

ADDI-DATA GmbH Dieselstraße 3 D-77833 OTTERSWEIER

Preliminary version

Technical description

APCI-3000, APCI-3006, APCI-3100, APCI-3106, APCI-3500

Analog I/O board

Edition: 01.10 - 10/2006

Product information

This manual contains the technical installation and important instructions for correct commissioning and usage, as well as production information according to the current status before printing. The content of this manual and the technical product data may be changed without prior notice. ADDI-DATA GmbH reserves the right to make changes to the technical data and the materials included herein.

Warranty and liability

The user is not permitted to make changes to the product beyond the intended use, or to interfere with the product in any other way.

ADDI-DATA shall not be liable for obvious printing and phrasing errors. In addition, ADDI DATA, if legally permissible, shall not be liable for personal injury or damage to materials caused by improper installation and/or commissioning of the board by the user or improper use, for example, if the board is operated despite faulty safety and protection devices, or if notes in the operating instructions regarding transport, storage, installation, commissioning, operation, thresholds, etc. are not taken into consideration. Liability is further excluded if the operator changes the board or the source code files without authorisation and/or if the operator is guilty of not monitoring the permanent operational capability of working parts and this has led to damage.

Copyright

This manual, which is intended for the operator and its staff only, is protected by copyright. Duplication of the information contained in the operating instructions and of any other product information, or disclosure of this information for use by third parties, is not permitted, unless this right has been granted by the product licence issued. Non-compliance with this could lead to civil and criminal proceedings.

ADDI-DATA software product licence

Please read this licence carefully before using the standard software. The customer is only granted the right to use this software if he/she agrees with the conditions of this licence.

The software must only be used to set up the ADDI-DATA boards.

Reproduction of the software is forbidden (except for back-up and for exchange of faulty data carriers). Disassembly, decompilation, decryption and reverse engineering of the software are forbidden. This licence and the software may be transferred to a third party if this party has acquired a board by purchase, has agreed to all the conditions in this licence contract and the original owner does not keep any copies of the software.

Trademarks

- ADDI-DATA is a registered trademark of ADDI-DATA GmbH.
- Turbo Pascal, Delphi, Borland C, Borland C++ are registered trademarks of Borland Insight Company.
- Microsoft C, Visual C++, Windows XP, 98, Windows 2000, Windows 95, Windows NT, EmbeddedNT and MS DOS are registered trademarks of Microsoft Corporation.
- LabVIEW, LabWindows/CVI, DasyLab, Diadem are registered trademarks of National Instruments Corp.
- CompactPCI is a registered trademark of PCI Industrial Computer Manufacturers Group.
- VxWorks is a registered trademark of Wind River Systems Inc.

WARNING

In case of wrong uses and if the board is not used for the purpose it is intended:

- people may be injured
- the board, PC and peripheral may be destroyed
 - the environment may be polluted
- Protect yourself, the others and the environment!
- Read carefully the safety precautions (yellow leaflet).

If this leaflet is not with the documentation, please contact us and ask for it.

• Observe the instructions of the manual.

Make sure that you do not forget or skip any step. We are not liable for damages resulting from a wrong use of the board.

Used symbols:

IMPORTANT!

designates hints and other useful information.

WARNING!

It designates a possibly dangerous situation. If the instructions are ignored the board, PC and/or peripheral may be destroyed.

1	DEFINITION OF APPLICATION7
1.1	Intended use7
1.2	Usage restrictions7
1.3	General description of the board7
2	USER9
2.1	Qualification9
2.2	Personal protection9
3	HANDLING OF THE BOARD
4	TECHNICAL DATA11
4.1	Electromagnetic compatibility (EMC)11
4.2	Physical set-up of the board11
4.3	Limit values12
4.3.1 4.3.2 4.3.3 4.3.4	Analog inputs12Analog outputs13TTL I/O13Timer and counter13
	Commenced asheres 15
4.4	Component scheme15
4.4 5	INSTALLATION OF THE BOARD
5	INSTALLATION OF THE BOARD
5 5.1	INSTALLATION OF THE BOARD
5 5.1 5.2	INSTALLATION OF THE BOARD
5 5.1 5.2 5.3	INSTALLATION OF THE BOARD16Opening the PC16Selecting a free slot16Plugging the board into the slot17
5 5.1 5.2 5.3 5.4	INSTALLATION OF THE BOARD16Opening the PC16Selecting a free slot16Plugging the board into the slot17Closing the PC18
5 5.1 5.2 5.3 5.4 6	INSTALLATION OF THE BOARD16Opening the PC16Selecting a free slot16Plugging the board into the slot17Closing the PC18SOFTWARE19Board registration20Installation of a new board20
5 5.1 5.2 5.3 5.4 6 6.1	INSTALLATION OF THE BOARD16Opening the PC16Selecting a free slot16Plugging the board into the slot17Closing the PC18SOFTWARE19Board registration20
5 5.1 5.2 5.3 5.4 6 6.1 6.1.1	INSTALLATION OF THE BOARD16Opening the PC16Selecting a free slot16Plugging the board into the slot17Closing the PC18SOFTWARE19Board registration20Installation of a new board20ADDevice Manager21Changing the registration of a board22
5 5.1 5.2 5.3 5.4 6 6.1 6.1.1 6.1.2	INSTALLATION OF THE BOARD16Opening the PC16Selecting a free slot16Plugging the board into the slot17Closing the PC18SOFTWARE19Board registration20Installation of a new board20ADDevice Manager21Changing the registration of a board22Description of the ADDIREG program22
5 5.1 5.2 5.3 5.4 6 6.1 6.1.1 6.1.2 6.2	INSTALLATION OF THE BOARD16Opening the PC16Selecting a free slot16Plugging the board into the slot17Closing the PC18SOFTWARE19Board registration20Installation of a new board20ADDevice Manager21Changing the registration of a board22Description of the ADDIREG program22Questions and software downloads on the web25
5 5.1 5.2 5.3 5.4 6 6.1 6.1.1 6.1.2 6.2 7	INSTALLATION OF THE BOARD16Opening the PC16Selecting a free slot16Plugging the board into the slot17Closing the PC18SOFTWARE19Board registration20Installation of a new board20ADDevice Manager21Changing the registration of a board22Description of the ADDIREG program22Questions and software downloads on the web25CONNECTING TO THE PERIPHERAL26

4

7.3.1 7.3.2	Analog inputs Analog outputs (only APCI-3100, APCI-3106 and APC	
8	FUNCTIONS OF THE BOARD	32
8.1	Block diagram	32
8.2	Analog input	32
8.2.1 8.2.2 8.2.3 8.2.4 1) 2)	Overview – time-multiplex system Voltage ranges Analog input switch (differential inputs) Input modes of the analog inputs Simple mode Scan modes	33 33 35 35
8.3	Analog outputs	38
8.4	TTL inputs and outputs	39
8.5	Timer	40
8.6	Counter	40
8.7	Setting a TTL output	42
9	STANDARDSOFTWARE	43
9.1	Software functions	43
9.2	Software samples	50
10 10.1	APPENDIX	54
10.2	Index	58

Figures

Fig. 3-1: Correct handling	
Fig. 4-1: Required slots	
Fig. 4-2: Component scheme	
Fig. 5-1: PCI-5V slot (32-bit)	
Fig. 5-2: Inserting the board	
Fig. 5-3: Fastening the board at the back cover	
Fig. 6-1: New inserted board	
Fig. 6-2: ADDevice Manager	21
Fig. 6-3: ADDIREG registration program (example)	
Fig. 7-1: 37-pin SUB-D male connector (analog inputs and	outputs)26
Fig. 7-2: 50 pin connector (TTL I/O)	
Fig. 7-3: Connection of the APCI-3xxx to the screw termina	al panels29
Fig. 7-4: Connection to the screw terminal panel and con	nootion
rig. 7-4. Connection to the sciew terminal parter and con	nection
box	
Fig. 7-5: Connection example: Analog inputs	
Fig. 7-5: Connection example: Analog inputs Fig. 7-6: Connection example: Analog outputs	
Fig. 7-5: Connection example: Analog inputs Fig. 7-6: Connection example: Analog outputs Fig. 8-1: Block diagram	
Fig. 7-5: Connection example: Analog inputs Fig. 7-6: Connection example: Analog outputs	
box Fig. 7-5: Connection example: Analog inputs Fig. 7-6: Connection example: Analog outputs Fig. 8-1: Block diagram Fig. 8-2: Time-multiplex system Fig. 8-3: Analog input switch (differential)	
box Fig. 7-5: Connection example: Analog inputs Fig. 7-6: Connection example: Analog outputs Fig. 8-1: Block diagram Fig. 8-2: Time-multiplex system Fig. 8-3: Analog input switch (differential) Fig. 8-4: Reaction time of the analog outputs	30 31 31 32 32 32 34 38
box Fig. 7-5: Connection example: Analog inputs Fig. 7-6: Connection example: Analog outputs Fig. 8-1: Block diagram Fig. 8-2: Time-multiplex system Fig. 8-3: Analog input switch (differential)	30 31 31 32 32 32 34 38
box Fig. 7-5: Connection example: Analog inputs Fig. 7-6: Connection example: Analog outputs Fig. 8-1: Block diagram Fig. 8-2: Time-multiplex system Fig. 8-3: Analog input switch (differential) Fig. 8-4: Reaction time of the analog outputs	30 31 31 32 32 32 34 38 0n)39
box Fig. 7-5: Connection example: Analog inputs Fig. 7-6: Connection example: Analog outputs Fig. 8-1: Block diagram Fig. 8-2: Time-multiplex system Fig. 8-3: Analog input switch (differential) Fig. 8-4: Reaction time of the analog outputs Fig. 8-5: Circuitry of the analog ground lines (voltage version Fig. 8-6: Block diagram of the TTL I/O Fig. 8-7: Run down of the upwards counter	30 31 31 32 32 32 34 34 38 0n)39 39 41
box Fig. 7-5: Connection example: Analog inputs Fig. 7-6: Connection example: Analog outputs Fig. 8-1: Block diagram Fig. 8-2: Time-multiplex system Fig. 8-3: Analog input switch (differential) Fig. 8-4: Reaction time of the analog outputs Fig. 8-5: Circuitry of the analog ground lines (voltage version Fig. 8-6: Block diagram of the TTL I/O	30 31 31 32 32 32 34 34 38 on)39 39 39 41 42

Tables

7
28
39
40
43
50
54

1 DEFINITION OF APPLICATION

1.1 Intended use

The board **APCI-3xxx**¹ must be inserted in a PC with PCI 3.3 V/5V (32-/64-bit) which is used as electrical equipment for measurement, control and laboratory use as defined in the norm IEC 61010-1.

1.2 Usage restrictions

The board **APCI-3xxx** must<u>not</u> to be used as safety related part for securing emergency stop functions.

The board **APCI-3xxx** must <u>not</u> be used in potentially explosive atmospheres.

1.3 General description of the board

Characteristics

The board has up to 16 single ended input channels or up to 8 differential input channels for processing analog signals. The following table shows the most significant characteristics of your board:

	APCI-3000	APCI-3006	APCI-3100	APCI-3106	APCI-3500
Analog inputs: Single ended (SE) or differential (diff.)	Up to 16 (SE) Up to 8 (diff.)	-			
Resolution	12-bit	16-bit	12-bit	16-bit	-
Throughput	100 kHz	100 kHz	100 kHz	100 kHz	-
Analog outputs	-	-	4	4	4
Resolution	-	-	12-bit	12-bit	12-bit
TTL inputs/outputs	24	24	24	24	24
Timer	3 (16-bit)	3(16-bit)	3 (16-bit)	3 (16-bit)	3 (16-bit)
Counter	3	3	3	3	3

¹ Common name for the boards **APCI-3000**, **APCI-3006**, **APCI-3100**, **APCI-3106** und **APCI-3500**.

Connection

Data exchange between the board **APCI-3xxx** board and the peripheral is to occur through a shielded cable. The cable must be connected to the 37-pin SUB-D connector of the board. Furthermore, there is a 50-pin male connector for the connection of the TTL I/O available, which must be connected to the ribbon cable.

The use of the board **APCI-3xxx** in combination with external screw terminal panels is to occur in a closed switch cabinet.

The screw terminal panel **PX 901-AG** allows the connection of the analog signals to the peripheral through the standard cable **ST010**. The analog signals also can be connected through the connection box **PX-BNC**. Through the screw terminal panel **PX 8000**, the standard cable **ST370-16** and the ribbon cable **FB 8001** the digital signals are connected to the peripheral.

The connection of our standard cable **ST010** complies with the following specifications:

- metallized plastic hoods
- shielded cable
- cable shield folded back and firmly screwed to the connector housing

Remarks

The use of the board in a PC could change the PC features regarding noise emission and immunity. Increased noise emission or decreased noise immunity could result in the system not being conform anymore.

Check the shielding capacity of the PC housing and of the cable prior to putting the device into operation.

The use of the board according to its intended purpose includes observing all advises given in this manual and in the safety leaflet.

Uses beyond these specifications are not allowed. The manufacturer is not liable for any damages which would result from the non-observance of this clause.

Make sure that the board remains in its protective blister pack until it is used.

Do not remove or alter the identification numbers of the board. If you do, the guarantee expires.

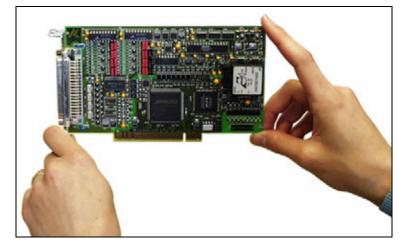
User

2 USER

2.1 Qualification

Only persons trained in electronics are entitled to perform the following works:

- installation
- use
- maintenance


2.2 Personal protection

Consider the country-specific regulations about:

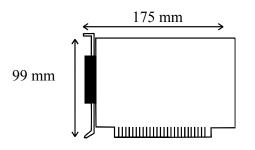
- the prevention of accidents
- electrical and mechanical installations
- radio interference suppression.

3 HANDLING OF THE BOARD

Fig. 3-1: Correct handling

4 TECHNICAL DATA

4.1 Electromagnetic compatibility (EMC)


The board has been subjected to EMC tests in an accredited laboratory. The board complies with the limit values set by the norms IEC61326 as follows:

	True value	Set value
ESD (Discharge by contact/air)	4/8 kV	4/8 kV
Fields	10 V/m	10 V/m
Burst	4 kV	2 kV
Conducted radio interferences	10 V	10 V

4.2 Physical set-up of the board

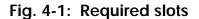
The board is assembled on a 4-layer printed circuit card.

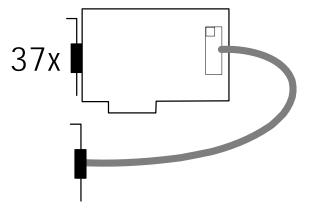
Dimensions:

Weight:	approx. 160 g
Connection to peripheral:	
Front connector:	

Additional connector:

APCI-3000, APCI-3006, AP	'CI-3100 ,
APCI-3106, APCI-3500:	
	TTL I/O


Accessories1:	
For analog I/O:	
Cable:	ST010
Screw terminal panel:	PX 901-AG
or connection box:	PX-BNC
For digital I/O:	
Cables:	FB 8001
	ST370-16
Screw terminal panel:	PX 8000


¹ Not contained in the standard delivery.

4.3 Limit values

Max. altitude:	2000 m
Operating temperature:	0 to 60°C
Relative humidity:	30% to 99% without condensing
Storage temperature:	-25 to 70°C

Minimum PC requirements:: PCI BIOS up from version 1.0	
Bus speed:	≤ 33 MHz
Operating system:	Windows 2000, XP (further
	on request)
Slots:	PCI 5 V or PCI 3.3 V, 32-bit
	+ 1 slot opening for the
	connection of the TTL I/O or
	digital I/O

4.3.1 Analog inputs

Number of channels:16 analog inputsResolution (APCI-3000 and APCI-3100):12-bitResolution (APCI-3006 and APCI-3106):16-bit

Please note that there are no analog inputs are available on the board **APCI-3500**.

4.3.2 Analog outputs

Analog outputs are available on the following boards:

- APCI-3100
- APCI-3106
- APCI-3500

Number of channels:	4 analog outputs
Output type:	Voltage outputs: Single-Ended
Resolution:	12-bit
Output range:	0 to 10 V - LSB (- 10 V -1LSB)
LSB:	4.8824 mV
Precision:	11-bit
Time to ready (tr):	5 μs
Settling time	
(=tr + Settling time of the DAC):	15 μs (at 10 V intervals)
Temperature drift:	max. 10 ppm/°C
Max. output current:	$\pm 5 \text{ mA}$
Short circuit current:	± 20 mA

4.3.3 TTL I/O

Number of I/O channels:	24 (3 ports with each 8 channels)
Туре:	· • /

Logic input level:

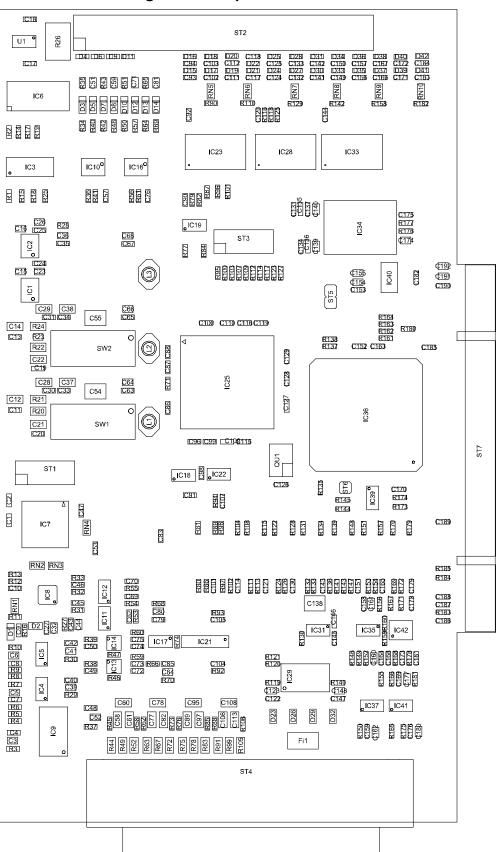
UH (max.):	5.5 V
UH (min.):	2.0 V
UL (max.):	0.8 V
UL (min.):	0 V

Logic output level:

UH (typ.)	3.3 V at $I_{\text{out}} = -100 \ \mu\text{A}$
UH (min.)	2.4 V at $I_{out} = -20 \text{ mA}$

4.3.4 Timer and counter

Timer, interruptible


Number:	.3
Timer depth:	.16-bit
Time base:	.μs, ms, s (programmable)
Input:	.Low/High

¹ Measured with an Agilent function generator type 33220A with connection through the screw terminal panel **PX8000** and the connection cables **ST370-16** and **FB8001**

Counter, interruptible

Number:	3
Counter depth:	16-bit
Reload value:	16-bit (programmable)
Input:	Low/High (programmable)
Output:	Low/High (programmable)
Operation mode:	Mode 2, Mode 3 (programmable)

4.4 Component scheme

Fig. 4-2: Component scheme

5 INSTALLATION OF THE BOARD

IMPORTANT!

Do observe the safety precautions!

5.1 Opening the PC

- ♦ Switch off your PC and all the units connected to the PC
- ♦ Pull the PC mains plug from the socket.
- Open your PC as described in the manual of the PC manufacturer.

5.2 Selecting a free slot

♦ Insert the board into a free slot PCI 5 V or PCI 3.3 V (32-/64-bit).

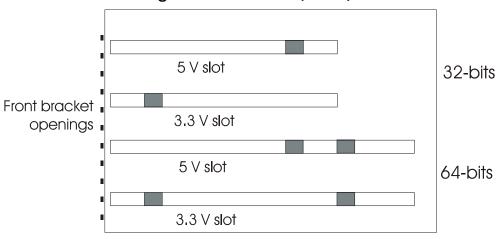
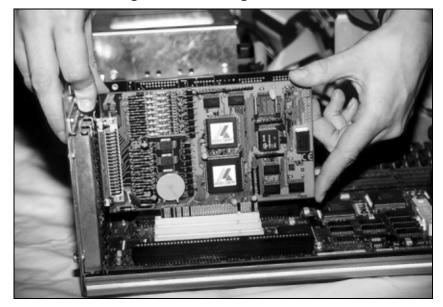


Fig. 5-1: PCI-5V slot (32-bit)


Remove the back cover of the selected slot according to the instructions of the PC manufacturer. Keep the back cover. You will need it if you remove the board

- ♦ Discharge yourself from electrostatic charges.
- ♦ Take the board out of its protective pack.

5.3 Plugging the board into the slot

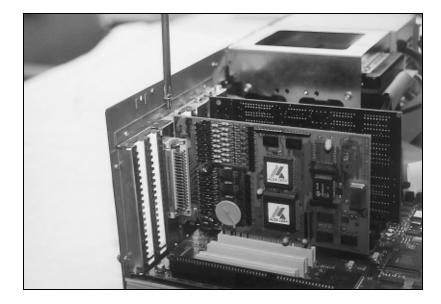

• Insert the board **vertically into the chosen slot**.

Fig. 5-2: Inserting the board

• Fasten the board to the rear of the PC housing with the screw which was fixed on the back cover.

Fig. 5-3: Fastening the board at the back cover

♦ Tighten all the loosen screws.

5.4 Closing the PC

 \blacklozenge Close your PC as described in the manual of the PC manufacturer.

1

6 SOFTWARE

In this chapter you will find a description of the delivered software and its possible applications.

IMPORTANT!

Further information for installing and uninstalling the different drivers is to be found in the delivered description "Installation instructions for the PCI/ISA bus".

A link to the corresponding PDF file is available in the navigation pane (Bookmarks) of Acrobat Reader.

IMPORTANT! The supported software functions for the **APCI-3xxx** are listed in chapter 9.

The board is supplied with a CD-ROM containing the ADDIPACK software package for Windows NT 4.0 and Windows XP/2000/98.

ADDIPACK is composed of following programs:

- **ADDIREG:** The ADDIREG registration program is a 32-bit program for Windows NT 4.0 und Windows XP/2000/98. The user can register all hardware information necessary to operate the ADDI-DATA PC boards.
- **ADDIDRIVER** contains API functions to operate the ADDI-DATA boards in 32-bits.
- **ADDevice Manager** configures the resources of the ADDI-DATA virtual board (see below).

- ADDI-DATA virtual board:

ADDI-DATA software is based on the principle of a virtual board: it transposes the different functions (e.g. digital inputs, analog outputs, timer, ...) of all inserted ADDI-DATA boards as the functions of a <u>single</u> (virtual) board. The virtual board features a pool of functions, the functionality of which can be called up without calling a specific board.

- **ADDEVICE MAPPER** was specifically developed for the ADDIPACK boards to facilitate the management of the virtual board. With this program you can optimally adapt the virtual board to your application requirements.

IMPORTANT!

For some functions of the **ADDEVICE MAPPER** program the browser Internet Explorer 6 or higher has to be installed on your PC.

6.1 Board registration

When starting the set-up of ADDIREG, the **APCI-3xxx** is automatically recognised and registered.

6.1.1 Installation of a new board

If a new board is recognised, the following window is displayed:

Board name	Base address	PCI bus/device/(slot)	Interrupt	-
				_
imber of board : 0				_
sert board list —				
sert board list — Board name	Base address	PCI bus/device/(slot)	Interrupt	ļ
	Base address DC80,D800,DC78, DC70		Interrupt 11	
Board name	DC80,D800,DC78,	bus/device/(slot)	-	
Board name	DC80,D800,DC78,	bus/device/(slot)	-	
Board name	DC80,D800,DC78,	bus/device/(slot)	-	

Fig. 6-1: New inserted board

The boards which have been removed from the PC since the last ADDIREG start are listed in the upper table

The new inserted boards are listed in the lower table.

In case further information is required for the operation of the board, click on "More Information". ADDevice Manager is started.

ADDevice Manager

V : Virtual board R : Real board	Analog output	Timer	Watchdog	Temperature	Counter
APCI3200	No	No	No	V · B	
Soard Index: 0 Slot:67 RQ: 10 Addr 0:DC80 Addr 1:D800 Addr 2:DC78 Addr 3:DC70				Mod. 0 - Mod. 0: Nbr: 4 0 - 0 3 - 3 V - R Mod. 1 - Mod. 1: Nbr: 4 4 - 0	
12				7-3 V - R Mod. 2 - Mod. 2 : Nbr : 4 8 - 0 11-3	
				V - R Mod. 3 - Mod. 3: Nbr: 4 12 - 0 15 - 3	

Fig. 6-2: ADDevice Manager

The following parameters are displayed for every inserted board:

First column:

- Board name
- Board index: Number allocated to the board when it is registered in ADDIREG.
- Slot number
- IRQ line
- Different addresses which are automatically allocated to the board by the BIOS.

Other columns:

The program distinguishes between the resources (Analog/digital input/output, watchdog, ...) of the virtual board (\mathbf{V} , software) and the real board (\mathbf{R} , board).

The following parameters are listed

- Module number,
- Number of resources
- Index: The first index line represents the number of the first resource (left: virtual resource right: real board) The second index line represents the number of the last resource (left: virtual resource right: real board).
- Type (24 V/5 V, voltage/current, HS/OC High-Side/Open collector).
- IRQ: if the input channels are interruptible, the program displays the number of the first and of the last input channel

By clicking twice within a column, the connection principle and the technical data of the resource are displayed. This function is only possible if a question mark appears with the cursor.

You can export the set configuration as a text file. Click on "file" and save the configuration as a .txt file with "Export information to file...". You can then print the configuration or use it for other boards.

Once you have controlled the registration, you can quit the window of ADDevice Manager. The board is ready to operate.

6.1.2 Changing the registration of a board

You can change the current board configuration with ADDIREG

Description of the ADDIREG program

The program is automatically installed with ADDIPACK. Start ADDIREG under Start/Programme/ADDIPACK/ADDIREG.

• **IMPORTANT!** First quit all the

First quit all the applications (programs) which use the board before starting the ADDIREG program.

In the main window of ADDIREG the fields "Insert" and "Clear" are not available for the board.

🦊 ADDI-DATA Gr	ADDI-DATA GmbH registration program. Version 0302 / 0546						
Resource file Syste	minfo <u>A</u> bout						
Board list confi	guration						
Board name	Base addres	Access	PCI bus/device/(slot)	Interrupt	DMA	More infor	nation 🔺
APCI1516	D480,DC78, DC40	32-bit	2/9/3	Not available	Not available	ADDIDriver	board
APCI1710	D800,DC70	32-bit	2/8/2	17	Not available		
							<u> </u>
<u>I</u> nsert			<u>E</u> di				Clear
Board configura		·		MA name:			
Base address	name:	Interrupt name	s: D	MA name:	7	<u>S</u> et	<u>C</u> ancel
Base address	v.	Interrupt :	D V	MA channel	l: V	<u>D</u> efault	<u>M</u> ore information
Access mode:	Y					ADDIDriver b	oard manager

Table:

Board name:

Names of the different registered boards (e.g.: APCI-3200).

Base address:

Selected base address of the board. For PCI boards the base address is allocated through BIOS.

Access:

Selection of the access mode for the ADDI-DATA digital boards. Access in 8-bit or 16-bit or 32-bit mode.

PCI bus/device/(slot):

Number of the used PCI bus, slot, and device. If the board is no PCI board, the message "NO" is displayed.

Interrupt:

Used interrupt of the board. If the board supports no interrupt, the message "Not available" is displayed. For PCI boards the interrupt is allocated through BIOS.

DMA (ISA boards only):

Indicates the selected DMA channel or "Not available" if the board uses no DMA or if the board is no ISA board.

More information:

Additional information like the identifier string or the installed COM interfaces. It also displays whether the board is programmed with ADDIDRIVER or if a **PCI DMA** memory is allocated to the board.

Text boxes:

Base address name:

Description of the used base addresses for the board. Select a name through the pull-down menu. The corresponding address range is displayed in the field below (Base address).

Interrupt name:

Description of the used IRQ lines for the board. Select a name through the pull-down menu. The corresponding interrupt line is displayed in the field below (Interrupt).

DMA name (for ISA boards only):

When the board supports 2 DMA channels, you can select which DMA channel is to be changed.

DMA channel (for ISA boards only):

Selection of the used DMA channel.

Buttons:

<u>E</u>dit:

Selection of the highlighted board with the different parameters set in the text boxes.

<u>S</u>et:

Sets the parametered board configuration. The configuration should be set before you save it.

Cancel:

Reactivates the former parameters of the saved configuration.

Default:

Sets the standard parameters of the board.

More information (not available for the boards with ADDIPACK)

You can change the board specific parameters like the identifier string, the COM number, the operating mode of a communication board, etc... If your board does not support these information, you cannot activate this button.

ADDIDriver Board Manager:

Under Edit/ADDIDriver Board Manager you can check or change the current settings of the board set through the ADDEVICE Manager. ADDevice Manager starts and displays a list of all resources available for the virtual board.

Test registration:

Controls if there is a conflict between the board and other devices installed in the PC. A message indicates the parameter which has generated the conflict. If no conflict has occurred, "Test of device registration OK" is displayed.

Deinstall registration:

Deinstalls the registrations of all boards listed in the table and deletes the entries of the boards in the Windows Registry.

<u>P</u>rint registration:

Prints the registration parameter on your standard printer.

<u>Q</u>uit:

Registration test

Under "Test registration" you can test if the registration is "OK". This test controls if the registration is right and if the board is present. If the test has been successfully completed you can quit the ADDIREG program. The board is initialised with the set parameters and can now be operated. In case the registration data is to be modified, it is necessary to boot your PC again. A message asks you to do so. When it is not necessary you can quit the ADDIREG program and directly begin with your application.

6.2 Questions and software downloads on the web

Do not hesitate to e-mail us your questions. by e-mail: info@addi-data.de or hotline@addi-data.de

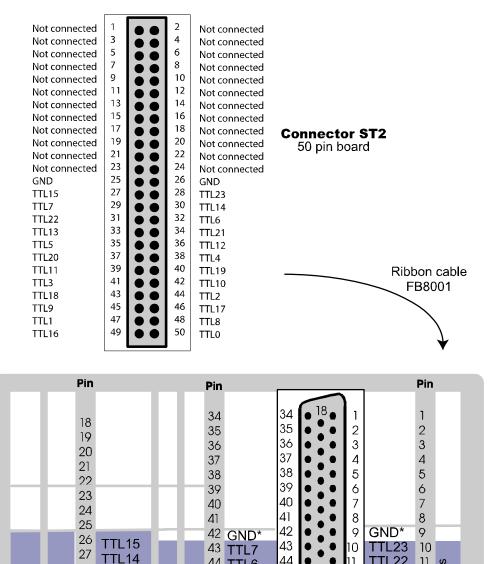
Free downloads of standard software

You can download the latest version of the software for the board APCI-**3xxx**

http://www.addi-data.com

IMPORTANT!
 Before using the board or in case of malfunction during operation, check if there is an update of the product (technical description, driver). The current version can be found on the internet or contact us directly.

25


7 CONNECTING TO THE PERIPHERAL

7.1 Connector pin assignment

Fig. 7-1: 37-pin SUB-D male connector (analog inputs and outputs)

DIFF	SE			SE	DIFF
An. input 0 (+) An. input 1 (+) An. input 2 (+) An. input 3 (+) An. input 3 (-)	An. input 0 An. input 1 An. input 2 An. input 3 An. input 7	20 21 22 23	1 2 3 4 5	An. input 8 An. input 9 An. input 10 An. input 11 An. input 15	An. input 4 (+) An. input 5 (+) An. input 6 (+) An. input 7 (+) An. input 7 (-)
An. input 2 (-) An. input 1 (-) An. input 0 (-)	An. input 6 An. input 5 An. input 4 An. signal GND An. signal GND	24 • • • • • • • • • • • • • • • • • • •	6 7 8 9	An. input 14 An. input 13 An. input 12 An. signal GND An. signal GND	An. input 6 (-) An. input 5 (-) An. input 4 (-)
An. outp An. outp	out 0 GND out 1 GND out 2 GND out 3 GND	30 • • 31 31 • • 32 33 • • 1	11 12 13 14 15	An. signal GND An. ou An. ou An. ou An. ou An. ou	tput 1 tput 2
	An. signal GND An. signal GND An. signal GND An. signal GND	35 • • 1 36 • • 1 37 • •	16 17 18 19	An. signal GND An. signal GND An. signal GND An. signal GND	

Fig. 7-2: 50 pin connector (TTL I/O)

44 TTL22 11 11 44 inputs/outputs TTL6 28 TTL13 45 12 TTL 21 12 45 **TTL** inputs TTL5 29 TTL12 46 46 13 TTL20 13 TTL4 30 Timeror counter inputs selectable 47 TTL11 TTL19 14 14 47 TTL3 31 er or counter e selectable TTL18 48 TTL10 15 48 15 TTL2 rigger outputs 32 TTL17 49 TTL9 49 TTL1 . 16 16 33 E H H H H 50 TTL16 TTL8 17 50 TTL0 . 17 33

*GND refers to all TTL I/O

Front plane of the ribbon cable FB8001 50 pin SUB-D male connector

IMPORTANT!

The numbering of the 50-pin SUB-D connector corresponds to the usual numbering as printed on the connector for the LP mounting. However, on the connector for the connection to a ribbon cable a different numbering is printed as on the connector (corresponds to the numbering of the ribbon cable).

ional)

rect

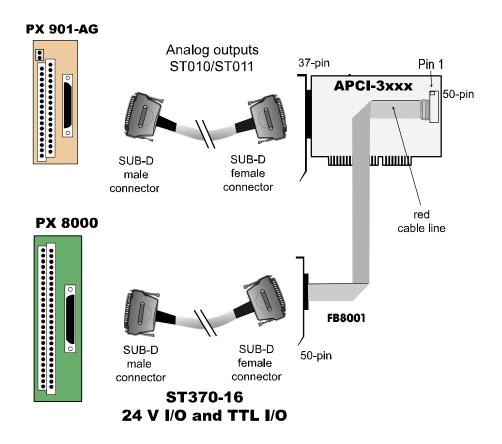

Pin number at the 50 pin connector	Description	Pin number at the front plane of the FB8001 (50 pin SUB-D male connector)
Pins 1-24	Not connected	-
25	TTL channel GND	9
26	TTL channel GND	42
27	TTL channel 15	26
28	TTL channel 23	10
29	TTL channel 7	43
30	TTL channel 14	27
31	TTL channel 22	11
32	TTL channel 6	44
33	TTL channel 13	28
34	TTL channel 21	12
35	TTL channel 5	45
36	TTL channel 12	29
37	TTL channel 20	13
38	TTL channel 4	46
39	TTL channel 11	30
40	TTL channel 19	14
41	TTL channel 3	47
42	TTL channel 10	31
43	TTL channel 18	15
44	TTL channel 2	48
45	TTL channel 9	32
46	TTL channel 17	16
47	TTL channel 1	49
48	TTL channel 8	33
49	TTL channel 16	17
50	TTL channel 0	50

Table 7-1: Connection of the digital inputs/outputs (24 V and TTL)

7.2 Connection to the screw terminal panels

The TTL I/O are connected through the screw terminal panel **PX 8000**. The analog inputs are connected either through the screw terminal panel **PX 901-AG** (see Fig. 7-3) or the connection box **PX-BNC** (see Fig. 7-4).

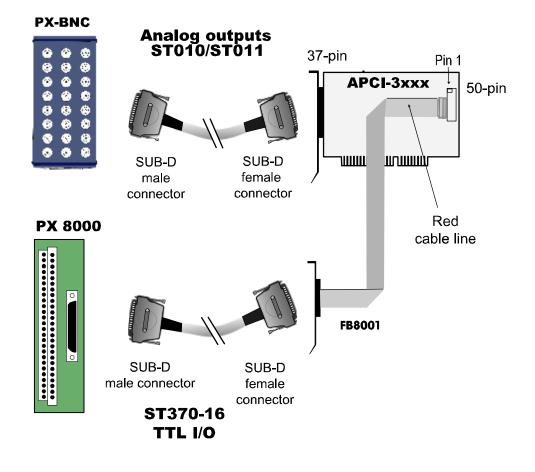
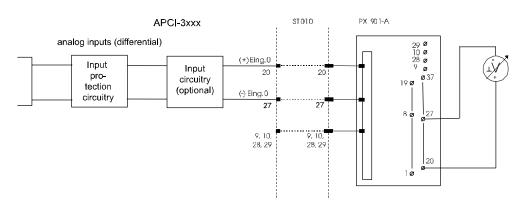

Our technical support will be pleased to answer your questions about our cables and screw terminal panels/boxes.

Fig. 7-3: Connection of the APCI-3xxx to the screw terminal panels

IMPORTANT!

Plug the ribbon cable **FB8001** with the **red cable line on the side of pin 1.**


Fig. 7-4: Connection to the screw terminal panel and connection box

• IMPORTANT!

Plug the ribbon cable **FB8001** with the **red cable line on the side of pin 1**.

7.3 Connection examples

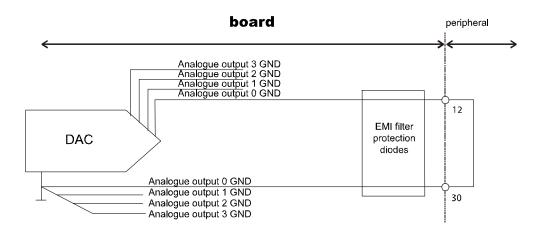
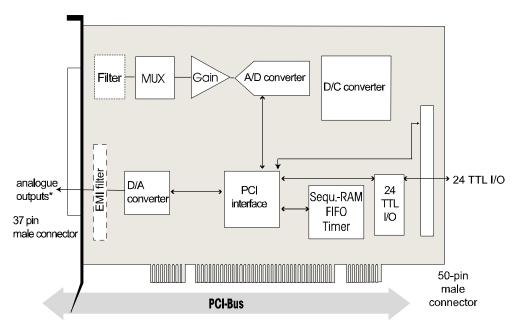

7.3.1 Analog inputs

Fig. 7-5: Connection example: Analog inputs

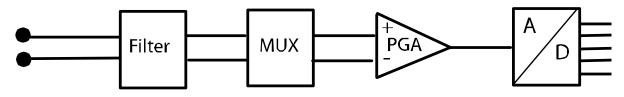
7.3.2 Analog outputs (only APCI-3100, APCI-3106 and APCI-3500)


Fig. 7-6: Connection example: Analog outputs

8 FUNCTIONS OF THE BOARD

8.1 Block diagram

Fig. 8-1: Block diagram


8.2 Analog input

There are 16 analog input channels on the board – the resolution of the **APCI-3000** and **APCI-3100** is 12-bit and of the **APCI-3006** and **APCI-3106** 16-bit (see Table 1-1).

8.2.1 Overview - time-multiplex system

Up to 16 analog Single Ended or up to 8 analog differential signals can be connected to the board.

After the signals are transferred over a filter (RC-component) to a multiplexer (time multiplexed system), they are lead over a programmable instrumental gain to a 16-bit A/D converter (12-bit for **APCI-3000** and **APCI-3100**).

Data acquisition with the **APCI-3xxx** is based on a time-multiplex system. The board is equipped with a single A/D converter to which the channels are led through an analog multiplexer.

By switching from one channel to another, the output capacity of the multiplexer must be reloaded with the new value.

Therefore, a certain delay occurs from the moment the converter switches to a new channel and the moment the A/D converter starts.

This time delay corresponds to the settling time of an end value. This value depends on the resolution of the acquisition. (e.g.: 0.01 % at 12-bit).

The delay time depends on the following factors:

- Settling time of the amplifiers, approx. 3.5 µs (at 20 V interval)
- Maximum voltage bounce from one channel to another
- Source impedance of the sensors

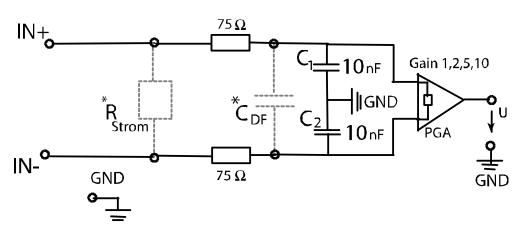
Filter option

Input impdance = $10^{12} \Omega \parallel 5 nF$ (differential input)

You can set this settling time (conversion time) in steps from 1 μ s between 10 μ s and 65535 μ s. This is set by the driver.

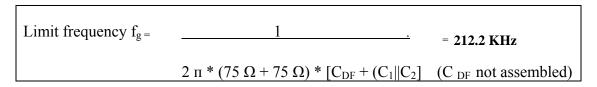
8.2.2 Voltage ranges

The analog input ranges $(0..10 \text{ V}, \pm 10 \text{ V}, 0..5 \text{ V}, \pm 5 \text{ V}, 0..2 \text{ V}, \pm 2 \text{ V}, 0..1 \text{ V}, \pm 1 \text{ V}$ and optional 0-20 mA) and the gain can be configured through software.


This enables to switch different voltages (or rather currents) for different channels and the A/D converter's best resolution.

Please note: During the switching of the voltage range from unipolar to bipolar or from bipolar to unipolar there is a longer settling time of the measuring chain.

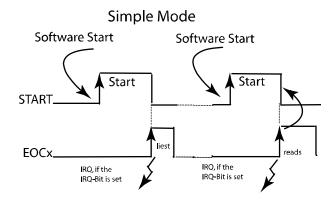
8.2.3 Analog input switch (differential inputs)


The input impedance is the input resistance of the PGA $(10^{12} \Omega)$ and the connected capacities (C₁ and C₂).

Input impedance= $10^{12} \Omega \parallel 5 \text{ nF}$

Fig. 8-3: Analog input switch (differential)

*R $_{Strom}$ = optional component part for the version current *C $_{DF}$ = optional component part for DF filter


8.2.4 Input modes of the analog inputs

16 differential channels are available on the board for the analog inputs. The acquisition can be realized in the following modes1) Simple mode

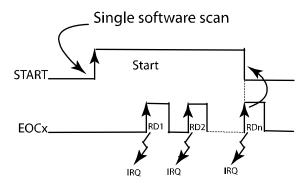
2) Scan mode

1) Simple mode

The software initializes and starts the A/D conversion and after this step it reads the digital value of one or more channels. For more detailed information please refer to the software function "Analog Inputs" in the ADDIPACK manual.

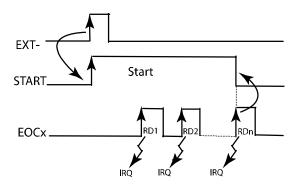
2) Scan modes

There are 6 different scan modes:

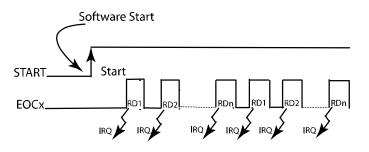

- a) Single software scan
- b) Single hardware triggered scan
- c) Continuous software scan
- d) Continuous software scan with timer delay
- e) Continuous hardware triggered scan
- f) Continuous hardware triggered scan with timer delay

The following section will describe the above mentioned scan modes more detailed:

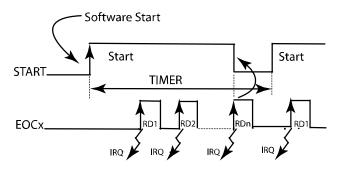
a) Single software scan


The user interrupt routine is called after the last IRQ (=ADDI-DATA driver).

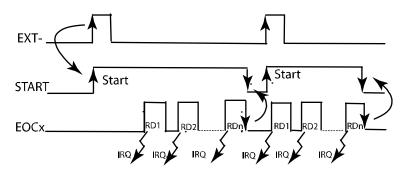
Note: In the scan mode no DMA functionality is used!



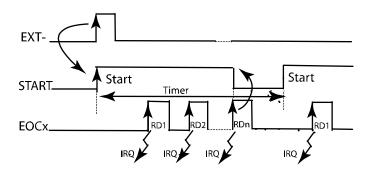
b) Single hardware triggered scan


This scan can be triggered with rising or falling edge (software initializes it).

c) Continuous software scan



d) Continuous software scan with timer delay



e) Continuous hardware triggered scan

Note: In this scan mode the external signal triggers only one scan at a time!

f) Continuous hardware triggered scan with timer delay

8.3 Analog outputs

There are 4 analog output channels with a resolution of 12-bit and a precision of 11-bit on the **APCI-3100**, **APCI-3106** and **APCI-3500**.

The analog outputs are updated by 32-bit writing on the I/O addresses. The status bit (DAC Ready) indicates if the analog outputs are ready for a new update.

The time ("Time to ready"; see Fig. 8-4) between the writing on the I/O addresses (DAC register) and the update of the analog outputs is 5 μ s. Further accesses to the DAC register will not be considered in this period. The time between writing in the software command and reaching the set value for the analog outputs is 15 μ s (settling time).

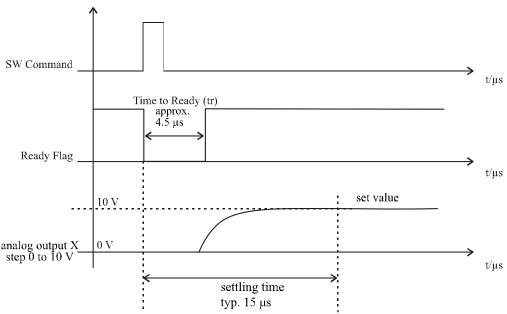
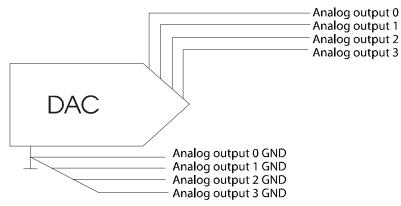
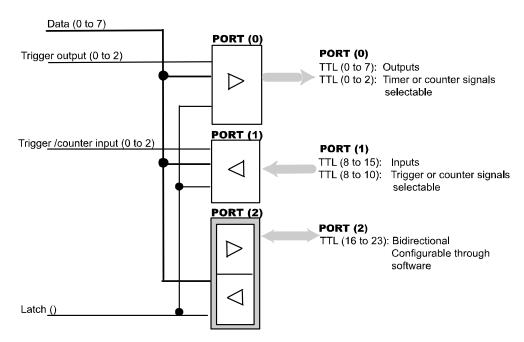



Fig. 8-4: Reaction time of the analog outputs

After the Power-ON reset of the OC the analog outputs are set to voltage value of 0 V.

Switch of the analog ground lines (voltage version)


Fig. 8-5: Circuitry of the analog ground lines (voltage version)

8.4 TTL inputs and outputs

The board **APCI-3xxx** has 24 TTL channels that are divided into three ports:

Port	Description	Channel
Port 0	Output	Channel 0-7
Port 1	Input	Channel 8-15
Port 2	Programmable I/O	Channel 16-23

Allocation to counters/timers/triggers:

As option a part of the TTL I/O can be used for counter, timer and trigger (see table below)

Channel	Description
0 (output)	Timer 0 / Counter 0
1 (output)	Timer 1 / Counter 1
2 (output)	Timer 2 / Counter 2
8 (input)	Counter 0 / Trigger for analog acquisition
9 (input)	Counter 1
10 (input)	Counter 2

Table 8-2: TTL inputs and outputs

8.5 Timer

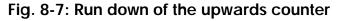
The 16-bit timer is a downwards counter that can generate after the reload value (timeout) an interrupt. With the timer a time base is provided independent from the PC clock, with which for example operations can be synchronized.

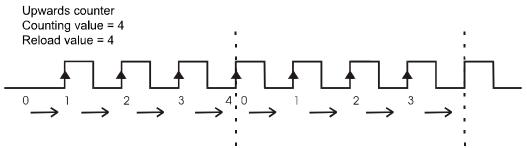
The status of the counter value and of the reload value as well as the status and interrupt register can be read back through software.

The operation states can be read back. As time bases for the timer three different clock signals (μ s, ms, s) can be used.

8.6 Counter

On the **APCI-3xxx** 3 x 16-bit counter inputs are available. Each of these counters can be programmed through software.


The counter inputs are called by the channels 0 to 2. If the counter function is not used, the channels are available as standard digital inputs.


Each counter has the following characteristics:

- 2 counting modes: The counter is programmed as upwards or downwards counter.
- After reaching the reload value or when the counter ran off, an interrupt can be generated.
- Reload value: 16-bit
- Clock: The counter counts at positive or negative edge or with each edge.

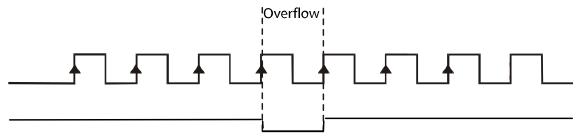
- Trigger function: Sets the counter to its start value 0 in the upwards mode = clear function Reload value in the downwards mode
- Clear function: The counter state is deleted (reload and counting value are set on 0)
- The 3 counters can be initialized, started or stopped simultaneously through synchronous control.
- The status of the inputs 0 to 2 can be read through external clock.

Upwards counter

After reaching the reload value, the counting value is set on 0 and continues to be counted. At an overflow an interrupt can be generated.

Downwards counter

Fig. 8-8: Run down of the downwards counter


In order to get the same counting value as in the upwards mode, the reload value must be set on 3. The counter counts down to 0 and will be reset to the reload value from the next edge cycle on.

8.7 Setting a TTL output

At the run down of the counter/timer/watchdog a TTL output can be set. Here also the output level can be defined. The output will be enabled for an (input) clock.

Fig. 8-9: Example: Setting a TTL output

Example: Output at overflow low active

Allocation to counters/timers:

Counter/Timer 0	=	TTL0
Counter/Timer 1	=	TTL1
Counter/Timer 2	=	TTL2

9 STANDARDSOFTWARE

9.1 Software functions

ADDIPACK supports the following functions for the APCI-3xxx.

Functionality	Function name	
Analog	b_ADDIDATA_GetNumberOfAnalogInputs	
inputs	b_ADDIDATA_GetNumberOfAnalogInputModules	
(APCI-3006,	b_ADDIDATA_GetNumberOfAnalogInputsForTheModule	
APCI-3106)	b_ADDIDATA_GetAnalogInputModuleNumber	
APCI-3106)	b_ADDIDATA_GetAnalogInputModuleGeneralInformation Return: - Resolution: 16-bit - Unipolar/bipolar configurable - Available conversion timing: µs, ms - Conversion resolution: 16-bit - Min. conversion time: 10 µs b_ADDIDATA_GetAnalogInputModuleSingleAcquisitionInformation Return: - - Available interrupt - - Available gains: 1, 2, 5, 10 - No hardware /software trigger available - - No hardware gate - b_ADDIDATA_GetAnalogInputModuleSCANInformation Rückgabe: - - Available gains: 1, 2, 5, 10 - Hardware/software trigger available - - No hardware gate - SingleSCAN cycles mode available - - Continuous SCAN cycles mode available - - Available delay timing: µs, ms - Delay available - - Available delay timing: µs, ms - Delay time resolution: 16-bit b_ADDIDATA_InitAnalogInput Available parameters: - Gain: 1, 2, 5, 10 <td< th=""></td<>	

Functionality		Function name
	- Conversion time unit: μs/n - Conversion time: 10 to	bled/disabled
	b_ADDIDATA_ReadMoreA Available parameters: - Interrupt: - Conversion time unit: - Conversion time:	AnalogInputs Enabled/disabled μs/ms 10 to 65535 for μs 1 to 65535 for ms
	b_ADDIDATA_ConvertDig	gitalToRealAnalogValue
	b_ADDIDATA_ConvertMo	oreDigitalToRealAnalogValues
	b_ADDIDATA_InitAnalogAvailable parameters:- Conversion time unit:- Conversion time:	InputSCANAcquisition μs/ms 10 to 65535 for μs 1 to 65535 for ms
	- Scan mode: - Delay mode: - Delay timing:	single/X cycles/ continuous Not used/Mode1/Mode2 µs/ms
	b_ADDIDATA_StartAnalog	
	b_ADDIDATA_GetAnalog	-
		gitalToRealAnalogValueSCAN
	b_ADDIDATA_StopAnalog	
	b_ADDIDATA_CloseAnalo b_ADDIDATA_EnableDisa Available parameters: - Level: High/Low - Action: SCAN One shot Single cycle x cycles	ableAnalogInputHardwareTrigger
	b_ADDIDATA_GetAnalog	InputHardwareTriggerStatus
	b_ADDIDATA_GetAnalo <i>Return</i> : - Can be used for SCAN - One shot triggermode ava - Single cycle trigger mode - X cycles trigger mode ava	e available

Functionality	Function name	
	b_ADDIDATA_EnableDisableAnalogInputSoftwareTrigger	
	Available parameters:	
	- Action: SCAN One shot	
	Single cycle	
	x cycles	
	b_ADDIDATA_GetAnalogInputSoftwareTriggerStatus	
	b_ADDIDATA_GetNumberOfAnalogInputs	
Analog	b_ADDIDATA_GetNumberOfAnalogInputModules	
inputs	b_ADDIDATA_GetNumberOfAnalogInputsForTheModule	
(APCI-3000,	b_ADDIDATA_GetAnalogInputModuleNumber	
APCI-3100)	b_ADDIDATA_GetAnalogInputModuleGeneralInformation <i>Return</i> :	
	- Resolution: 12-bit - Unipolar/bipolar configurable 12-bit - Available conversion timing: μs, ms - Conversion resolution: 16-bit - Min. conversion time: 10 μs	
	b ADDIDATA GetAnalogInputModuleSingleAcquisitionInformation	
	Return:	
	 Interrupt available Available gains: 1, 2, 5, 10 No hardware /software trigger No hardware gate 	
	b_ADDIDATA_GetAnalogInputModuleSCANInformation <i>Return:</i>	
	 Available gains: 1, 2, 5, 10 Hardware /software trigger available No hardware gate Single SCAN cycle mode available X SCAN cycle mode available Continuous SCAN cyclus mode available Delay available Available delay timing: µs, ms Resolution conversion time: 16-bit b_ADDIDATA_InitAnalogInput Availabe parameters: Gain: 1, 2, 5, 10 Polarity: Unipolar/bipolar Offset range: Not used Coupling DC 	
	b_ADDIDATA_ReleaseAnalogInput	

Functionality	Function name
	b_ADDIDATA_Read1AnalogInput Available parameters: - Interrupt: Enabled/disabled - Conversion time unit: μs/ms - Convert time: 10 to 65535 for μs 1 to 65535 for ms
	b_ADDIDATA_ReadMoreAnalogInputs Available parameters: - Interrupt: Enabled/disabled - Conversion time unit: μs/ms - Convert time: 10 to 65535 for μs 1 to 65535 for ms
	b_ADDIDATA_ConvertDigitalToRealAnalogValue
	b_ADDIDATA_ConvertMoreDigitalToRealAnalogValues
	 b_ADDIDATA_InitAnalogInputSCANAcquisition Available parameters: Conversion time unit: µs/ms Convert time: 10 to 65535 for µs 1 to 65535 for ms Scan mode: Single/X cycles/ continuous Delay mode: Not used/Mode1/Mode2
	- Delay mode: Not used/Mode1/Mode2 - Delay timing: μs/ms
	b_ADDIDATA_StartAnalogInputSCAN
	b_ADDIDATA_GetAnalogInputSCANStatus
	b_ADDIDATA_ConvertDigitalToRealAnalogValueSCAN
	b_ADDIDATA_StopAnalogInputSCAN
	 b_ADDIDATA_CloseAnalogInputSCAN b_ADDIDATA_EnableDisableAnalogInputHardwareTrigger Available parameters: Level: High/Low Action: SCAN One shot Single cycle x cycles
	b_ADDIDATA_GetAnalogInputHardwareTriggerStatus
	 b_ADDIDATA_GetAnalogInputSoftwareTriggerInformation <i>Return</i>: Can be used for SCAN One shot trigger mode available Single cycle trigger mode available X cycle trigger mode available

Functionality	Function name
	b_ADDIDATA_EnableDisableAnalogInputSoftwareTrigger Available parameters: - Action: SCAN One shot Single cycle x cycles
	b_ADDIDATA_GetAnalogInputSoftwareTriggerStatus
Analog	b_ADDIDATA_GetNumberOfAnalogOutputs
outputs (APCI-3100, APCI-3106, APCI-3500)	Rückgabe:- Available voltage modes: 2- Mode 0:Bipolar (12-bit)- Mode 1:Unipolar (11-bit)- No synchronisation available
	b_ADDIDATA_Init1AnalogOutput Available parameters: - Available voltage modes : 2 - Mode 0: Bipolar (12-bit) - Mode 1: Unipolar (11-bit) - No synchronisation available
	 b_ADDIDATA_InitMoreAnalogOutputs Available parameters: Available voltage modes: 2 Mode 0: Bipolar (12-bit) Mode 1: Unipolar (11-bit) No synchronisation available
	b_ADDIDATA_Write1AnalogOutput
	b_ADDIDATA_WriteMoreAnalogOutputs
	b_ADDIDATA_Release1AnalogOutput
	b_ADDIDATA_ReleaseMoreAnalogOutputs b_ADDIDATA_GetAnalogOutputInformation() Synchronisation available for the analog output = No Number of available voltage modes = 2 Voltage mode 0 information:
	Resolution = 12-bit Max. output value = 10 V Polarity selection via hardware = No Polarity selection via software = Yes Unipolar configurable = No Bipolar configurable = Yes
	Voltage mode 1 information:

Functionality	Function name
	Resolution = 11-bit Max. output value = 10 V Polarity selection via hardware = No Polarity selection via software = Yes Unipolar configurable = Yes Bipolar configurable = No
TTL-	b_ADDIDATA_GetNumberOfDigitalOutputs
Outputs (APCI-3000, APCI-3006, APCI-3100,	b_ADDIDATA_GetDigitalOutputInformation <i>Return</i> : Output type: TTL No interrupt available
APCI-3106,	b_ADDIDATA_SetDigitalOutputMemoryOn
APCI-3500)	b_ADDIDATA_SetDigitalOutputMemoryOff
	b_ADDIDATA_Set1DigitalOutputOn
	b_ADDIDATA_Set1DigitalOutputOff
	b_ADDIDATA_Set2DigitalOutputOn
	b_ADDIDATA_Set2DigitalOutputOff
	b_ADDIDATA_Set4DigitalOutputOn
	b_ADDIDATA_Set4DigitalOutputOff
	b_ADDIDATA_Set8DigitalOutputOn
	b_ADDIDATA_Set8DigitalOutputOff
	b_ADDIDATA_Set16DigitalOutputOn
	b_ADDIDATA_Set16DigitalOutputOff
	b_ADDIDATA_Set32DigitalOutputOn
	b_ADDIDATA_Set32DigitalOutputOff
	b_ADDIDATA_Get1DigitalOutputStatus
	b_ADDIDATA_Get2DigitalOutputStatus
	b_ADDIDATA_Get4DigitalOutputStatus
TTL-inputs	b_ADDIDATA_GetNumberOfDigitalInputs
(APCI-3000, APCI-3006,	b_ADDIDATA_GetDigitalInputInformationEx Return:
APCI-3100, APCI-3100, APCI-3106,	Input type : TTL No interrupt available
APCI-3500)	b_ADDIDATA_Read1DigitalInput
	b_ADDIDATA_Read2DigitalInputs

Functionality	Function name	
	b_ADDIDATA_Read4DigitalInputs	
	b_ADDIDATA_Read8DigitalInputs	
	b_ADDIDATA_Read16DigitalInputs	
	b_ADDIDATA_Read32DigitalInputs	
Timer	b_ADDIDATA_GetNumberOfTimers	
(APCI-3000,	b_ADDIDATA_GetTimerInformationEx	
APCI-3006,	Return:	
APCI-3100,	Interrupt available: 16-bit	
APCI-3106,	Time unit available: μ s, ms, s	
APCI-3500)	Output available:High/LowAvailable modes:2 and 3	
AI (1-5500)		
	b_ADDIDATA_InitTimer	
	Available parameters:	
	Interrupt: Enabled or disabled	
	Resolution:16-bitTime unit:us or ms or s	
	Time unit: μ s or ms or s Modes: 2 or 3	
	b_ADDIDATA_EnableDisableTimerInterrupt	
	b_ADDIDATA_StartTimer	
	b_ADDIDATA_StartAllTimers	
	b_ADDIDATA_TriggerTimer	
	b_ADDIDATA_TriggerAllTimers	
	b_ADDIDATA_StopTimer	
	b_ADDIDATA_StopAllTimers	
	b_ADDIDATA_ReleaseTimer	
	b_ADDIDATA_ReadTimerValue	
	b_ADDIDATA_ReadTimerStatus	
	b_ADDIDATA_EnableDisableTimerOutput	
	Available parameters:	
	Action: Low or High	
	b_ADDIDATA_GetTimerHardwareOutputStatus	
	b_ADDIDATA_ReleaseTimer	
	b_ADDIDATA_TestTimerAsynchronousFIFOFull	
Counter	b_ADDIDATA_GetNumberOfCounters	
(APCI-3000,	b_ADDIDATA_GetCounterInformationEx	

Functionality	Function name		
APCI-3006,	Return:		
APCI-3100,	Interrupt available: 16-bit		
APCI-3106,	Output available: High/Low Available counter mode: Up/Down		
APCI-3500)	Available input levels: High/Low		
	b ADDIDATA InitCounter		
	Available parameters:		
	Resolution: 16-bit		
	Input levels: High/Low		
	b_ADDIDATA_SetCounterDirection		
	Available parameters:		
	Counter mode: Up/Down		
	b_ADDIDATA_EnableDisableCounterInterrupt		
	b_ADDIDATA_StartCounter		
	b_ADDIDATA_StartAllCounters		
	b_ADDIDATA_ClearCounter		
	b_ADDIDATA_TriggerCounter		
	b_ADDIDATA_TriggerAllCounters		
	b_ADDIDATA_StopCounter		
	b_ADDIDATA_StopAllCounters		
	b_ADDIDATA_ReleaseCounter		
	b_ADDIDATA_ReadCounterValue		
	b_ADDIDATA_ReadCounterStatus		
	Vorhandene Parameter:		
	Vorhandene Einganglevels: High/Low		
	b_ADDIDATA_GetCounterHardwareOutputStatus		
	b_ADDIDATA_TestCounterAsynchronousFIFOFull		

9.2 Software samples

Table 9-2: Supported software samples

Functionality	Sample number	Description
Analog	SAMPLE00	Displays 1 analog input information
inputs		Reads 1 analog input channel without interrupt
		The user defines the channel he wants to use.

Functionality	Sample number	Description
	SAMPLE02	Reads 1 analog input channel with interrupt. The user defines the channel he wants to use. The user defines the interrupt mode (synchronous, asynchronous)
	SAMPLE03	Reads more analog input channels without interrupt.
	SAMPLE04	Reads more analog input channels with interrupt The user defines the interrupt mode (synchronous, asynchronous)
	SAMPLE07	Initialises the SCAN with interrupt The user defines the external trigger mode and gate mode if these are available. The user defines if he wants to use the delay and enters its value. The user defines the interrupt mode (synchronous, asynchronous)
Digital input	SAMPLE00	Gets the selected digital input channel information.
	SAMPLE01	Reads 1 digital input
	SAMPLE02	Reads 2 digital inputs
	SAMPLE03	Reads 4 digital inputs
	SAMPLE04	Reads 8 digital inputs
	SAMPLE05	Reads 16 digital inputs
	SAMPLE06	Reads 32 digital inputs
Digital outputs	SAMPLE01	Tests 1 digital output with or without Output Memory Option: Gives the status of the digital output, if possible.
	SAMPLE02	Tests 2 digital outputs with or without Ouptut Memory Option. Gives the status of the digital outputs, if possible
	SAMPLE03	Tests 4 digital outputs with or without Output Memory Option. Gives the status of the digital outputs, if possible.
	SAMPLE04	Tests 8 digital outputs with or without Output Memory Option. Gives the status of the digital outputs, if possible.
	SAMPLE05	Tests 16 digital outputs with or without Output Memory Option. Gives the status of the digital outputs, if possible.
	SAMPLE06	Tests 32 digital outputs with or without Output Memory Option. Gives the status of the digital outputs, if possible.
Timer	SAMPLE00	Shows all timer information
	SAMPLE01	Initialisation of 1 timer without interrupt. The user can trigger the timer by key press.

Functionality	Sample number	Description
		The user selects the timer he wants to use.
		The user defines if the HW gate, the HW trigger and the HW output are used.
	SAMPLE02	Initialisation of 1 timer with interrupt. The user can trigger the timer by key press.
		The user selects the timer he wants to use. The user defines if the HW gate, the HW trigger and the HW output are used. The user defines the interrupt mode (asynchronous/synchronous).
	SAMPLE03	Initialisation of all timers without interrupt.
		The user can trigger the timer by key press.
		The user selects the timer he wants to test. The user defines if the HW gate, the HW trigger and the HW output are used.
	SAMPLE04	Initialisation of all timers with interrupt.
		The user can trigger the timer by key press.
		The user selects the timer he wants to test.
		The user defines if the HW gate, the HW trigger and the HW output are used.
		The user defines the interrupt mode (asynchronous/ synchronous).
Counter	SAMPLE00	Shows all counter information
	SAMPLE01	Initialisation of 1 counter without interrupt. The user can trigger the counter by key press. The user selects the counter he wants to test. The user defines if the HW gate, the HW trigger and the HW output are used.
	SAMPLE02	Initialisation of 1 counter with interrupt.
		The user can trigger the counter by key press.
		The user selects the counter he wants to test. The user defines if the HW gate, the HW trigger and the HW output are used.
		The user defines the interrupt mode (asynchronous/synchronous)
	SAMPLE03	Initialisation of all counters without interrupt. The user can trigger the counter by key press.
		The user selects the counter he wants to test. The user defines if the HW gate, the HW trigger and the HW output are used.

Functionality	Sample number	Description
	SAMPLE04	Initialisation of all counters with interrupt. The user can trigger the counter by key press. The user selects the counter he wants to test. The user defines if the HW gate, the HW trigger and the HW output are used. The user defines the interrupt mode (asynchronous / synchronous).
Analog outputs	SAMPLE00 SAMPLE01	Shows 1 analog output informationWrites 1 analog output value without synchronisation (ramp generation).
	SAMPLE02	Writes more analog output values without synchronisation (ramp generation).

10 APPENDIX

10.1 Glossary

Table 10-1: Glossary

Term	Description
A/D converter	=ADC
	An electronic device that produces a digital output directly
	proportional to an analog signal output.
Acquisition	The process by which data is gathered by the computer for
1	analysis or storage.
Analog	Continuous real time phenomena.
Clock	A circuit that generates time and clock pulses for the
	synchronisation of the conversion.
D/A converter	= DAC
	A device that converts digital information into a corresponding
	analog voltage or current.
Data acquisition	Gathering information from sources such as sensors and
1	transducers in an accurate, timely and organized manner.
	Modern systems convert this information to digital data which
	can be stored and processed by a computer.
DC voltage	= Direct current voltage
0	DC voltage means that the voltage is constant respecting the
	time. It will always fluctuate slightly. Especially at switching on
	and switching off the transition behaviour is of high
	significance.
Differential inputs	An analog input with two input terminals, neither of which is
(DIFF)	grounded, whose value is the difference between the two
	terminals.
Disturb signal	Interferences that occur during the transfer caused by reduced
	bandwidth, attenuation, gain, noise, delay time etc.
Driver	A part of the software that is used to control a specific hardware
	device such as a data acquisition board or a printer.
Edge	Logic levels are defined in order to process or show
	information. In binary circuits voltages are used for digital
	units. Only two voltage ranges represent information. These
	ranges are defined with H (High) and L (Low). H represents the
	range that is closer to Plus infinite; the H level is the digital 1. L
	represents the range that is closer to Minus infinite; the L level
	is the digital 0. The rising edge is the transition from the 0-state
	to the 1-state and the falling edge is the transition from the 1-
	state to the 0-state.
FIFO	= First In First Out
	The first data into the buffer is the first data out of the buffer.
Gain	The factor by which an incoming signal is multiplied.
Ground	A common reference point for an electrical system.

Impedance	The reciprocal of admittance. Admittance is the complex ratio of the voltage across divided by the current flowing through a
Inductive loads	 device, circuit element, or network. The voltage over the inductor is U=L.(dI/dt), whereas L is the inductivity and I is the current. If the current is switched on fast, the voltage over the load can become very highly for a short time.
Input impedance	The measured resistance and capacitance between the high and low inputs of a circuit.
Input level	The input level is the logarithmic relation of two electric units of the same type (voltage, current or power) at the signal input of any receive device. The receive device is often a logic level that refers to the input of the switch. The input voltage that corresponds with logic "0" is here between 0 and 15 V, and the one that corresponds with logic "1" is between 17 and 30 V.
Interrupt	A signal to the CPU indicating that the board detected the occurrence of a specified condition or event.
Level	Logic levels are defined in order to process or show information. In binary circuits voltages are used for digital units. Only two voltage ranges represent information. These ranges are defined with H (High) and L (Low). H represents the range that is closer to Plus infinite; the H level is the digital 1. L represents the range that is closer to Minus infinite; the L level is the digital 0. The rising edge is the transition from the 0-state to the 1-state and the falling edge is the transition from the 1- state to the 0-state.
Limit value	Exceeding the limit values, even for just a short time, can lead to the destruction or to a loss of functionality.
MUX	= <i>Multiplexer</i> An array of semiconductor or electromechanical switches with a common output used for selecting one of a number of input signals.
Noise immunity	Noise immunity is the ability of a device to work during an electromagnetic interference without reduced functions.
Noise suppression	The suppression of undesirable electrical interferences to a signal. Sources of noise include the ac power line, motors, generators, transformers, fluorescent lights, CRT displays, computers, electrical storms, welders, radio transmitters, and others.
Operating voltage	The operating voltage is the voltage that occurs during the continuous operation of the device. It may not exceed the continuous limit voltage. Furthermore, any negative operation situations, such as net overvoltages over one minute at switching on the device must be taken in consideration.
Optical isolation	The technique of using an optoelectric transmitter and receiver to transfer data without electrical continuity, to eliminate high- potential differences and transients.
Output voltage	The nominal voltage output reading when shaft is rotated to full range, expressed in volts DC /Vo DC).

Parameter	The parameters of a control comprise all for the control process required numeric values, e.g. for limit values and technological number.
PCI bus	PCI bus is a fast local bus with a clock rate up to 33 MHz. This bus is used for processing a great number of data. The PCI bus is not limited like the ISA and EISA systems.
Protective circuitry	A protective circuitry of the active part is done in order to protect the control electronic. The simplest protective circuitry is the parallel switching of a resistance.
Protective diode	At the input of the integrated MOS (Metal Oxide Semi- Conductor)-circuits used diodes, which operates at the permitted input voltages in the reverse range, but at overvoltage in the transition range and therefore protects the circuits against damage.
Reference voltage	A point to which all further potentials of a series are referred (often ground potential). In the field of control and regulation, all voltages are measured against a reference voltage.
Reference voltage	Reference voltages are stable voltages that are used as reference unit. From them voltages can be derived that are required for example in current supplies and in other electronic circuitries.
Resolution	The smallest significant number to which a measurement can be determined. For example a converter with 12-bit resolution can resolve 1 part in 4096.
Sensor	A device that responds to physical stimuli (heat, light, sound, pressure, motion, etc.) and produces a corresponding electrical output.
Settling time	The time required, after application of a step input signal, for the output voltage to settle and remain within a specified error band around the final value. The settling time of a system includes that of all of the components of the system.
Short circuit	A short circuit of two clamps of an electric switch is when the concerning clamp voltage is zero.
Short circuit current	Short circuit current is the current between tow short-circuited clamps.
Signal delay	The change of a signal affects the following circuitries with finite velocity; the signal will be delayed. Besides the signal delay times that are not wanted, the signal delay can be extended by time switches and delay lines.
Single Ended inputs (SE)	An analog input with one input terminal whose value is measured with respect to a common ground
Synchronous	In hardware, it is an event that occurs in a fixed time relationship to another event. In software, it refers to a function that begins an operation and returns to the calling program only when the operation is complete.
Throughput rate	The maximum repetitive rate at which data conversion system can operate with a specified accuracy. It is determined by summing the various times required for each part of the system and then by taking the inverse of this time.

Timer	The timer allows the adaptation of program processes between processor and peripheral devices. It usually contains from each other independent counters and can be programmed for several operation types over a control word register.
Trigger	 Internal trigger: A software generated event that starts an operation. External trigger: An analog or digital hardware event from an external source that starts an operation. Digital trigger: An event that occurs at a user-selected point on a digital input signal. The polarity and sensitivity of the digital trigger can often be programmed.
TTL	 = transistor-transistor-logic A popular logic circuit family that uses multiple-emitter transistors.
Simple mode	The software initializes and starts the A/D conversion and after this step it reads the digital value of one or more channels.
Scan mode	Scan modes are: Single software scan, single hardware triggered scan, continuous software scan, continuous software scan with timer delay, continuous hardware triggered scan and continuous hardware triggered scan with timer delay.

10.2 Index

A	<u> </u>
Accessories 11	Handling of the board 10
ADDevice Manager 10	
ADDevice Manager 19 ADDEVICE MAPPER 19	I
ADDI-DATA virtual board 19	L
ADDIDRIVER 19	Installation of a new board 20
ADDIPACK 19	Installation of the board 16
ADDIREG Buttons 24	li
Registration program 19	K
Table 23	Karte
Text boxes 23	Einbau 17
ADDIREG registration program 22	
В	L
	Limit vehice 12
Block diagram 32	Limit values 12 analog inputs 12
Board registration 20	Analog outputs 13
J	Counter 14
C	Timer 13
Changing the registration of a board 22	TTL I/O 13
Characteristics 7	
Component scheme 15	P
Connecting to the peripheral 26	PC
Connection example Analog inputs 31	schließen 18
Analog outputs 31	PC requirements 12
Connection to the 29	Physical set-up of the board 11
Connector pin assignment	
37-pin SUB-D male connector 26	R
50-pin connector 27 numbering 27	' <u>'</u> '
humbering 27	Registration test 24
E	Remarks 8
E	S
Electromagnetic compatibility (EMC) 11	3
	Scan mode
F	Continuous hardware triggered scan 37 Continuous software scan 36
Function description	Continuous software scan with timer delay
Analog inputs 32	36
Input modes 35	Single hardware triggered scan 36
Input switch 33	Single software scanes 35 Software 19
Scan modes 35	Standardsoftware
Simple mode 35 Voltage ranges 33	Software functions 43
Analog outputs 38	Software samples 50
Counter 40	
Timer 40	Т
TTL inputs and outputs 39 Functions of the board 32	
runctions of the board 32	Technical data 11
G	· · · · ·
	U
General description of the board 7	Update 25

Use Intended use 7	V
Usage restrictions 7 User	Virtual board 19
Personal protection 9 Qualification 9	