

ADDI-DATA GmbH Dieselstraße 3 D-77833 OTTERSWEIER + 49 (0)7223 / 9493 – 0

Preliminary version

Technical description

APCI-3300

Pressure measurement board, optically isolated

Edition: 07.05 - 03/2007

Product information

This manual contains the technical installation and important instructions for correct commissioning and usage, as well as production information according to the current status before printing. The content of this manual and the technical product data may be changed without prior notice. ADDI-DATA GmbH reserves the right to make changes to the technical data and the materials included herein.

Warranty and liability

The user is not permitted to make changes to the product beyond the intended use, or to interfere with the product in any other way.

ADDI-DATA shall not be liable for obvious printing and phrasing errors. In addition, ADDI DATA, if legally permissible, shall not be liable for personal injury or damage to materials caused by improper installation and/or commissioning of the board by the user or improper use, for example, if the board is operated despite faulty safety and protection devices, or if notes in the operating instructions regarding transport, storage, installation, commissioning, operation, thresholds, etc. are not taken into consideration. Liability is further excluded if the operator changes the board or the source code files without authorisation and/or if the operator is guilty of not monitoring the permanent operational capability of working parts and this has led to damage.

Copyright

This manual, which is intended for the operator and its staff only, is protected by copyright. Duplication of the information contained in the operating instructions and of any other product information, or disclosure of this information for use by third parties, is not permitted, unless this right has been granted by the product licence issued. Non-compliance with this could lead to civil and criminal proceedings.

ADDI-DATA software product licence

Please read this licence carefully before using the standard software. The customer is only granted the right to use this software if he/she agrees with the conditions of this licence.

The software must only be used to set up the ADDI-DATA boards.

Reproduction of the software is forbidden (except for back-up and for exchange of faulty data carriers). Disassembly, decompilation, decryption and reverse engineering of the software are forbidden. This licence and the software may be transferred to a third party if this party has acquired a board by purchase, has agreed to all the conditions in this licence contract and the original owner does not keep any copies of the software.

Trademarks

- ADDI-DATA is a registered trademark of ADDI-DATA GmbH.
- Turbo Pascal, Delphi, Borland C, Borland C++ are registered trademarks of Borland Insight Company.
- Microsoft C, Visual C++, Windows XP, 98, Windows 2000, Windows 95, Windows NT, EmbeddedNT and MS DOS are registered trademarks of Microsoft Corporation.
- LabVIEW, LabWindows/CVI, DasyLab, Diadem are registered trademarks of National Instruments Corp.
- CompactPCI is a registered trademark of PCI Industrial Computer Manufacturers Group.
- VxWorks is a registered trademark of Wind River Systems Inc.

In case of wrong uses and if the board is not used for the purpose it is intended:

- people may be injured,
- the board, PC and peripheral may be destroyed,
- the environment may be polluted
- Protect yourself, the others and the environment!
- Read carefully the safety precautions (yellow leaflet).

If this leaflet is not with the documentation, please contact us and ask for it.

• Observe the instructions of the manual.

Make sure that you do not forget or skip any step. We are not liable for damages resulting from a wrong use of the board.

Used symbols:

IMPORTANT!

designates hints and other useful information.

WARNING!

It designates a possibly dangerous situation. If the instructions are ignored the board, PC and/or peripheral may be destroyed.

1	DEFINITION OF APPLICATION7
1.1	Intended use7
1.2	Usage restrictions7
1.3	General description of the board7
2	USER9
2.1	Qualification9
2.2	Personal protection9
3	HANDLING OF THE BOARD10
4	TECHNICAL DATA11
4.1	Electromagnetic compatibility (EMC) 11
4.2	Physical set-up of the board11
4.3	Versions 12
4.4	Limit values12
4.5	Component scheme15
5	INSTALLATION OF THE BOARD
5.1	Opening the PC 16
5.2	Selecting a free slot
5.3	Plugging the board into the slot17
5.4	Closing the PC 17
6	SOFTWARE18
6.1	Board registration19
6.1.1	Installation of a new board
6.1.2	Changing the registration of a board
	Description of the ADDIREG program
6.2	Questions and software downloads on the web
7	CONNECTING THE PERIPHERAL25
7.1	Connector pin assignment25
7.2	Assignment of the screw terminal panel PX3200
7.3	Connection principle
7.3.1 7.3.2	Connection of pressure sensors through the PX320026 Connection of the digital I/O channels27

7.3.3	Connection to the screw terminal panels	
8	FUNCTIONS OF THE BOARD	29
8.1	Block diagram	29
8.2	Pressure measurement	29
8.2.1 8.2.2	Principle of the pressure measurement Temperature compensation Example of temperature compensation	
8.2.3	Acquisition functions	
8.2.4 8.2.5 8.2.6	Interrupt Timer Software calibration	
8.3	Voltage acquisition	
9	SOFTWARE FUNCTIONS AND SAMPLES	36
10	GLOSSARY	
11	INDEX	42

Figures

. 3-1: Correct handling	10
. 4-1: Number of slots required	12
. 4-2: Component scheme	15
. 5-1: Types of slots	16
. 5-2: Inserting the board	17
. 5-3: Fastening the board at the back cover	17
. 6-1: New inserted board (example)	19
. 6-2: ADDevice Manager	20
. 6-3: ADDIREG registration program (example)	21
. 7-1: 50-pin SUB-D male connector	25
. 7-2: 16-pin connector to 37-pin SUB-D connector	25
. 7-3: 48-screw terminal panel PX3200	26
. 7-4: Connector of pressure sensors through the PX3200	26
. 7-5: Connection of the digital input channels	27
. 7-6: Connection of the digital output channels	27
. 7-7: Connection to the screw terminal panels	28
. 8-1: Block diagram of the APCI-3300	29
. 8-2: Acquisition principle of the analog pressure signals	29
. 8-3: Principle of the pressure sensor	30
. 8-4: Acquisition example - Software start	33
. 8-5: Acquisition example - Single software scan	34
. 8-6: Acquisition example - Continuous hardware scan with Timer	
(rising edge)	34
	 3-1: Correct handling

Tables

Table 4-1: Possible acquisition times	14
Table 8-1: Conversion table of SI pressure units	31
Table 8-2: Acquisition times	34
Table 8-3: Timer time delays	35
Table 8-4: Voltage accuracy	35
Table 9-1: Software functions	36
Table 9-2: Software examples for the APCI-3300	38

1 DEFINITION OF APPLICATION

1.1 Intended use

The board **APCI-3300** must be inserted in a PC with PCI 5V/32-bit slots, which is used as electrical equipment for measurement, control and laboratory pursuant to the norm IEC 61010-1.

1.2 Usage restrictions

The **APCI-3300** board must not to be used as safety related part for securing emergency stop functions.

The board must <u>not</u> be used in potentially explosive atmospheres.

1.3 General description of the board

Data exchange between the **APCI-3300** board and the peripheral is to occur through a shielded cable. This cable must be connected to the 50-pin SUB-D male connector of the **APCI-3300** board.

The board has 8 or 4 input channels for processing analog pressure signals and 4 input and 3 output channels for processing digital 24 V signals. The use of the board **APCI-3300** in combination with external screw terminal panels is to occur in a closed switch cabinet.

The **PX3200** screw terminal board allows connecting the analog pressure signals to a cold junction compensation through the **ST3200** cable.

The use of the **APCI-3300** board in combination with external screw terminal panels or relay boards is to occur in a closed switch cabinet; the installation is to be effected competently.

The connection with our standard cable **ST3200** complies with the minimum specifications as follows:

- metallized plastic hoods
- shielded cable
- cable shield folded back and firmly screwed to the connector housing.

Uses beyond these specifications are not allowed. The manufacturer is not liable for any damages which would result from the non-observance of this clause.

The use of the board according to its intended purpose includes observing all advises given in the *Technical description* and in the *Safety* leaflet.

The use of the board in a PC could change the PC features regarding noise emission and immunity. Increased noise emission or decreased noise immunity could result in the system not being conform anymore.

Check the shielding capacity of the PC housing and of the cable prior to putting the device into operation.

Make sure that the board remains in its protective packing **until it is used**. Do not remove or alter the identification numbers of the board. If you do, the guarantee expires.

2 USER

2.1 Qualification

Only persons trained in electronics are entitled to perform the following works:

- installation,
- use,
- maintenance.

2.2 Personal protection

Consider the country-specific regulations about:

- the prevention of accidents
- electrical and mechanical installations
- radio interference suppression.

3 HANDLING OF THE BOARD

Fig. 3-1: Correct handling

4 TECHNICAL DATA

4.1 Electromagnetic compatibility (EMC)

The PC is to comply with the norm IEC61326 for measurement, control and laboratory use and with the specifications for EMC protection.

The board has been subjected to EMC tests in an accredited laboratory. The board complies with the limit values set by the norms IEC61326 as follows:

	True value		Set value
ESD (Discharge by contact/air)	4/8 kV		4/8 kV
Fields	10 V/m		10 V/m
Burst	4 kV		2 kV
Conducted radio interferences	10 V		10 V
Noise emissions:		B class	

4.2 Physical set-up of the board

The board is assembled on a 4-layer printed circuit card.

Dimensions:

Weight:	approx. 160 g
Installation in:	32/64-bit PCI slot 5 V
Connection to the peripheral:	50-pin SUB-D male connector
Accessories ¹ :	
Cable:	ST3200
Screw terminal panel	PX3200

WARNING!

The supply lines must be installed safely against mechanical loads.

¹ Not included in the standard delivery.

4.3 Versions

The board APCI-3300 is available in 2 versions.

Version	Number of connected pressure signals	Number of digital signals
APCI-3300-4	4	4 inputs and 3 outputs
APCI-3300-8	8	4 inputs and 3 outputs

4.4 Limit values

Max. Altitude: up to 2000 m above sea level Operating temperature: 0 to 60°C Storage temperature: -25 to 70°C **Relative humidity at indoor installation** 50% at +40 °C 80% at +31 °C

Minimum PC requirements: PCI BIOS from Version 1.0

Bus speed:	< 33 MHz
Operating system:	Windows NT, 98, 2000, XP, Linux
Number of slots required:	PCI 5 V, 32 bits/64 bits
	1 slot opening for the
	connection of dig. I/O

Fig. 4-1: Number of slots required

PCI bus interface:

Bus speed:	33 MHz
Data access:	32-bit
Decoding:	in the 64K I/O range of the PC
"Target Only" Operating	-

Resources:

4 I/O ranges:	 64 Bytes
	256 Bytes
	4 Bytes
	4 Bytes

IRQs:	. INTA	of the	PCI bus
-------	--------	--------	---------

Optical isolation:

Creeping distance:	3.2 mm
Testing voltage:	1000 VAC

Voltage sources:

Energy requirements:

	APCI-3300-4	APCI-3300-8
+ 5 V from the PC	570 mA	600 mA

Analog input pressure channels

Resolution:	18-bit, unipolar
Input type:	differential channels
Number of voltage inputs:	4 to 8
Overvoltage protection:	± 30 V
Input voltage range:	0 to 2.5V/PGA
Input impedance:	25 ΜΩ
Input capacity:	530 pF
Input current:	
Input amplifier (PGA):	1, 2, 4, 8, 16, 32, 64, 128
Data transfer:	The board is located in the I/O
	address space of the PC.
	The values are written on the
	board through 32-bit accesses.
Digital coding:	Unipolar: Straight binary coding

Voltage range: 0 mV < V < +100 mV

(See Table 8-4: Voltage accuracy)	
Precision:	16-bit
Integral non-linearity (INL):	$\dots \pm 0.0015$ % of FSR ¹ over the
	temperature range
Monotony:	16-bit
Offset error:	$\dots \pm 0.0015$ % of FSR
	(Bipolar Offset Error)

Voltage range: 100 mV < V < + 2.5 V

¹ FSR: Full Scale Range

Integral non-linearity (INL):	l non-linearity (INL): ± 0.0060 % of FSR over the			
	temperature range			
Monotony:	14-bit			
Offset error:	± 0.0060 % of FSR			
	(Bipolar Offset Error)			

Gain error:

for gain 1, 2, 4, 8, 16, 32, 64:	±2 % of FSR
for gain 128	±3 % of FSR

Acquisition times (Hz) 1 channel, offset, reference	Sample period (ms)
20	50
40	25
80	12.5
160	6.25

Table 4-1: Possible acquisition times

Digital input channels:

Number:	4
Input current at 24 V:	2 mA typ.
Input voltage range:	0-30 V
Optical isolation:	1000 VAC
Logic "0" level:	0-5 V
Logic "1" level:	12-30 V

Digital output channels:

Number:	
Max. switch current: 12	25 mA typ.
Voltage range:	-30 V
Optical isolation: 10	000 VAC
Type: O	Open Collector

4.5 Component scheme

Fig. 4-2: Component scheme

5 INSTALLATION OF THE BOARD

IMPORTANT!

Do observe the safety precautions (yellow leaflet)!

5.1 Opening the PC

- ♦ Switch off your PC and all the units connected to the PC
- ♦ Pull the PC mains plug from the socket.
- Open your PC as described in the manual of the PC manufacturer.

5.2 Selecting a free slot

The following PCI slot types are available for 5V systems: PCI-5V (32-bit) and PCI-5V (64-bit)

Remove the back cover of the selected slot according to the instructions of the PC manufacturer. Keep the back cover. You will need it if you remove the board

Discharge yourself from electrostatic charges.

Take the board out of its protective pack.

5.3 Plugging the board into the slot

• Insert the board **vertically into the chosen slot**.

• Fasten the board to the rear of the PC housing with the screw which was fixed on the back cover.

♦ Tighten all the loosen screws.

5.4 Closing the PC

◆ Close your PC as described in the manual of the PC manufacturer.

6 SOFTWARE

In this chapter you will find a description of the delivered software and its possible applications.

IMPORTANT!

Further information for installing and uninstalling the different drivers is to be found in the delivered description "**Installation** instructions for the PCI and ISA bus".

A link to the corresponding PDF file is available in the navigation pane (Bookmarks) of Acrobat Reader.

IMPORTANT!

The supported software functions for the **APCI-3300** are listed in chapter 9.

The board is supplied with a CD-ROM containing the ADDIPACK software package for Windows NT 4.0 and Windows XP/2000/98.

ADDIPACK is composed of following programs:

- **ADDIREG:** The ADDIREG registration program is a 32-bit program for Windows NT 4.0 and Windows XP/2000/98. The user can register all hardware information necessary to operate the ADDI-DATA PC boards.
- **ADDIDRIVER** contains API functions to operate the ADDI-DATA boards in 32 bits.
- **ADDevice Manager** configures the resources of the ADDI-DATA virtual board (See below).

ADDI-DATA virtual board:

ADDI-DATA software is based on the principle of a **virtual board:** it transposes the different functions (e.g. digital inputs, analog outputs, timer, ...) of all inserted ADDI-DATA boards as the functions of a <u>single (virtual) board</u>. The virtual board features a pool of functions, the functionality of which can be called up without calling a specific board.

ADDEVICE MAPPER was specifically developed for the ADDIPACK boards to facilitate the management of the virtual board. With this program you can optimally adapt the virtual board to your application requirements.

IMPORTANT!

For some functions of the **ADDEVICE MAPPER** program the browser Internet Explorer 6 or higher has to be installed on your PC.

6.1 Board registration

When starting the set-up of ADDIREG, the APCI-3300 is automatically recognised and registered.

6.1.1 Installation of a new board

If a new board is recognised, the following window is displayed:

ADDIDriver board o	clear/inse	t list (automati	c detection)				
Clear board list —							
Board name	Base	e address	PCI bus/device/(slot)	Interrupt			
					_		
					•		
Number of board : 0							
Insert board list —							
Board name	Base	e address	PCI bus/device/(slot)	Interrupt	-		
APCI3200)800,DC78, DC70	2/ 10/ 4	11			
					_		
					-		
Number of board : 1			More information				
OK							
		-					

Fig. 6-1: New inserted board (example)

The boards which have been removed from the PC since the last ADDIREG start are listed in the upper table

The new inserted boards are listed in the lower table.

In case further information is required for the operation of the board, click on "More Information". ADDevice Manager is started.

ADDevice Manager

📕 ADDevice Manager Version 0302/0106 : ADDI-DATA Virtual board									
Eile									
V : Virtual board R : Real board	Digital input	Digital output	Analog input	Analog output	Pressure				
APCI3300 Board Index : 0 Slot:3 IRQ: 9 Addr 0:B000 Addr 1:A800 Addr 2:A400 Addr 3:A000	V - R Mod. 0 - Mod. 0 : Nbr: 4 0 - 0 3 - 3 24V	V - R Mod. 0: Nbr: 3 0 - 0 2 - 2 24V/0C	No	No	V - R Mod. 0 - Mod. 0: Nbr: 2 0 - 0 1 - 1 V - R Mod. 1 - Mod. 1: Nbr: 2 2 - 0 3 - 1 V - R Mod. 2: Nbr: 2 4 - 0 5 - 1 V - R Mod. 3: Nbr: 2 6 - 0 1				
A No information									
nvoimonnation	lo information								

Fig. 6-2: ADDevice Manager

The following parameters are displayed for every inserted board:

First column:

- Board name
- Board index: Number allocated to the board when it is registered in ADDIREG.
- Slot number
- IRQ line
- Different addresses which are automatically allocated to the board by the BIOS.

Other columns:

The program distinguishes between the resources (Analog/digital input/output, watchdog, ...) of the virtual board (**V**, software) and the real board (**R**, board).

The following parameters are listed

- Module number,
- Number of resources
- Index: The first index line represents the number of the first resource (left: virtual resource right: real board) The second index line represents the number of the last resource (left: virtual resource right: real board).
- Type (24 V/5 V, voltage/current, HS/OC High-Side/Open collector).
- IRQ: if the input channels are interruptible, the program displays the number of the first and of the last input channel

By clicking twice within a column, the connection principle and the technical data of the resource are displayed. This function is only possible if a question mark appears with the cursor.

You can export the set configuration as a text file. Click on "file" and save the configuration as a .txt file with "Export information to file...". You can then print the configuration or use it for other boards.

Once you have controlled the registration, you can quit the window of ADDevice Manager. The board is ready to operate.

6.1.2 Changing the registration of a board

You can change the current board configuration with ADDIREG

Description of the ADDIREG program

The program is automatically installed with ADDIPACK. Start ADDIREG under Start/Programs/ADDIPACK/ADDIREG.

• IMPORTANT!

First quit all the applications (programs) which use the board before starting the ADDIREG program..

In the main window of ADDIREG the fields "Insert" and "Clear" are not available for the board.

	ADDI-DATA Gml	bH registration prog	ram. Versio	n 0302 / 0546				
B	esource file System	ninfo <u>A</u> bout						
Γ	Board list config							
	Board name	Base address	PCI bus/device/(slot)		DMA	More information <u></u>		
	APCI1516 D480,DC78, 32-0 DC40 32-0		32-bit	2/9/3 Not available	Not available ADDIDriv	ADDIDriver	er board	
	APCI1710	D800,DC70	32-bit	2/8/2	17	Not available		
ľ								
	Insert			Edi	t			Clear
L								
Г	Board configurati	ion —						
L	Base address n	ame: Ini	errupt nam		MA name:		Set	Cancel
L	I	V		Y				
						*		
	Base address :	In	errupt :		MA channel		Default	More
	Base address :	ini V	errupt :		MA channel		<u>D</u> efault	<u>M</u> ore information
	Base address : Access mode:		errupt :	P	MA channel		Default ADDIDriver br	information

Fig. 6-3: ADDIREG registration program (example)

Table:

Board name:

Names of the different registered boards.

Base address:

Selected base address of the board. For PCI boards the base address is allocated through BIOS.

Access:

Selection of the access mode for the ADDI-DATA digital boards. Access in 8-bit or 16-bit or 32-bit mode.

PCI bus/device/(slot):

Number of the used PCI bus, slot, and device. If the board is no PCI board, the message "NO" is displayed.

Interrupt:

Used interrupt of the board. If the board supports no interrupt, the message "Not available" is displayed.

DMA:

Indicates the selected DMA channel or "Not available" if the board uses no DMA or if the board is no ISA board.

More information:

Additional information like the identifier string or the installed COM interfaces. It also displays whether the board is programmed with ADDIDRIVER.

Text boxes:

Base address name:

Description of the used base addresses for the board. Select a name though the pull-down menu. The corresponding address range is displayed in the field below (Base address).

Interrupt name:

Description of the used IRQ lines for the board. Select a name though the pulldown menu. The corresponding interrupt line is displayed in the field below (Interrupt).

DMA name (for ISA boards only):

When the board supports 2 DMA channels, you can select which DMA channel is to be changed.

DMA channel (for ISA boards only):

Selection of the used DMA channel.

Buttons:

<u>E</u>dit:

Selection of the highlighted board with the different parameters set in the text boxes.

<u>S</u>et:

Sets the parametered board configuration. The configuration should be set before you save it.

Cancel:

Reactivates the former parameters of the saved configuration.

Default:

Sets the standard parameters of the board.

More information (not available for the boards with ADDIPACK)

You can change the board specific parameters like the identifier string, the COM number, the operating mode of a communication board, etc... If your board does not support these information, you cannot activate this button.

ADDIDriver Board Manager:

Under Edit/ADDIDriver Board Manager you can check or change the current settings of the board set through the ADDEVICE Manager. ADDevice Manager starts and displays a list of all resources available for the virtual board.

Test registration:

Controls if there is a conflict between the board and other devices installed in the PC. A message indicates the parameter which has generated the conflict. If no conflict has occurred, "Test of device registration OK" is displayed.

Deinstall registration:

Deinstalls the registrations of all boards listed in the table and deletes the entries of the boards in the Windows Registry.

Print registration:

Prints the registration parameter on your standard printer.

Quit:

Quits the ADDIREG program.

Test the board registration

Under "Test registration" you can test if the registration is "OK". This test controls if the registration is right and if the board is present. If the test has been successfully completed you can quit the ADDIREG program. The board is initialised with the set parameters and can now be operated.

In case the registration data is to be modified, it is necessary to boot your PC again. A message asks you to do so. When it is not necessary you can quit the ADDIREG program and directly begin with your application.

6.2 Questions and software downloads on the web

Do not hesitate to e-mail us your questions. per e-mail: info@addi-data.de or hotline@addi-data.de

Free downloads of standard software

You can download the latest version of the software for the board **APCI-3300.**

http://www.addi-data.com

IMPORTANT!

Before using the board or in case of malfunction during operation, check if there is an update of the product (technical description, driver). The current version can be found on the internet or contact us directly.

7 CONNECTING THE PERIPHERAL

7.1 Connector pin assignment

Pin			Pin	Pin	
34 NC 35 EXC 0 36 GND 0 37 EXC 1 38 GND 1 39 EXC 2 40 GND 2 41 EXC 3 42 GND 3 43 EXC 4 44 GND 4 45 EXC 5 46 GND 5 47 EXC 6 48 GND 6 49 EXC 7 50 NC	34 18 35 5 36 37 38 5 39 5 40 6 41 6 42 5 43 5 44 5 45 6 47 5 48 6 49 5 50 33	1 NC 2 CH0+ 3 CH0- 4 CH1+ 5 CH1- 6 CH2+ 7 CH2- 8 CH3+ 9 CH3- 10 CH4+ 11 CH4- 12 CH5+ 13 CH5- 14 CH6+ 15 CH6- 16 CH7+ 17 CH7-	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	NC 18 NC 19 NC 20 NC 21 NC 22 NC 23 NC 24 NC 25 NC 26 NC 27 NC 28 NC 29 NC 30 NC 31 NC 32 NC 33	 Module 0 (Input 0-1) Module 1 (Input 2-3) Module 2 (Input 4-5) Module 3 (Input 6-7)
NC: Not co					

Fig. 7-1: 50-pin SUB-D male connector

NC: Not connected EXC: Voltage source

Fig. 7-2: 16-pin connector to 37-pin SUB-D connector

IMPORTANT!

Insert the FB3000 on the connector with the red cable lead on the side of the pin 1. See page 28 "Connection to the screw terminal panels".

7.2 Assignment of the screw terminal panel PX3200

Fig. 7-3: 48-screw terminal panel PX3200

GND6 and GND7 are connected to the same pin of the screw terminal panel

7.3 Connection principle

7.3.1 Connection of pressure sensors through the PX3200

Fig. 7-4: Connector of pressure sensors through the PX3200

Pin x: Screw terminal nur NC: Not connected

7.3.3 Connection to the screw terminal panels

Fig. 7-7: Connection to the screw terminal panels

IMPORTANT!

Insert the **FB3000** on the connector with the red cable lead on the side of the pin 1.

8 FUNCTIONS OF THE BOARD

8.1 Block diagram

8.2 Pressure measurement

The board has max. 8 analog pressure inputs. These are organised in 4 different modules. An 18-bit A/D converter is allocated to each module. A converter can acquire 2 inputs independently from each other or sequentially, once or in cycles through timer. (Scan, Single or Continuous Mode).

The APCI-3200 allows an acquisition with 18-bit resolution in a range of 0 to + 2.5 V.

For the acquisition of the input signals, the following parameters are to be configured by software:

- gain
- polarity

Acquisition principle for 1 module

Module 0 corresponds to the inputs 0 to 1. Module 1 corresponds to the inputs 2 to 3. Module 2 corresponds to the inputs 4 to 5. Module 3 corresponds to the inputs 6 to 7. The conversion of module x is started by single start, single scan, continuous scan with or without timer, through software trigger or external hardware trigger via a digital input channel:

- Digital input 0 for module 0.
- Digital input 1 for module 1.
- Digital input 2 for module 2.
- Digital input 3 for module 3.

Once the conversion is completed, an interrupt is generated (EOC: end of conversion). The measured value can be read back at any time with the corresponding driver function.

8.2.1 Principle of the pressure measurement

The board APCI-3300 allows the connection of linear sensors and functions according to the principle of a "Wheatstone" bridge (See figure below). When pressure affects the connected sensor, the whole resistance value (R) of the bridge is modified by ΔR . The higher the resistance, the higher the voltage and in consequence the pressure.

The V_{exc} (EXC0 to EXC7) on the screw terminal panel are used as reference voltage i.e. as excitation voltage for the resistance bridge. The voltage measured at the 2 pins corresponds to the resistance difference ΔR between the 2 sides of the bridge.

Fig. 8-3: Principle of the pressure sensor

V_{out}: Voltage measurement

The output voltage (V_{out}) is defined as follows:

$$V_{out} = V_{exc} \times \frac{\Delta R}{R}$$

The connected sensors have technical properties which must be carefully considered for the pressure measurement:

- the offset voltage: measured voltage when the sensor resistance amounts 0 Ω .
- the sensor sensitivity

You will find the required values in the product specifications of the sensor manufacturer. Enter this date in the following software function (See chapter 9): b_ADDIDATA_InitPressureChannel.

Pressure is proportional to the resistance whatever the sensor type is. It results the following calculation:

$$P = \frac{V_{out} + V_{off}}{V_{exc} \times S}$$

- V_{out}: output voltage in mV
- V_{off}: offset voltage (See product information of the sensor manufacturer)
- V_{exc}: reference voltage in V
- S: sensitivity of the sensor in $\frac{mV}{V \times bar}$ (See product information of the sensor

manufacturer)

- P: measured pressure in Bar. The pressure value is returned with a slight inaccuracy $\pm \Delta P$.

 ΔP is calculated as follows:

$$\Delta P = P \Biggl(\frac{\Delta V_{out} + \Delta V_{off}}{V_{out} + V_{off}} + \frac{\Delta S}{S} + \frac{\Delta V_{exc}}{V_{exc}} \Biggr)$$

- ΔS : Sensitivity error (See product information of the sensor manufacturer)
- ΔV_{exc} : Reference voltage error
- ΔV_{off} : Offset error (See product information of the sensor manufacturer)
- ΔV_{out} : Measurement precision of the board (See Table 8-4)

Table 8-1: Conversion table of SI pressure units

		SI-Units		Technical Units		
	bar	mbar	Pa	mmHg	kp/cm ²	atm
1 bar	1	10 ³	10 ⁵	750,064	1,01972	0,986923
1 mbar	10 ⁻³	1	100	750,064E-03	1,01972E-03	0,986923E-03
1 Pa	10 ⁻⁵	0,01	1	7,50064E-03	10,1972E-06	9,86923E-06
1 mmHg	1,33322E-03	1,33322	133,322	1	1,35951E-03	1,31579E-03
1 kp/cm ²	0,980665	0,980665E03	98,0665E-03	735,561	1	0,967841
1 atm	1,01325	1,01325E03	101,325E-03	760	1,03323	1

Other pressure unit: psi (pound per square inch) 1 psi = 6.89×10^3 Pa (N/m2)

 $1 \text{ psi} = 6.89 \text{ x } 10^{-2} \text{ bar}$

8.2.2 Temperature compensation

For a given constant pressure the output voltage changes with the temperature variations as follows:

$$\frac{dV_{out}}{dT} = \frac{dS}{dT} \times P \times V_{rej}$$

The temperature dependence of the sensor sensitivity can be calculated as follows:

$$S = S_0 \left[\left(1 - \beta T_D \right) + \rho T_D^2 \right]$$

- T_D : temperature difference between 25°C and the sensor temperature
- S₀: sensitivity at 25°C
- β and ρ are correlation constants (See product information of the sensor manufacturer)

Between 0°C and 70°C the change in sensitivity with temperature is quite linear and the 2nd order temperature dependent term can be ignored. Outside this temperature range, the terms from the 2nd order must be considered if accuracy of better than $\pm 1\%$ is required (See sensor technical features).

Most pressure applications fall within the 0°C to 70°C operating temperature and the non-linear effects can then be ignored. Thus:

$$S = S_0 \left(1 - \beta T_D \right)$$

The pressure dependence with temperature can be calculated as follows:

$$P = \frac{V_{out} + V_{off}}{V_{ref} \times S_0 \left(1 - \beta T_D\right)}$$

Example of temperature compensation

Values

-
$$V_{off} = -20 \text{ mV}$$

-
$$V_{ref} = 5 V$$

- S₀ = 21.77 $\frac{mV}{V \times bar}$
- $V_{out} = 40 \text{ mV}$
- $\beta = -2150 \text{ ppm/}^{\circ}\text{C}$
- $T^{\circ} = 60^{\circ}C$

Calculation:

without temperature compensation:

$$P = \frac{V_{out} + V_{off}}{V_{ref} \times S} = 0.184 bar$$

with temperature compensation:

$$P = \frac{V_{out} + V_{off}}{V_{ref} \times S_0 (1 - \beta T_D)} = 0.171 bar$$

IMPORTANT!

To avoid pressure modification in relation to temperature variation, the use of **temperature compensated sensors is recommended**.

If no temperature compensated sensor is used and in case the operating temperature is not 25° C or is unknown, temperature compensation is absolutely necessary.

Contact our sales department which will be pleased to help you find the required solution by inserting the board **APCI-3200 for temperature measurement**.

8.2.3 Acquisition functions

Each channel can be independently acquired (software start; See Fig. 8-4).

Each module (4 channels) can be independently acquired (one channel after the other):

- once through software trigger (single software scan; See Fig 8-5)
- once through external trigger (single hardware scan)
- cyclically through software trigger (continuous software scan)
- cyclically through software trigger with timer (continuous software scan with Timer)
- cyclically through external trigger (continuous hardware scan)
- cyclically through external trigger with timer (continuous hardware scan with Timer; See Fig. 8-6)

All functions can be configured through software.

Fig. 8-4: Acquisition example - Software start

After software-start, the channel x, the offset value and the gain value are read and a 16-bit value is returned.

Fig. 8-5: Acquisition example - Single software scan

Single software scan in differential mode:

After a single software scan the channels 0, 1, the offset value and the gain value are read. The conversion is made once (single scan) and stopped.

The conversion is identical to the conversion in single software scan. The only difference is that the conversion is started by one of the 4 digital inputs (external trigger). A delay time between 2 scan starts can be set through one 10-bit timer. The conversion is stopped by software.

Acquisition times

Acquisition times (Hz) Measurement of 1 channel, offset, reference	Sample period (ms)
20	50
40	25
80	12.5
160	6.25

Table 8-2: Acquisition times

8.2.4 Interrupt

For each module, an "End of Conversion" (EOC) is automatically generated after each measurement. This function can generate an interrupt.

8.2.5 Timer

Through the 4 x 10-bit timers, delays can be determined between 2 starts of SCAN. Each timer can be independently configured in 3 different time bases.

Time unit	Range of the delay for this time unit	Corresponds to
1ms	0< t < 1023 ms	0 < t < 1.023 s
1s	0< t < 1023 s	0 < t < 17.067 min

Table 8-3: Timer time delays

After the delay has run down, a new SCAN cycle is started.

8.2.6 Software calibration

Each channel can be independently configured through software. For each measuring process, a software calibration of the A/D converter is completed through internal comparison with the reference voltage. The offset and gain error can then be corrected in order to measure the voltage with a precision of 16 bits.

8.3 Voltage acquisition

Table 8-4: Voltage accuracy

Mode	Range	Accuracy (Gain = 1)
Unipolar	0 < V < 100 mV	\pm 19 μ V
	100 mV < V < + 2.5 V	\pm 76 μV

See also the Limit values on page 5.

9 SOFTWARE FUNCTIONS AND SAMPLES

ADDIPACK supports the following functions for the APCI-3300.

Table 9-1: Software functions

Functionality	Function name
Common	i_ADDIDATA_OpenWin32Driver
functions	i_ADDIDATA_GetCurrentDriverHandle
	i_ADDIDATA_GetDriverVersion
	i_ADDIDATA_GetLocalisation
	b_ADDIDATA_CloseWin32Driver
Interrupt	b_ADDIDATA_SetFunctionalityIntRoutineWin32
	b_ADDIDATA_TestInterrupt
	b_ADDIDATA_ResetFunctionalityIntRoutine
Error	i_ADDIDATA_GetLastError
	i_ADDIDATA_GetLastErrorAndSource
	b_ADDIDATA_EnableErrorMessage
	b_ADDIDATA_DisableErrorMessage
	b_ADDIDATA_FormatErrorMessage
	b_ADDIDATA_GetNumberOfPressureChannels
	b_ADDIDATA_GetNumberOfPressureModules
	b_ADDIDATA_GetNumberOfPressureChannelsForTheModule
	b_ADDIDATA_GetPressureChannelInformation
	b_ADDIDATA_InitPressureChannel
	b_ADDIDATA_Read1PressureChannel
Pressure	b_ADDIDATA_ReadMorePressureChannels
	b_ADDIDATA_ConvertDigitalToRealPressureValue
	b_ADDIDATA_ConvertMoreDigitalToRealPressureValues
	b_ADDIDATA_InitPressureSCAN
	b_ADDIDATA_StartPressureSCAN
	b_ADDIDATA_GetPressureSCANStatus
	b_ADDIDATA_ConvertDigitalToRealPressureValueSCAN
	b_ADDIDATA_StopPressureSCAN
	b_ADDIDATA_ClosePressureSCAN
	b_ADDIDATA_ReleasePressureChannel
	b_ADDIDATA_ConvertBarToPa
	b_ADDIDATA_ConvertBarToPsi

Functionality	Function name	
	b_ADDIDATA_GetNumberOfDigitalInputs	
Digital	b_ADDIDATA_GetDigitalInputInformation	
inputs	b_ADDIDATA_Read1DigitalInput	
	b_ADDIDATA_Read2DigitalInputs	
	b_ADDIDATA_Read4DigitalInputs	
	b_ADDIDATA_GetNumberOfDigitalOutputs	
	b_ADDIDATA_GetDigitalOutputInformation	
	b_ADDIDATA_SetDigitalOutputMemoryOn	
	b_ADDIDATA_SetDigitalOutputMemoryOff	
	b_ADDIDATA_Set1DigitalOutputOn	
Digital	b_ADDIDATA_Set1DigitalOutputsOff	
outputs	b_ADDIDATA_Set2DigitalOutputsOn	
	b_ADDIDATA_Set2DigitalOutputsOff	
	b_ADDIDATA_Set4DigitalOutputOn	
	b_ADDIDATA_Set4DigitalOutputOff	
	b_ADDIDATA_Get1DigitalOutputStatus	
	b_ADDIDATA_Get2DigitalOutputStatus	
	b_ADDIDATA_Get4DigitalOutputStatus	

ADDIPACK supports the following samples for the **APCI-3300**.

Functionality	Samples number	Description
	SAMPLE00	Display information of a pressure channel
	SAMPLE01	Read 1 pressure channel without interrupt.
Pressure	SAMPLE02	Read 1 pressure channel with interrupt.
	SAMPLE03	Read several pressure channels without interrupt.
	SAMPLE04	Read several pressure channels with interrupt.
	SAMPLE16	Initialise single scan with interrupt
	SAMPLE18	Initialise continuous scan with interrupt
	SAMPLE01	Read 1 digital input
Digital inputs	SAMPLE02	Read 2 digital inputs
	SAMPLE03	Read 4 digital inputs
	SAMPLE01	Test 1 digital output with/without output memory
Digital outputs	SAMPLE02	Test 2 digital outputs with/without output memory
	SAMPLE03	Test 4 digital outputs with/without output memory

Table 9-2: Software examples for the APCI-3300

10 GLOSSARY

Table	10-1:	Glossary
-------	-------	----------

Term	Description	
A/D converter	=ADC	
	An electronic device that produces a digital output directly proportional to an analog signal output.	
Acquisition	The process by which data is gathered by the computer for analysis or storage.	
Analog	Continuous real time phenomena	
Clock	A circuit that generates time and clock pulses for the synchronisation of the conversion	
D/A converter	= DAC A device that converts digital information into a corresponding analog voltage or current.	
Data acquisition	Gathering information from sources such as sensors and transducers in an accurate, timely and organized manner. Modern systems convert this information to digital data which can be stored and processed by a computer.	
DC voltage	 Direct current voltage DC voltage means that the voltage is constant respecting the time. It will always fluctuate slightly. Especially at switching on and switching off the transition behaviour is of high significance. 	
Differential inputs	An analog input with two input terminals, neither of which	
(DIFF)	is grounded, whose value is the difference between the two terminals.	
Digital signal	A signal which has distinct states. Digital computers process data as binary information having either true or false states.	
Disturb signal	Interferences that occur during the transfer caused by reduced bandwidth, attenuation, gain, noise, delay time etc.	
Driver	A part of the software that is used to control a specific hardware device such as a data acquisition board or a printer.	
Edge	Logic levels are defined in order to process or show information. In binary circuits voltages are used for digital units. Only two voltage ranges represent information. These ranges are defined with H (High) and L (Low). H represents the range that is closer to Plus infinite; the H level is the digital 1. L represents the range that is closer to Minus infinite; the L level is the digital 0. The rising edge is the transition from the 0-state to the 1-state and the falling edge is the transition from the 1-state to the 0-state.	
Ground	A common reference point for an electrical system.	
Impedance	The reciprocal of admittance. Admittance is the complex ratio of the voltage across divided by the current flowing through a device, circuit element, or network.	
Inductive loads	The voltage over the inductor is U=L.(dI/dt), whereas L is the inductivity and I is the current. If the current is switched on fast, the voltage over the load can become very highly for a short time.	

Input impedance	The measured resistance and capacitance between the high	
	and low inputs of a circuit.	
Input level	The input level is the logarithmic relation of two electric units of the same type (voltage, current or power) at the signal input of any receive device. The receive device is often a logic level that refers to the input of the switch. The input voltage that corresponds with logic "0" is here between 0 and 15 V, and the one that corresponds with logic "1" is between 17 and 30 V.	
Interrupt	A signal to the CPU indicating that the board detected the occurrence of a specified condition or event.	
Level	Logic levels are defined in order to process or show information. In binary circuits voltages are used for digital units. Only two voltage ranges represent information. These ranges are defined with H (High) and L (Low). H represents the range that is closer to Plus infinite; the H level is the digital 1. L represents the range that is closer to Minus infinite; the L level is the digital 0. The rising edge is the transition from the 0-state to the 1-state and the falling edge is the transition from the 1-state to the 0-state.	
Limit value	Exceeding the limit values, even for just a short time, can lead to the destruction or to a loss of functionality.	
Low-pass filter	Transmitting all frequencies below a certain value	
MUX	 <i>Multiplexer</i> An array of semiconductor or electromechanical switches with a common output used for selecting one of a number of input signals. 	
Noise immunity	Noise immunity is the ability of a device to work during an electromagnetic interference without reduced functions.	
Noise suppression	The suppression of undesirable electrical interferences to a signal. Sources of noise include the ac power line, motors, generators, transformers, fluorescent lights, CRT displays, computers, electrical storms, welders, radio transmitters, and others.	
Operating voltage	The operating voltage is the voltage that occurs during the continuous operation of the device. It may not exceed the continuous limit voltage. Furthermore, any negative operation situations, such as net overvoltages over one minute at switching on the device must be taken in consideration.	
Optical isolation	The technique of using an optoelectric transmitter and receiver to transfer data without electrical continuity, to eliminate high-potential differences and transients.	
Opto-coupler	A device containing light-emitting and light-sensitive components used to couple isolated circuits.	
Output voltage	The nominal voltage output reading when shaft is rotated to full range, expressed in volts DC /Vo DC)	
PCI bus	PCI bus is a fast local bus with a clock rate up to 33 MHz. This bus is used for processing a great number of data. The PCI bus is not limited like the ISA and EISA systems.	

Protective circuitry	A protective circuitry of the active part is done in order to protect the control electronic. The simplest protective
	circuitry is the parallel switching of a resistance.
Protective diode	At the input of the integrated MOS (Metal Oxide Semi-
Theenve diode	Conductor)-circuits used diodes, which operates at the
	permitted input voltages in the reverse range, but at
	overvoltage in the transition range and therefore protects the
	circuits against damage.
Resolution	The smallest significant number to which a measurement
Resolution	can be determined. For example a converter with 12-bit
	-
Concor	resolution can resolve 1 part in 4096.
Sensor	A device that responds to physical stimuli (heat, light,
	sound, pressure, motion, etc.) and produces a corresponding
0	electrical output.
Settling time	The time required, after application of a step input signal,
	for the output voltage to settle and remain within a specified
	error band around the final value. The settling time of a
~	system includes that of all of the components of the system.
Short circuit	A short circuit of two clamps of an electric switch is when
	the concerning clamp voltage is zero.
Short circuit current	Short circuit current is the current between tow short-
	circuited clamps.
Single Ended inputs	An analog input with one input terminal whose value is
(SE)	measured with respect to a common ground
Synchronous	In hardware, it is an event that occurs in a fixed time
	relationship to another event. In software, it refers to a
	function that begins an operation and returns to the calling
	program only when the operation is complete.
Throughput rate	The maximum repetitive rate at which data conversion
	system can operate with a specified accuracy. It is
	determined by summing the various times required for each
	part of the system and then by taking the inverse of this
	time.
Timer	The timer allows the adaptation of program processes
	between processor and peripheral devices. It usually
	contains from each other independent counters and can be
	programmed for several operation types over a control word
	register.
Trigger	Internal trigger:
1115501	A software generated event that starts an operation.
	External trigger:
	An analog or digital hardware event from an external source
	that starts an operation.
	Digital trigger:
	An event that occurs at a user-selected point on a digital
	input signal. The polarity and sensitivity of the digital
XX71	trigger can often be programmed.
Wheatstone bridge	A simple circuit for measuring an unknown resistance by
	connecting it so as to form a quadrilateral with three known
	resistances and applying a voltage between a pair of
	opposite corners

11 INDEX

Acquisition functions	
	Installation of a new board 20
Function description 36	Installation of the board 17
Acquisition times 37	Intended use 7
ADDevice Manager 21	Internet 26
ADDEVICE MAPPER 19	Interrupt
ADDIDRIVER 19	Function description 37
ADDIPACK 19	
Analog input pressure channels	
Limit values 14	0
Assignment of the screw terminal panel PX3200	
28	Optical isolation 13
	D
В	P
Block diagram 31	Physical set-up of the board 11
Board registration 20	Pin assignment 27
	Pressure measurement
	Function description 31
C	Principle of the pressure measurement 32
Changing the registration of a board 22 Component scheme 16	S
Connection principle 28	
	Slots 17
Connection to the screw terminal panels 30	Software 19
	Software calibration 38
D	Software download 26
	Software examples for the APCI-3300 41
DDIREG registration program 22	Software functions 39
Definition of application 7	Software functions 37
Digital input channels	
Limit values 15	Т
Digital output channels	
Limit values 15	Technical data 11
Dimensions 11	Temperature compensation 35
	Test the board registration 26
	Timer
Е	Function description 37
EMC	
Electromagnetic compatibility 11	U
Energy requirements 14	Update 26
	Usage restrictions 7
F	User
	Personal protection 9
Functions of the board 31	Qualification 9
G	V
Glossary 42	Versions 11
	Virtual board 19
i	Voltage acquisition
Н	Function description 38
	· · · ·
Handling of the board 10	\\\/
Handling of the board 10	W