
Rev. 12/022014

www.addi-data.com

POSITIONING AND CONTOURING
CONTROL SYSTEM
APCI-8001, APCI-8008 and
CPCI-8004

Resource Interface

CONTENTS 3

1 Introduction ..5

2 Using the Resource Interface ...6

2.1 Initialisation..6
2.2 Functions of the Resource Interface ...7

3 The SyncMode functionality ...11

3.1 Introduction..11
3.2 Resources of SynchMode ...12
3.3 Use instructions...12

4 Busmaster access to the working memory of the host system..14

5 The GEAR functionality of the APCI-8001 / CPCI-8004 ..15

6 ENDAT-Interface...16

6.1 Introduction..16
6.2 Initialisation of the ENDAT interface ...16
6.3 ENDAT objects and functions ...16
6.4 Note on the use of the Endat-Interface ...18

7 DMA latch with the APCI-8001 / CPCI-8004 ...19

7.1 Notes on the versions..19
7.2 Resources for DMA-RTS handling..20
7.3 The resource RTS_DATABLOCK...20

7.3.1 The Index element of the resource RTS_DATABLOCK ... 21
7.3.2 The SubIndex element of the resource RTS_DATABLOCK... 21
7.3.3 Handling of the resource RTS_DATABLOCK... 21

7.4 Note on the use of DMA-RTS ...22

RESOURCE INTERFACE 5

1 Introduction

The Resource Interface enables you to access internal system variables of the RWMOS operating system
software directly. Furthermore, resources (system variables) can be defined, which can then be recorded
using the scanner function.
The access methods to the resource interface are described in the manual “Universal Object Interface“. To
use the corresponding functionalities, some options are necessary in the RWMOS.ELF operating system
software. The current available options can be found after a booting process in fwsetup.exe.

6 RESOURCE INTERFACE

2 Using the Resource Interface

2.1 Initialisation

Access to the resource interface is only available if the RWMOS.ELF operating system software contains the
option „optionRESOURCE“. Moreover, for access to the PCI area of the PC, the option “optionPCI” has to be
contained in RWMOS.ELF. The following values for the universal object interface must be used when using
the Resource Interface:

Table 1: Object descriptor elements

Object descriptor
element

Value

Handle Must be initialised with 0 when starting the application or
after rebooting the control system, and is then
managed/used by the system.
For PCAP programming: After the resource functionality
is cleaned, the handles for all elements must be reset to
zero.

BusNumber 1000
DeviceNumber 1, 2, ...

Function number according to table 2.
Index 0, 1, ...

Parameters of the respective function, according to table
2.

SubIndex Parameters of the respective function, according to table
2.
Unless otherwise specified = 0

For more information on the object descriptor elements, see the manual “Universal Object Interface”.

Note for PCAP programming:

• When the function Clear is called up, the handles of all option descriptor elements of the resource
interface (BusNumber = 1000) are to be set to 0.
The function Clear must not be called up as long as the resource elements are used (e.g. with the
Scanner functionality)

• Access type r/w means that the relevant variable can be accessed in read-only or write mode. Note
that for each access type, a separate ObjectDescriptor element has to be defined, holding the
access type in question. It is incorrect to use access type “ATAccessInputOutput” (# 3) here.

• To access variable of type ‘float’, the function wrOptionInt or rdOptionInt should be used. The pointer
to the parameter may have to be converted into an integer pointer.

RESOURCE INTERFACE 7

2.2 Functions of the Resource Interface

Table 2: Functions of the Resource Interface

Dev.

No
Name Type Explanation Parameter Index

[Subindex]
0 Clear integer w Delete existing resources.

This write access must be called before defining a
group of resources, e.g. after restarting an application.
The value 1 must be entered as the parameter value
(in value).
For PCAP programming: After calling ‘clear’, the
handles for all object descriptor elements must be
reset to zero.

1
[0]

1 Dp double r desired position - setpoint position Axis number (0, 1, …)
2 Rp double r real position - actual position Axis number (0, 1, …)
3 Axst integer r Axis status register

(see PCAP command rdaxst)
Axis number (0, 1, …)

4 Digi integer r Digital inputs
(see PCAP command rddigi)

Axis number (0, 1, …)

5 Scntr integer r Sample time counter
Counter that is increased by 1 in each scan interval.

0
[0]

6 Digo integer r Digital outputs Axis number (0, 1, …)
7 Poserr double r Position error Axis number (0, 1, …)
8 Trvl double r Trajectory velocity of the current spooler command

Return takes place in the currently selected trajectory
units

Axis number (0, 1, …)

9 Dv double r desired velocity - setpoint velocity Axis number (0, 1, …)
10 Rv double r real velocity - actual velocity Axis number (0, 1, …)
11 Aux double r aux - auxiliary register Axis number (0, 1, …)
12 CI integer r/w Common integer register Index (0, 1, ...999)
13 CD double r/w Common double register Index (0, 1, ...999)
14 Lp double r Latched position Axis number (0, 1, ...)
15 Lpndx double r Index latched position Axis number (0, 1, ...)
16 RefOffset double r/w Point zero shift for G-Code interface Axis number (0, 1, ...)

[Line No.] (0..5)
17 Mirror integer r/w Axis reflection for G-Code interface

1 = Reflection on
0 = Reflection off

Axis number (0, 1, ...)

18 Position
Factor

double r/w Position factor at axis reflection
(Default = -1)
The value 0 is not allowed.

Axis number (0, 1, ...)

19 LookAheadD
eep

integer r/w Depth of the LookAhead calculation when the function
AutoSpool is set in MODEREG (only for SAP
programming)
(Default = 0)
With the value 0, the LookAhead calculation depth is
only limited by the spooler size.

Of no importance

20 DTV[0] double r Desired Trajectory Velocity, programmed value of the
spooler command which is being executed

Of no importance

21 DTV[1] double r Desired Trajectory Velocity, limited value of the
spooler command which is being executed

Of no importance

22 PIR integer r Profile Info Register Of no importance
23 PTP double r Profile Target Position Axis number (0, 1, ...)
24 TaskLineNr integer r Cnc-Task-Line No. Task number (0, 1, 2, 3)

8 RESOURCE INTERFACE

Dev.
No

Name Type Explanation Parameter Index
[Subindex]

26 mcp integer r Motor-Command-Port Axis number (0, 1, ...)
27 Backlash double r/w Backlash compensation (in axis-specific unit,

default value 0)
Axis number (0, 1, ...)

28 MCP_MAX float r/w Maximum value of setpoint value output port (for
servo axes, analog value in digits with prefix - 10V
= 32768 dig.)

Axis number (0, 1, ...)

29 MCP_MIN float r/w Minimum value of setpoint value output port (for
servo axes, analog value in digits with prefix - 10V
= 32768 dig.)

Axis number (0, 1, ...)

30 Actual
Backlash
Value

double r Actual value of backlash compensation (in axis-
specific unit, default value 0)

Axis number (0, 1, ...)

31 PosErrAux double r Position error AUX Axis number (0, 1, ...)
32 PcapIndex integer r Profile index from spooler Axis number (0, 1, ...)
33 PosKorrRot

Axis
double r Accumulated revolutions in rotatory systems Axis number (0, 1, ...)

36 ZP Offset double r Zero Position Offset Axis number (0, 1, ...)
37 DpOffset double r Position offset dpoffset (see PCAP command

wrdpoffset)
Axis number (0, 1, ...)

61 Expand
SampleTime

integer r/w Extension of the controller- sampling time (only at the
options)

Max. value of delay in
microseconds

62 EpmRev
SdiCh0

integer r Rev. No. from U23 to APCI-8001

63 EpmRev
SdiCh1

integer r Rev.No. from U29 to OPMF

64 FAST
PULSE
OUT

integer r/w For special hardware versions only:
Access to these resources allows software to be
used to enable a rapid hardware output (RS422 or
24V Digital Out) via a PCAP or SAP instruction.
(see also section on Scan Trigger Output in the
manual “Scanner Interface”)

Parameters: Bit-coded
value in which the
outputs to be set are
indicated with 1 and the
outputs to be reset with
0.
Each axis is assigned
one bit.

70 TASK
STATUS

integer r Function value that is also returned with the PCAP-
function gettskinfo()

Task number (0, 1, 2, 3)

73 Compen
sation
Position

double r Effective correction value of all axis compensation
tables (ELCAM module) in UserUnit

Axis number (0, 1, ...)

100 ain_CH integer r Analog Input Channel Channel number (0..7)
101 WTLSTRB integer r Wait Latch Strobe

Scanner to wait until Latch Strobe is active. Latch
Strobe may also be reset for a ‘read’; if Latch
Strobe is not set for a ‘read’, Busy (2) is returned.
(see manual “Scanner Interface”)

Channel number (0..7)

200 cp[][] double r/w Controller parameters column 0
e.g. for GEAR (chapter 1)

Axis number (0, 1, …)
[Line] (0..14)

... cp[][] double r/w Controller parameters column 1..13
e.g. for GEAR

Axis number (0, 1, …)
[Line] (0..14)

214 cp[][] double r/w Controller parameters column 14
e.g. for GEAR

Axis number (0, 1, …)
[Line] (0..14)

RESOURCE INTERFACE 9

Dev.
No

Name Type Explanation Parameter Index
[Subindex]

300 HostMem
PhysAdr

integer r/w Physical base address in the host working memory for
busmaster accesses.

[SetNr]
from RWMOS V2.5.3.71
the SetNr must be
entered. In this way up to 8
physical memory
addresses can be
administrated.

301 HostMem
Byte

byte r/w 8-bit access to host working memory via busmaster
access
Base address def. by Device 300

Offset on base address in
byte
[SetNr] (see Dev.No. 300)

302 HostMem
Word

Word r/w 16-bit access to host working memory via busmaster
access
Base address def. by Device 300

Offset on base address in
byte
[SetNr] (see Dev.No. 300)

304 HostMem
Int

integer r/w 32-bit access to host working memory via busmaster
access
Base address def. by Device 300

Offset on base address in
byte
[SetNr] (see Dev.No. 300)

305 HostMem
Float

float r/w 32-bit access to host working memory via busmaster
access (floating-point)
Base address def. by Device 300

Offset on base address
byte
[SetNr] (see Dev.No. 300)

308 HostMem
Double

double r/w 64-bit access to host working memory via busmaster
access (floating point)
Base address def. by Device 300

Offset on base address
byte
[SetNr] (see Dev.No. 300)

310 IsisAxis
PhysAdr

integer r/w Physical base address on host working memory for
busmaster accesses on ISIS axis.

[Axis number]

311 IsisHost
MemByte

byte r/w 8-bit access to host working memory via busmaster
access
Base address def. by Device 300

Offset on base address in
byte
[Axis number]

312 IsisHost
MemWord

Word r/w 16-bit access to host working memory via busmaster
access
Base address def. by Device 310

Offset on base address in
byte
[Axis number]

314 IsisHost
MemInt

integer r/w 32-bit access to host working memory via busmaster
access
Base address def. by Device 310

Offset on base address in
byte
[Axis number]

315 IsisHost
MemFloat

float r/w 32-bit access to host working memory via busmaster
access (floating point)
Base address def. via Device 310

Offset on base address in
byte
[Axis number]

318 IsisHost
MemDouble

double r/w 64-bit access to host working memory via
busmaster access (floating point)
Base address def. by Device 310

Offset on base address in
byte
[Axis number]

320 IsisSensor
Frequency
Factor

integer r/w Relation of the sampling frequency between Isis
sensor and APCI-8001

[Axis number]

321 IsisPos
Norm
Factor

double r/w Norm factor for transfer of desired position to RayDex
systems
Default value linear axes: 20000
Default value rotation axes: 4000

[Axis number]

322 IsisIRQ
Enable

int Interrupt after change of RayDex target position
values on/off

323 HwSync
Strobe

int Switch Sample-Timer-Synchronisation from Latch-
Strobe-Signal to any fast digital input (I14, I15, I16,
etc., bit coded)

3000
...

3100

ENDAT_xxx Function group for the ENDAT interface. A detailed
description can be found in chapter 6.

7000 SyncMode Function group for profile synchronisation
(see chapter 3)

10 RESOURCE INTERFACE

This list can be extended user-specifically. The driver level remains unchanged in customized extensions.
Only the RWMOS.ELF operating system file must be updated.

RESOURCE INTERFACE 11

3 The SyncMode functionality

3.1 Introduction

Using the SyncMode functionality, it is possible to track a traverse profile of a reference variable ("flying
cutter"). The reference variable may be obtained by an axis which has a lower index than the tracked index.
From RWMOS.ELF V2.5.3.99, this option is contained in the option “optionRESOURCE”; in earlier versions,
“optionFS” was still required.
This functionality is used if the traverse movement of an axis is to be synchronised with another axis, so that
e.g. a cutting tool can track a workpiece which is moving. The axis that guides the cutting tool is below
referred to as “slave axis” or “tracked axis”. The movement of the workpiece is controlled with the "master
axis" or is determined with a position measurement system. The parameters described below are always
programmed with the slave axis. As soon as the tracking parameters are programmed, a traverse profile can
be loaded on the slave axis. This may be, e.g. a Jog command, but also a spooled traverse cycle consisting
of multiple traverse commands. When the trigger position is reached, the execution of the traverse profile of
the slave axis starts. This profile is synchronised with the master value, which means that in case of a
synchronisation with the actual position, also the movement of the slave axis is stopped if the master axis
blocks.
When the traverse cycle of the slave axis is finished, the tracking mode is cancelled, too. Afterwards, the
slave axis can be normally traversed again. For example, it can be reset to the starting position for the next
cycle.

Table 3: Initialisations for SyncMode

Object descriptor
element

Value

Handle see above
BusNumber 1000
DeviceNumber 7000
Index respective function according to Table 4
SubIndex Parameter for any function according to Table 4

if nothing else is entered = 0

12 RESOURCE INTERFACE

3.2 Resources of SynchMode

Table 4: Functions of SyncMode

Index Name Type Explanation Subindex
1 SYNCMO

DE
integer r/w State of the synchronisations operating

mode
0 = Idle
1 = Activate position tracking

Axis number (0, 1, ...)

2 MASTER
AXIS

integer r/w Index of the der reference axis
(master axis)

Axis number (0, 1, ...)

3 SYNC
SOURCE

integer w Indicates the reference variable
0 = dp
1 = rp
2 = aux

Axis number (0, 1, ...)

4 START
POSITIO
N

double r/w Start position of the reference axis in the
user unit

Axis number (0, 1, ...)

5 POSITIO
N
OFFSET

double r/w Position offset of the reference axis in the
user unit

Axis number (0, 1, ...)

6 MASTER
VELOCIT
Y

double r/w Setpoint velocity of the reference axis in the
user unit

Axis number (0, 1, ...)

7 GEAR
FACTOR

double r/w Conversion factor of the user unit in Counts
/ UserUnit (e.g. mm)
Must be written on by the user in case of
tracking on aux.

Axis number (0, 1, ...)

8 AUX
FACTOR

double r/w Conversion factor of Counts of the Aux-
channel in Counts / of the tracking channel
Must be written on by the user in case of
tracking on aux (default 1.0).
digits AX = digits AUX * AUXFACTOR

Axis number (0, 1, ...)

3.3 Use instructions

First the position control loop of the slave axis must be closed. Then the values of MasterAxis, SyncSource,
StartPosition, PositionOffset and MasterVelocity have to be initialised. MasterVelocity is the desired setpoint
velocity of the master axis. StartPosition is the position of the master axis where tracking starts. This position
can be shifted with PositionOffset to allow for a path for the acceleration phase. Thus it is possible that the
axes are already moving synchronously when the StartPosition is reached.
If the master axis is to be traversed in the negative direction, a negative value must then be entered in
MasterVelocity. StartPosition and PositionOffset also have to be defined by the sign regarding to the traverse
direction of the master axis. Tracking is then activated by writing 1 to the variable SyncMode. Afterwards, a
traverse profile can be entered in the tracking axis.
If the axes are to be synchronously traversed in one point, the trajectory velocity of the slave axis must be as
high as the MasterVelocity. To ensure the synchronisation to the given start position of the master axis, the
path which is covered by the master axis during the acceleration phase of the slave axis has to be entered
with a negative sign in PositionOffset.

 VSlave

2 * MasterVelocity
PositionOffset =
 2 * ASlave

RESOURCE INTERFACE 13

In case of tracking on the system variable aux (encoder position with stepper motor axes), the conversion
factor must be entered by the user to the user unit in AuxFactor. The unit of this conversion factor is Counts /
UserUnit.
The master axis can then be started. During tracking, further traverse commands can be sent to the slave
axis. When the profile of the slave axis is finished, the tracking mode is automatically deactivated. However,
this mode can also be cancelled early by writing 0 to the variable SyncMode. After that, the slave axis can be
normally used again.

14 RESOURCE INTERFACE

4 Busmaster access to the working memory of the host
system

The functions 300 to 308 allow the direct reading and writing access to the PC working memory. Required is
a RWMOS operating software with the options optionRESOURCE and optionPCI from operating system
version 2.5.3.13 on. Firstly, the control must be informed about the base address for the accesses. This
address can be written with the function 300. The address indication must be a physical buffer address.
Note: No virtual buffer address, which normally is used in programs, may be used!

A respecting memory range can be allocated e.g. with the following DLL-function:

 unsigned allocPhysMem (void **VirtualAdr, unsigned *PhysAdr, unsigned size);

It must be tasted in any case the success of this function call. If there was an error, a value ≠ 0 will be
returned. Memory, which was allocated in this manner, must be released before closing the application with
the following DLL function:

 unsigned freePhysMem (void *VirtualAdr);

These functions are realised in mcug3.dll from version 2.5.3.10 on.

Caution: If this functions is not used correctly, the PC system can be brought easily into a uncontrolled
condition.

RESOURCE INTERFACE 15

5 The GEAR functionality of the APCI-8001 / CPCI-8004

Using the GEAR functionality, it is possible to implement an electronic gear function. Here, one or more axes
act as the MASTER axis for a slave axis. The gear factor must be entered in the Controller Params field (see
PCAP command scp, Programming Manual) of the SLAVE axis in the line that corresponds to the respective
MASTER axis (always in column 0). In closed control loops, the track mode is activated by setting the gcr
variable (gear control register) for the MASTER axis (or axes): 1 corresponds to setpoint value tracking, 2
corresponds to actual value tracking. This function can be used for example for gantry axes. The user can
check if this option is available when the abbreviation "GEAR" is displayed in fwsetup. For this, see also the
PCAP commands scp and wrGCR / rdGCR.
When the master axis is traversed, the slave axis then follows with the set gear factor. Here, a difference
between the setpoint value (dp) and the actual value (rp) is generated on the slave axis. This difference is
below referred to as "internal past value" and generated or calculated by gear tracking.

Important notes:

• For axes that are tracked to the actual position, the quantisation noises of the actual value position
may be increased by a pilot control in such a way that the tracked axis (slave axis) becomes
unsteady (rough run). In this case, the pilot control of the slave axis must be reduced accordingly.

• By writing –1 at the gcr variable, the internal past values of the GEAR tracking will be deleted. This
value must only be written if the control loops for all SLAVE axes are opened, as these will otherwise
skip a position. Moreover, tracking must be switched off on the master axis/axes (gcr = 0) to write
the value –1.

• By opening a control loop, the gcr value of the corresponding axis is reset to zero for setpoint value
tracking.

• If setpoint value tracking must be enabled by setting the gcr register of the MASTER axis to 1, the
control loop of the MASTER axis must be first be closed. To avoid position skips, the control loop of
the SLAVE axis must also be closed.

• A dynamic modification of the gear factor is not allowed.

Caution: Please operate very carefully with gantry axes. You can easily damage the machine. Please note
the following points:

• Do not perform motion processes from mcfg without activated tracking, and accordingly, no open-
loop motion processes on the slave axes

• Each time the application is to be started, check the controller against any configuration errors. If a
direction inversion is set wrong for example, because the controller has been exchanged and not
configured correctly, the machine can be damaged at the first motion.

• Cabling, ground and shield connections must be done very carefully and according to the current
regulations in electronics.

• Limit switch and reference switch concept must be perfect.
• Error sources must be carefully monitored in the application program; especially position errors must

be continuously controlled.
• Before operating the gantry axes, the reliability of the drives must be controlled in a long-time test.
• By operating / parameterising the gantry axes, the motors must be separated from the machine.
• Be cautious when other axes are to be parameterised. A gantry axis can be accidentally switched

through wrong selection of an axis. For the gantry axes, avoid traversing by taking off the enable
signal.

• Do not modify parameters subsequently.
• Traverse movements must under no circumstance be executed with the SLAVE axis.
• Check the application software very carefully, particularly the initialisation and handling of gear

tracking.

16 RESOURCE INTERFACE

6 ENDAT-Interface

6.1 Introduction

The ENDAT-Interface of the company HEIDENHAIN is a digital, bidirectional interface for measurement
devices. This interface can give position values of incremental and absolute measurement devices and can
also read out and update information that is saved in the measurement device or store new information.

Four signal lines are sufficient because of the serial data transfer. The data is transferred synchronously to
clock signal that is given by the sequence-electronic (in this case APCI-8001 / CPCI-8004). The selection of
the transfer manner (position values, parameter, diagnosis, etc.) occurs with mode commands, that are sent
by the sequence-electronic (APCI-8001 / CPCI-8004) to the measurement device. Currently, the Endat
versions 2.1 and 2.2 are supported.

The functionality of the ENDAT-interface is realised in the loadable FPGA-logic of the APCI-8001 / CPCI-
8004 control and gives the user an additional hardware option. This implementation method has the
advantage that the interface is handled nearly without any additional on-load of the control software and in
hard real time.

6.2 Initialisation of the ENDAT interface

When starting the rwmos.elf operating system software or after a software reset rs() the drive axes, which
were projected with ENDAT-interfaces are set nearly automatically on the specific connected encoder type.
Hereto the paramterers of the encoder type, e.g. incremental or rotatory measurmement system, resolution
of the measurement system, the resolution of the measurement system (number of databits for the absolute
position value) and the measurement steps or measurement steps/turn are read out.
This procedure allows a nearly automatic setup of the ENDAT-interface, independently of the used encoder
type.

6.3 ENDAT objects and functions

The ENDAT-interface is shown in the resource interface of the RWMOS.ELF operating system software and
in parts of the FPGA hardware logic and contains all important software and hardware functions for the
complete use and operation of the customary ENDAT-encoder.
The ENDAT-functionality is only available when the option “optionENDAT” is contained in the operating
system software. Furthermore, this option is only possible if the used hardware is adjusted for each case and
if the necessary environmental variables
Furthermore, this option is only possible if the used hardware is adjusted for each case and if the necessary
environmental variables are set for the corresponding axes (MT? = 11 for 2.1 and MT? = 16 for 2.2). For
more detailed information about the environmental variables, see the commissioning manual.

The functions that are necessary for the operation of the interface are listed in the following table.

For more detailed information please refer to the document “Bidirectional synchronuous serial interface for
position measurement systems”.

RESOURCE INTERFACE 17

Table 5: ENDAT functions in the G3 resosurce interface

Dev.
No.

Name

Type

Description

Parameter Index
[Subindex]

3000 ENDAT_TPV integer r ENDAT transmit position value,
or: measurement system send absolute position
value. Hereto APCI-8001 / CPCI-8004 sends the
mode command “000111”.
According to the ENDAT encoder type the position
value is available after max 1 mx.
At data transdfer the CRC and timeout errors are
monitored.
Additionally, the alarm flag is updated in the alarm
register. The position value (return value) is
indicated as complete data word, whose length
depends on the resolution of the measurement
system.

Axis number (0, 1, ...)

3001 ENDAT_SMA integer w ENDAT selection of memory area,
or: Selection of the storage range. Hereto APCI-
8001 / CPCI-8004 sends the mode command
“00110”.
Before the transfer of parameters, the respecting
storage range and the following MRS (Memory
Range Select) code are determined. The possible
storage ranges are indicated in the parameters of
manufacturer of the measurement device.

Axis number (0, 1, ...)

3002 ENDAT_TP integer r ENDAT transmit parameter,
or: Read parameter. After the selectionof the
storage range (see ENDAT_SMA), APCI-8001 /
CPCI-8004 sends a complete transfer protocol,
beginning with mode command read parameter
„100011“, followed by 8 bit address and 16 bit of
any contents (0). The measurement device
answers with the repition of the address (will not be
evaluated) and a data information of 16 bit, the
contents of the parameter. The CRC check is the
conclusion of the transfer cyclus.

Axis number (0, 1, ...)
[Address]

3003 ENDAT_RP integer w ENDAT receive parameter,
or: Write parameter. After the storage range
selection (see ENDAT_SMA), APCI-8001 / CPCI-
8004 sends a complete transfer protocol,
beginning with the mode command write
parameter “011100”, followed by 8 bit address
and 16 bit parameter value. The measurement
device answers with the repititon of the address
(will not be evaluated) and the parameter
contents. AT the end there is the CRC check.

Axis number (0, 1, ...)
[Address]

18 RESOURCE INTERFACE

Dev.
No.

Name

Type

Description

Parameter Index
[Subindex]

3004 ENDAT_RR integer w ENDAT receive reset,
Or: send reset. The command begins with the mode
command parameter send reset “101010”, followed
by 24 data bits with value 0. The commands allows
the resetting of the measurement device at error
functions or storage operations.
This function may be called only if the control loop of
the corresponding axis is opened. Otherwise, the
value 80 hex (STATE_ERR) is returned.

Axis number (0, 1, ...)

3010 ENDAT_RA integer r ENDAT read alarm bit
This read register is an internal status flag, which is
updated by the command ENDAT_TPV. It is a
collective message. The cause for the alarm can be
read out from the memory of the measurement
system.

Axis number (0, 1, ...)

3011 ENDAT_CRC
ERRS

integer r/w ENDAT crc errors
This register contains the sum of all detected CRC
errors that are occurred during data transfer. The
register can be deleted at any time by writing the
value 0.

Axis number (0, 1, ...)

3012 ENDAT_TOE
RRS

integer r/w ENDAT timeout errors
This register contains the sum of all detected time out
error that are occured during data transfer. The
register can be deleted at any time by writing the
vaule 0.

Axis number (0, 1, ...)

3013 ENDAT_BUS
ERR

integer r/w ENDAT gobal buserror register
This register contains the last detected error that is
occured during data transfer. The register can be
deleted at any time by writing the value 0. Internally,
this register is also used for generating of an
“EVENDAT”SAP event.

Axis number (0, 1, ...)

6.4 Note on the use of the Endat-Interface

The return values of the accesses to the resource interface via PCAP programming (rdOptionInt,
rdOptionDbl, wrOptionInt, wrOptionDbl) must be monitored. At the return value BUSY (2) it is necessary to
repeat the calling until the value OK (4) is returned. It is normal that there must be several calls at the Endat-
Interface, because here internal system states of the Endat system must be taken into consideration and
must be waited. If a value different from BUSY or OK is returned, there is an error that must be treated
separately.

RESOURCE INTERFACE 19

7 DMA latch with the APCI-8001 / CPCI-8004

With the DMA latch operating mode of the APCI-8001 / CPCI-8004 it is possible to record position data
synchronously with the external trigger signal by DMA access. This can be realized with a frequency that is
significantly higher than the sampling frequency of the bearing controller (up to 30 kHz). In the following this
module is named as DMA-RTS (DMA-Real-Time-Scan). The external trigger signal is led to the first axis of
the system via the hardware latch strobe input. The positions latched through the hardware latch strobe are
recorded.
The DMA-RTS module is operated via the resource interface. For this resource numbers from 8000 dez. and
higher are foreseen. In order to access to the recorded position data (via the scanner module) the new data
type ATDataBlock is available. The data type ATDataBlock has the ordinal number 6. The data type
ATDataBlock only can be used if the updated programming language interfaces (mcug3.h, mcug3.bas,
mcug3.pas – according to the used programming language) are used.
The DMA latch option can only be used for incremental encoder set value signals. This method cannot be
applied for stepper signals or SSI absolute encoders.

7.1 Notes on the versions

To be able to use the DMA-RTS functionality, RWMOS.ELF must be equipped with the option
optionDMARTS. This version is available from V2.5.3.66 or higher.
A DMA-RTS is only possible with the hardware versions of the APCI-8001 / CPCI-8004 that have the option
EP1K50. This is not possible with the version EP1K30. The available version is showed in fwsetup during
booting of the system.
To use a resource with the data type ATDataBlock in the SAP programming, mcfg must be used from
version V2.5.3.59 or higher or ncc.exe (or ncc.dll).
Further improvements have been made in RWMOS.ELF from V2.5.3.75.

20 RESOURCE INTERFACE

7.2 Resources for DMA-RTS handling

List of device numbers for DMA-RTS handling

Dev.
No.

Name

Type

Description

Parameter Index
[Subindex]

8000 RTS_Stop integer w Stop RTS-DMA module. After the
measurement value acquisition the
DMA module can be stopped. In this
way on the recognition of the latch
signal no data are recorded anymore.

Of no importance

8001 RTS_Init integer w Initialise and start RTS-DMA module.
By calling this function on the
recognition of a hardware latch strobe
position data are recorded. This
function must be called before the
measurement value acquisition, i.e.
directly before the scanner starts.

Of no importance

8010 RTS_DIAG integer r Output diagnostics display in the
diagnostics display.
Return value BUSY if no data are
available
(only for diagnostic purposes)

8011 LPR_RTS short int r Reading of a latch register (16-bit)
directly from the counter component

Axis [0, 1, .., 7]

8012 STROBE
RTS

short int r Reading of the latch strobes (bit
codes) of all axes
(only for diagnostic purposes)

8013 RTS_DATA
BLOCK

datablock r Scan resource
Description see below

Number of axes [0..15] +
Axes bit coded [16..31]
[Max. number of data
records]

7.3 The resource RTS_DATABLOCK

To record the position data recorded by DMA with the scanner module, as scan object the resource
RTS_DATABLOCK is used. The programming of the scanner is realised in analog mode, for example when
scanning a position value.
However, the particularity of this resource is the design of the recorded data block that represents a data
structure (Record). This data structure is structured as follows:

integer
Number

integer
Status

integer
Reserved

integer
Reserved

Line 0: double
Position value axis 1

double
Position value axis 2

double
...

Double
Position value axis on

Line 1: double
Position value axis 1

double
Position value axis 2

double
...

Double
Position value axis on

....
Line zn: double
Position value axis 1

double
Position value axis 2

double
...

Double
Position value axis on

RESOURCE INTERFACE 21

The size of a data block in a scan is always fix. The number of columns of this data structure (an) is indicated
in the Object-Descriptor-Element Index in low-value 16-bit. The number of lines (zn) is indicated in the
Object-Descriptor-Element SubIndex. The contents of Index and SubIndex is described below in detail.
The number of lines that contain valid data can vary from scan element to scan element and is always
indicated in the first element “number” of the data structure. For each active edge at the latch-input a data
line is recorded during a sampling interval.
The second element in the data block „Status“ shows in bit 2 (4 hex) a possible data overflow. This is the
case if not all recorded data can be entered in the above described data block. If this bit is set you may
assume that DMA scan data records will get lost because the input frequency at the latch strobe input was
too high or because the RTS DMA module was started earlier than the scanner.

7.3.1 The Index element of the resource RTS_DATABLOCK

In this element information about the axis to be recorded is indicated. In the least significant 16-bit the
number of axes to be recorded is to be entered as numeric value (max. 8). This number indicates alsow the
number of colums (an) in the above described data record. In the more significant 16-bit of Index the axes to
be recorded are specified bit coded (bit 0=1. axis; bit 1 = 2.axis; etc.).
If here are less axes than indicated in the axis number, the axes are recorded upt to the indicated number.

Element Index: 32-bit
MSB 16-bit
Axes bit coded

LSB 16-bit
Axes number

7.3.2 The SubIndex element of the resource RTS_DATABLOCK

In the Subindex element the number of lines with position data in the data structure described above is
indicated (max. 128). The number of actually described lines in RWMOS.ELF is shown in the first element of
the data structure “number”.
Through the entered values in Index and SubIndex the size of the scan data record is specified significanty.
In order to avoid unnecessary memory space in the scanner data record and unnecessary data transfer,
these values should be set only as high as necessary.

7.3.3 Handling of the resource RTS_DATABLOCK

Before the use of this resource as scan object, there must be also a read process. To do this, the resource
must be treated like a 32-bit whole number object, i.e. the read process is done in the PCAP programming
with the function rdOptionInt. In the Value parameter of this function is indicated if already data was
recorded. If the RTS-DMA module has not been initialised (Ressource # 8001 - RTS_Init), the return value
of the functions = BUSY (2). This return value is a permitted case and must not be treated like an error.
However, before the scan there must be an allocation to RTS_init.
If during the reading process, the value 8 is returned, the hardware version of the controller is not suitable for
DMA-RTS.
The handle of the resource RTS_DATABLOCk that was received during the reading, can be used as scan
resource.

22 RESOURCE INTERFACE

7.4 Note on the use of DMA-RTS

The record of data and the transfer of recorded real-time data into the scanner requires computing time in
the real-time task of RWMOS.ELF. Therefore the sampling time should be not set under the default value of
1.28 ms. See also CM commissioning manual, keyword “Sample Time”.

The use of the module DMA-RTS is realised according to the following procedure:

• Initialisation and read access to the resource RTS_DMABLOCK
• Initialisation of the scanner using the resource RTS_DMABLOCK
• Write access to resource RTS_Init: thereby the DMA channel is initialised and activated
• Realise a scan with scanner module (as usual)
• Write access to the resource RTS_Stop. Thereby the DMA cycle is stopped

	6 ENDAT-Interface
	7 DMA latch with the APCI-8001 / CPCI-8004
	7.3.1 The Index element of the resource RTS_DATABLOCK
	7.3.2 The SubIndex element of the resource RTS_DATABLOCK
	7.3.3 Handling of the resource RTS_DATABLOCK

