx - | -RCV-CL-DATA  |

| Pin | RS 232 | RS 422 | RS 485    | Current Loop  |
|-----|--------|--------|-----------|---------------|
| 65  | TxD    | RA     | Tx / Rx + | +RCV-CL-DATA  |
| 66  | RxD    | TB     |           | -XMIT-CL-DATA |
| 64  | GND    |        |           | GND           |
| 47  | -      |        |           |               |
| 46  | RTS    |        |           | Tsource       |
| 45  | CTS    |        |           | Rsource       |
| 27  | DCD    | TA     |           | +XMIT-CL-DATA |
| 26  | DSR    | 100Ω   | 120Ω      |               |
| 7   | DTR    | Rab    |           |               |
| 6   | RI     | RB     | Tx / Rx - | -RCV-CL-DATA  |

Table 7-6: Pin assignment of port 6

| Table   | 7-7: | Pin | assignment | of          | port | 7 |
|---------|------|-----|------------|-------------|------|---|
| I GINIO |      |     | assignment | <b>·</b> ·· |      |   |

| Pin | RS 232 | RS 422 | RS 485    | Current Loop  |
|-----|--------|--------|-----------|---------------|
| 4   | TxD    | RA     | Tx / Rx + | +RCV-CL-DATA  |
| 5   | RxD    | TB     |           | -XMIT-CL-DATA |
| 3   | GND    |        |           | GND           |
| 25  | -      |        |           |               |
| 24  | RTS    |        |           | Tsource       |
| 23  | CTS    |        |           | Rsource       |
| 44  | DCD    | TA     |           | +XMIT-CL-DATA |
| 43  | DSR    | 100Ω   | 120Ω      |               |
| 63  | DTR    |        | Rab       |               |
| 62  | RI     | RB     | Tx / Rx - | -RCV-CL-DATA  |

#### Table 7-8: Pin assignment of port 8

| Pin | RS 232 | RS 422 | RS 485    | Current Loop  |
|-----|--------|--------|-----------|---------------|
| 60  | TxD    | RA     | Tx / Rx + | +RCV-CL-DATA  |
| 61  | RxD    | TB     |           | -XMIT-CL-DATA |
| 40  | GND    |        |           |               |
| 42  | RTS    |        |           | Tsource       |
| 41  | CTS    |        |           | Rsource       |
| 22  | DCD    | TA     |           | +XMIT-CL-DATA |
| 2   | DTR    | Rab    |           |               |
| 21  | DSR    | 100Ω   | 120Ω      |               |
| 1   | RI     | RB     | Tx / Rx - | -RCV-CL-DATA  |

TA:Tx422+RA:Rx422+TB:Tx422-RB:Rx422-

# 7.2 Connection cables

|   | Fig. 7-2: Connection cable \$17809 (8 x 9-pin) |  |  |  |  |  |  |  |
|---|------------------------------------------------|--|--|--|--|--|--|--|
| × |                                                |  |  |  |  |  |  |  |
|   |                                                |  |  |  |  |  |  |  |
|   |                                                |  |  |  |  |  |  |  |
|   |                                                |  |  |  |  |  |  |  |
|   |                                                |  |  |  |  |  |  |  |
|   |                                                |  |  |  |  |  |  |  |
|   |                                                |  |  |  |  |  |  |  |
|   |                                                |  |  |  |  |  |  |  |
|   |                                                |  |  |  |  |  |  |  |
|   |                                                |  |  |  |  |  |  |  |

aabla CT7000 (0

### Fig. 7-3: Connection cable ST7825 (8 x 25-pin)



## 7.3 Connection examples

### 7.3.1 RS232 cabling

### Fig. 7-4: RS232 cabling

| APCI-7800<br>78 -pin |     | Port<br>78 -pin<br>8 x 25 | 1 Poi<br>n -> 78 -p<br>-pin 8 x 9 | t 1<br>in -><br>-pin |            | Pe  | rinheral |          |
|----------------------|-----|---------------------------|-----------------------------------|----------------------|------------|-----|----------|----------|
| 1                    |     | I.                        | I                                 | I                    |            | 10  | ipiterar |          |
| 20                   | TxD | 2                         | 3                                 | I<br>                |            | іт  | 'xD      |          |
| 19                   | RxD | 3                         | 2                                 | l<br>•               | $\searrow$ | I   | RxD      |          |
| 18                   | GND | 7                         | 5                                 | l<br>                |            | (   | GND      |          |
| 39                   | RTS | 4                         | 7                                 | l<br>                |            | I   | RTS      |          |
| 38                   | CTS | 5                         | 8                                 | l<br>I               | $\nearrow$ | (   | CTS      |          |
| 78                   | DTR | 20                        | 4                                 |                      |            | ! T | ASD.     | 1        |
| 58                   | DSR | 6                         | 6                                 | <br>                 |            |     |          | <b>}</b> |
| 59                   | DCD | 8                         | 1                                 |                      |            | (   | CD       |          |
| 77                   | RI  | 22                        | 9                                 |                      |            | Ľ   | DTR .    | J        |
|                      |     |                           |                                   |                      |            | I   |          |          |

**1** If the modem control signals are not used, they must be either connected on the board (settings through ADDIREG) or externally driven to the connector via solder bridge.

### 7.3.2 RS422 cabling

#### Port 1 Port 1 APCI-7800 78-pin -> Peripheral 78-pin -> 78-pin 8 x 25-pin 8 x<sup>9</sup>-pin 8 ! 1!59 Tx 422+ A RxD 3 1 2! 19 В Tx 422-22' 91 77 Rx 422-В TxD 31 20 2 A Rx 422+ 58 61 6¦ 100 Ω \*1 Connection to Т a 100 Ω Connection to terminal resistor 78 i 201 4 i a terminal resistor\*2 Т 1 Ţ

#### Fig. 7-5: RS422 cabling

### 7.3.3 RS485 cabling



### 7.3.4 Current loop (20 mA) cabling

Active / passive : When a transmitter and a receiver communicate, one of them has to supply the necessary current. If the transmitter supplies the current, it is active. The receiver is passive. In reverse, if the receiver supplies the current, it is active.



#### Fig. 7-7: Active transmission/active reception



#### Fig. 7-8: Active transmission/passive reception









# 8 TESTING THE BOARD

### 8.1 Connecting a shorting plug

When using the shorting plug described below and the test program **MTTTY** you can carry out a self-test on the board.

Please note the signal connection of the different ports through the 9-pin shorting plug for the test.

| Por<br>APCI-<br>(78-j | t 1<br>-7800<br>pin) | ST7809<br>(9-pin) |            |                        |                          |
|-----------------------|----------------------|-------------------|------------|------------------------|--------------------------|
| 20 L                  | TxD                  | 3                 | _ <u>_</u> |                        |                          |
| 19                    | RxD                  | 2                 |            |                        |                          |
| 18                    | GND                  | 5                 |            |                        |                          |
| 39 L                  | RTS                  | 7                 |            |                        |                          |
| 38                    | CTS                  | 8                 |            |                        |                          |
| 78                    | DTR                  | 4                 |            |                        | In option if the         |
| 58                    | DSR                  | 6                 |            | $\left  \right\rangle$ | modem control            |
| 59 L                  | CD                   | 1                 |            |                        | signals are to be tested |
| 77                    | RI                   | 9                 |            |                        |                          |
|                       |                      |                   |            |                        |                          |

### Fig. 8-1: Connection of the shorting plug for the RS422 mode

### Fig. 8-2: Connection of the shorting plug for the RS422 mode



# Fig. 8-3: Connection of the shorting plug for the 20 mA current loop active transmission/passive reception

| A | Por<br>PCI-<br>(78-j | t 1<br>-7800<br>pin) | ST7809<br>(9-pin) |   |
|---|----------------------|----------------------|-------------------|---|
|   | 39                   | Tsource              | 7                 |   |
|   | 59                   | +XMIT-CL-DATA        | 1                 |   |
|   | 19                   | -XMIT-CL-DATA        | 2                 | - |
|   | 18                   | GND                  | 5                 |   |
|   | L <u>38</u>          | Rsource              | 8                 |   |
|   | 20                   | +RCV-CL-DATA         | 3                 |   |
|   | 77                   | -RCV-CL-DATA         | 9                 |   |
|   |                      |                      |                   |   |

# Fig. 8-4: Connection of the shorting plug for the 20 mA current loop passive transmission/active reception

| Port 1            | ST7200          |
|-------------------|-----------------|
| APCI-7800         | 51/809          |
| (78 <b>-</b> pin) | (9 <b>-</b> pm) |

|            |            |      |               |   | _           |   |
|------------|------------|------|---------------|---|-------------|---|
| ←))-       | $\bigcirc$ | 39   | Tsource       | 7 |             |   |
|            | Ű,         | 59   | +XMIT-CL-DATA | 1 | r<br>1<br>1 |   |
|            |            | 19   | -XMIT-CL-DATA | 2 |             |   |
|            |            | 18   | GND           | 5 |             |   |
| <b>←</b> ᢕ |            | - 38 | Rsource       | 8 |             |   |
|            | $\bigcirc$ | 20   | +RCV-CL-DATA  | 3 |             |   |
|            |            | 77   | -RCV-CL-DATA  | 9 |             |   |
|            |            |      |               |   |             |   |
|            |            |      |               | 1 |             | ÷ |

### 8.2 Testing the board with the MTTTY program

#### RS422, RS232 and 20 mA Current Loop

#### • Install the program on your PC.

The program is delivered on the ADDI-DATA driver CD-RoM CD1. Under CD/MTTTY start the setup.exe file.

The following windows opens.

| Multi-threaded TTY                                                                                                                                                            |                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| <u>File</u> <u>I</u> TY Transfer <u>H</u> elp                                                                                                                                 |                                                                                                                            |
| Port     Baud     Parity     Data Bits     Stop Bits       COM1     9600     None     8     1     Image: Comm Events       Font     Comm Events     Flow Control     Timeouts | Local Echo     No Reading       Display Errors     No Writing       CR => CR/LF     No Events       Autowrap     No Status |
| Test der seriellen Schnittstelle COM1                                                                                                                                         |                                                                                                                            |
| Modem Status                                                                                                                                                                  |                                                                                                                            |
| CTS IF DSR IF RING IF RLSD (CD)                                                                                                                                               | Char 1:Status message go Antere:                                                                                           |

#### Fig. 8-5: The MTTTY program

#### ♦ Select the right COM interface under "Port".

#### ◆ Connect it with "File/Connect".

If the shorting plug is connected, each key stroke (= Data transmission) must result in the corresponding key character displayed on the screen (= Data reception). If the test is successfully carried out, the board works.

Once the port is initialised the state of the "Modem Control Signals" can be read in *Modem Status*. If the RTS signal is set, the CTS state is displayed under Modem Status. For DTR the 3 other fields are set.

In the above menu under "TTY/Flow Control" you can configure the Handshake of the Modem Control Signals according to your application (See figure below). The settings are displayed in the field "Comm Status".

The field at the bottom right of the main window is a text field for error or state indication messages.

| Fig. 8 | 3-6: Handshake configuration for | the board test |
|--------|----------------------------------|----------------|
|        | Flow Control Settings            | ×              |
|        |                                  |                |

| riow concroi seccings                                                                               | 스               |
|-----------------------------------------------------------------------------------------------------|-----------------|
| Hardware Control Settings                                                                           | ОК              |
| CTS Output Control      DSR Output Control                                                          | Cancel          |
| DSR Sensitivity (Input Control)                                                                     | <u>R</u> ts/Cts |
| DTR Control:<br>Enable  Enable                                                                      | <u>D</u> tr/Dsr |
|                                                                                                     | ∐off/Xon        |
| Software Control Settings                                                                           | None            |
| XON/XOFF Output Control                                                                             |                 |
| XON/XOFF Input Control                                                                              |                 |
| Continue sending after XOFF sent                                                                    |                 |
| XON Limit: XOFF Limit:                                                                              |                 |
| XON Char:         XOFF Char:           0x         11         0x         13                          |                 |
| Continue sending after XOFF sent<br>XON Limit: XOFF Limit:<br>0 XON Char: XOFF Char:<br>0x 11 0x 13 |                 |

#### RS485

### IMPORTANT!

For testing the RS485 mode, the shorting plug is not used.

This operating mode must be first set through ADDIREG or in the Device Manager of Windows 2000.

• In the ADDIREG main window click on "More Information".

The window for the communication board (See Fig. 6-4) is displayed.

◆ Select "RS485 ECHO enable" for the required COM and click on OK.

◆ In main windows confirm the configuration with "Set" and "Save". or

♦ In Device Manager of Windows 2000 select "RS485 ECHO enable" in the "Setting register" and confirm with "OK".

Start MTTTY and test through key stroke if the interface works correctly.

# 9 REPLACING THE MODULES

### **IMPORTANT!**

We advise you to send us the board if a module is to be replaced.

If you wish to effect the replacement yourself, consider the following:

- Observe the possible combinations according to the intended purpose of the board.
- Do observe the *Security advises*.
- Insert/remove the module carefully according to the following illustrations.

### 9.1 Replacing the SI modules

#### Fig. 9-1: Inserting the SI module



- 1. Hold the SI-module so that its connector is directed toward the guide rail in the centre of the socket.
- 2. Pull the SI-module downward until it clicks in place.
- 3. The SI-module is installed on the board. If the module is not properly installed, take it out and install it again.

#### Fig. 9-2: Removing a SI module



- 1. Bend the inner metal clamp carefully apart, until the SImodule can be removed from the socket.
- 2. Remove the SI-Module from the socket.