
Rev. 7/022014

www.addi-data.com

POSITIONING AND TRACK CONTROL
SYSTEM
APCI-8001, APCI-8008 AND
CPCI-8004

NCC.DLL

CONTENTS 2

1 Introduction ..3

2 Using NCC.DLL ..3

3 Scope of delivery ...3

4 Functions in NCC.DLL...4

4.1 CncCompile – compile G-code file...4
4.2 CncSyntaxCheck – Syntax check at G-code file ...4
4.3 DefIpolAxis – Define default interpolation axis ..4
4.4 GetErrFileName – get file name in case of error ...5
4.5 GetErrLine – get error line ...5
4.6 GetErrNum – query number of compilation errors...5
4.7 GetErrText – get error text ...6
4.8 GetSymAxisName – Determine symbolic axis name ..6
4.9 SapCompile – compile rw_SymPas file ...6
4.10 SapSyntaxCheck – Syntax check at rw_SymPas file ..7
4.11 SetCaseInsensitive - Differentiation capitalization/lower case printing on/off7
4.12 SetCncFileName..7
4.13 SetPostIncFileName ..7
4.14 SetPreIncFileName..8
4.15 SetSystemDatName – set system file ...8
4.16 SetTaskNum – set task number...8
4.17 SetTrac – set default track acceleration ..9
4.18 SetTrvl – set default track speed ...9
4.19 SetUnits – set default travel and time unit ...9
4.20 SetUserSpecCode – set user-specific code ..9
4.21 UseLineNumbers – line numbering on / off ...9

NCC COMPILER PER DLL 3

1 Introduction

The NCC compiler for compiling SAP programs for the PA 8000, PS 840 and APCI-8001 and control systems
is available as a DLL for Windows 32 systems. This enables users to compile source text files in rw_SymPas
or G code file form to DIN 66025 into the intermediate code CNC binary files needed for the above systems, in
their own programs.
To be able to execute these files, they must be transferred to the control unit concerned [txbf() / txbf2()] using
the established methods, and started [startcnct()].

2 Using NCC.DLL

The NCC.DLL library provides various functions to parameterize and execute a compiling process. The
system file SYSTEM.DAT is required for the compiling process. "SYSTEM.DAT" from the working directory is
used by default. The source text file to be compiled is also required. The CNC output file is normally stored in
the same directory, unless a different path is indicated with the function SetCncFileName().
The compiling process must always be checked to see if it was successful. If an error is returned, the
following error information can be read: File name, error line and error text. The file name is necessary since
the error may also have occurred in an Include file.

3 Scope of delivery

The following software elements are supplied to use the NCC.DLL functions:

NCC.DLL
NCC.H
NCC.LIB for various C compilers
NCC.DLL.pdf this document

NCC COMPILER PER DLL 4

4 Functions in NCC.DLL

4.1 CncCompile – compile G-code file

DESCRIPTION: This function compiles a G-code file. The resultant binary file is given the extension
.CNC, and is stored in the same directory as the source text file.

C: int CncCompile (char *SrcFileName, int NumberAxis);
PARAMETERS: SrcFileName is the name (including drive and path) of the source text file.

In NumberAxis, the number of axes for which the program should be compiled is
indicated.

RETURN VALUE: 0 in the event of success, error number if an error occured during the compilation.
NOTE: The number of axes in fact present is returned in the TOSI data structure when

initialized with InitMcuSystem3() with a booted system. In certain cases (if a file is
supposed to be the same for different axis configurations) it may be necessary for
a file to be compiled for more than the existing axes. In this case a higher number
of axes can be transferred. This corresponds to the "Full system" option with the
other NCC versions. But here additional syntax errors can arise relating to axis
naming.
The axis names are taken from the file SYSTEM.DAT and must be entered
correctly for all axes used (mcfg.exe).
G code files are always compiled for TASK 3.
For this, see also the function DefIpolAxis (Chapter 4.3)

EXAMPLE: CompileError = CncCompile ("Example.SRC", 3);

4.2 CncSyntaxCheck – Syntax check at G-code file

DESCRIPTION: Command is the same as CncCompile (), however no binary file is generated.
C: int CncSyntaxCheck (char *SrcFileName, int NumberAxis);
PARAMETERS: SrcFileName is the name (including drive and path) of the source text file.

In NumberAxis, the number of axes for which the program should be compiled is
indicated.

RETURN VALUE: 0 in the event of success, error number if an error occured during the compilation.

4.3 DefIpolAxis – Define default interpolation axis

DESCRIPTION: Definition of the axes which are in connection with interpolation; for
G-Code files; can be called up before compiling a file for the first time

C: int DefIpolAxis (unsigned int AxisBits);
PARAMETERS: In Axis Bits, the axes with which positioning is to be carried out in an interpolated

way are bit-coded.
NOTE: With this call, the compiling of G-code files can be parameterised [use of the

command CncCompile()]. If this call is not made, all available axes in Online Mode
are used. Thus, this call is particularly required if not all axes in the system are
interpolation axes. In this way, it is possible that, for example, in G01 commands
not all axes have to be indicated every time. At runtime, this parameter can be
switched using G60.

RETURN VALUE: Always 0

NCC COMPILER PER DLL 5

Example:
A Cartesian coordinate system is given with X = 1st axis, Y = 2nd axis and Z = 3rd axis.
Then DefIpolAxis containing the value 7 has to be called up.

4.4 GetErrFileName – get file name in case of error

DESCRIPTION: This function can be called up in the event of an error to specify the compiling
error.

C: void DLLFUNC GetErrFileName (char *File name);
void DLLFUNC GetErrFileNameX (char *File name, int ndx);

PARAMETERS: Pointer to a char array
RETURN VALUE: For GetErrFileName(): none

For GetErrFileNameX(): index of error to be queried
NOTE: The function writes the file names including drive and path to the first error arising

in File name. File name must point to an area of memory that is big enough to take
the file name (max. 260 characters). For GetErrFileNameX(), the error index can
be indicated in ndx (see chapter 4.6).

EXAMPLE: GetErrFileName (File name);

4.5 GetErrLine – get error line

DESCRIPTION: This function can be called up in the event of an error to identify the rows in which
a compilation error has occurred.

C: int GetErrLine (void);
int GetErrLineX (int ndx);

PARAMETERS: For GetErrLine(): none
For GetErrLineX(): Index of error to be queried

RETURN VALUE: Line number in which the first (GetErrLine) or the addressed (GetErrLine X)
compiling error was detected.

NOTE: The line number relates to the file whose name was returned with
GetErrFileName() or GetErrFileNameX().

EXAMPLE: Error line = GetErrLine ();

4.6 GetErrNum – query number of compilation errors

DESCRIPTION: This function can be called up in the event of an error to query the number of
compilation errors. In some cases, more than one error may have occurred before
the compilation process was completed.

C: int GetErrNum (void);
PARAMETERS: none
RETURN VALUE: Number of compilation errors in the last compiler run.
NOTE: To enable error information to be read in indexed form, functions suffixed with an

“X” are provided. In most cases, the compilation process is completed after the first
error has occurred.

EXAMPLE: NumErrors = GetErrLine ();

NCC COMPILER PER DLL 6

4.7 GetErrText – get error text

DESCRIPTION: This function can be called up in the event of an error, to specify the compiling
error.

C: void GetErrText (char * Error text);
void GetErrTextX (char * Error text, int ndx);

PARAMETERS: Pointer to a char array
RETURN VALUE: For GetErrText(): none

For GetErrTextX(): Index of error to be queried
NOTE: The function writes a comment on the first error occurring in Error text. Error text

must point to an area of memory that is big enough to take the error message
(max. 256 characters).

EXAMPLE: GetErrText (Error text);

4.8 GetSymAxisName – Determine symbolic axis name

DESCRIPTION: With this function, the symbolc axis name of an axis can be read.
C: int GetSymAxisName (int an, char *SymAxisName);
PARAMETER: an is the index of the axis to be read.

In SymAxisName the symbolic name, which has been read from the system file
SYSTEM.DAT, is returned as string terminating on 0.

RETURN VALUE: The indicated axis-index at success,
-1 at failure

NOTE: The storage space in SymAxisName must be large enough to store the axes name
including the concluding zero sign. The maximum size is 16 bytes.

EXAMPLE: char AxisName[16];
rvalue = GetSymAxisName (0, AxisName);

4.9 SapCompile – compile rw_SymPas file

DESCRIPTION: This function compiles a rw_SymPas file. The resultant binary file is given the
extension .CNC, and is stored in the same directory as the source text file.

C: int CncCompile (char *SrcFileName, int NumberAxis);
PARAMETERS: SrcFileName is the name (including drive and path) of the source text file.

In NumberAxis, the number of axes for which the program should be compiled is
indicated.

RETURN VALUE: 0 in the event of success, error number if an error occured during the compilation.
NOTE: The number of axes in fact present is returned in the TOSI data structure when

initialized with InitMcuSystem3() with a booted system. In certain cases (if a file is
supposed to be the same for different axis configurations) it may be necessary for
a file to be compiled for more than the existing axes. In this case a higher number
of axes can be transferred. This corresponds to the "Full system" option with the
other NCC versions. But here additional syntax errors can arise relating to axis
naming.
The axis names are taken from the file SYSTEM.DAT, and must be entered
correctly for all axes used (mcfg.exe).

EXAMPLE: CompileError = SapCompile ("Example.SRC", 3);

NCC COMPILER PER DLL 7

4.10 SapSyntaxCheck – Syntax check at rw_SymPas file

DESCRIPTION: Same command as SapCompile(), however without generating a binary file.
C: int SapSyntaxCheck (char *SrcFileName, int NumberAxis);
PARAMETERS: SrcFileName is the name (including drive and path) of the source text file.

In NumberAxis, the number of axes for which the program should be compiled is
indicated.

RETURN VALUE: 0 in the event of success, error number if an error occured during the compilation.

4.11 SetCaseInsensitive - Differentiation capitalization/lower case
printing on/off

DESCRIPTION: For the compiling of G-code files, the differentiation between capitalisation/lower
case printing can be disabled with this function.

C: void DLLFUNC SetCaseInsensitive (int CaseInsensitive);
PARAMETER: 0 or 1 (default is 0)
RETURN VALUE: None

4.12 SetCncFileName

DESCRIPTION: From version V2.5.3.58, a file name for the CNC output file including path and drive
information can be transferred with this function.

C: void SetCncFileName (char *str);
PARAMETERS: File name with optional drive and path information
RETURN VALUE: 0 for success, 1 for failure
NOTE: If this function is called up with a void string, a previously assigned file name can

be deactivated again. In this case, the file name and the output path are
determined by the name of the source text file.

EXAMPLE: SetCncFileName (“C:\Cnc\Userfile.cnc”);

4.13 SetPostIncFileName

DESCRIPTION: From version V2.5.3.57, a file name can be transferred with this function. The
corresponding file is then included as an Include file at the end of the source text
file without the instruction $I. This Include file may contain declarations from
subroutines that can be used in the program, but which are not visible to the
machine user. This functionality is only possible with programs according to DIN
66025 (G-code programs). If there is no path specified, the path of the source text
file to be compiled is used.

C: void SetPostIncFileName (char *str);
PARAMETERS: File name with optional drive and path information
RETURN VALUE: 0 for success, 1 for failure
NOTE: If this function is called up with a void string, a previously assigned file can be

deactivated again.
EXAMPLE: SetPostIncFileName (“C:\Temp\Subroutines.inc”);

NCC COMPILER PER DLL 8

4.14 SetPreIncFileName

DESCRIPTION: From version V2.5.3.57, a file name can be transferred with this function. The
corresponding file is then included as an Include file at the beginning of the source
text file without the instruction $I. This Include file may contain variable and
procedure declarations that can be used in the program, but which are not visible
to the machine user. This functionality is only possible with programs according to
DIN 66025 (G-code programs). If there is no path specified, the path of the source
text file to be compiled is used.

C: void SetPreIncFileName (char *str);
PARAMETERS: File name with optional drive and path information
RETURN VALUE: 0 for success, 1 for failure
NOTE: If this function is called up with a void string, a previously assigned file can be

deactivated again.
EXAMPLE: SetPreIncFileName (“C:\Temp\Declaration.inc”);

4.15 SetSystemDatName – set system file

DESCRIPTION: This function can specify the system file (drive, path, file name) with which the
compiling process is carried out.

C: void SetSystemDatName (char *str);
PARAMETERS: File name with optional drive and path information
RETURN VALUE: None
NOTE: If this function is not called, the file "SYSTEM.DAT" is selected in the working

directory.
EXAMPLE: SetSystemDatName (“C:\Temp\System.dat”);

4.16 SetTaskNum – set task number

DESCRIPTION: This function can specify the task number for which the source text file is compiled.
This is only advisable when compiling rw_SymPas files, since G code files are
always compiled for task 3.

C: void SetTaskNum (int TaskNr);
PARAMETERS: Task number (0..3) for which the NC file is to be produced. After loading, a file

generated in this way can only be used in the corresponding task.
RETURN VALUE: none
NOTE: If the task is selected in the source text file with

{$TASK ?}
this instruction is void. The default value is 0.

EXAMPLE:

NCC COMPILER PER DLL 9

4.17 SetTrac – set default track acceleration

DESCRIPTION: This function sets the default track acceleration.
C: void SetTRAC (double track);
PARAMETERS: Acceleration value in the interpolation units currently set
RETURN VALUE: None
NOTE: See also SetTrvl and SetUnits

4.18 SetTrvl – set default track speed

DESCRIPTION: This function sets the default track speed.
C: void SetTRVL (double trvl);
PARAMETERS: Speed value in the interpolation units currently set
RETURN VALUE: None
NOTE: See also SetTrac and SetUnits

4.19 SetUnits – set default travel and time unit

DESCRIPTION: This function defines the default interpolation units. Without this call, the position
unit is set to mm and the time unit to seconds.

C: void SetUnits (int pu, int tu);
PARAMETERS: Position unit pu and time unit tu
RETURN VALUE: None
NOTE: See also PHB manual, chapter "ctru, change trajectory units“
EXAMPLE: SetUnits (0, 1); // select units mm and min

4.20 SetUserSpecCode – set user-specific code

DESCRIPTION: With this function, a user-specific code can be programmed for compilation. With
this code, user-specific functions can be activated.

C: void DLLFUNC SetUserSpecCode (unsigned UserSpecCode);
PARAMETERS: project-based integer variable
RETURN VALUE: none

4.21 UseLineNumbers – line numbering on / off

DESCRIPTION: This function can deactivate the need for line numbers (Nxxx) for compiling G code
files.

C: void DLLFUNC UseLineNumbers (int UseLineNum);
PARAMETERS: 0 or 1
RETURN VALUE: None

	1 Introduction
	2 Using NCC.DLL
	3 Scope of delivery
	4 Functions in NCC.DLL
	4.1 CncCompile – compile G-code file
	4.2 CncSyntaxCheck – Syntax check at G-code file
	4.3 DefIpolAxis – Define default interpolation axis
	4.4 GetErrFileName – get file name in case of error
	4.5 GetErrLine – get error line
	4.6 GetErrNum – query number of compilation errors
	4.7 GetErrText – get error text
	4.8 GetSymAxisName – Determine symbolic axis name
	4.9 SapCompile – compile rw_SymPas file
	4.10 SapSyntaxCheck – Syntax check at rw_SymPas file
	4.11 SetCaseInsensitive - Differentiation capitalization/lower case printing on/off
	4.12 SetCncFileName
	4.13 SetPostIncFileName
	4.14 SetPreIncFileName
	4.15 SetSystemDatName – set system file
	4.16 SetTaskNum – set task number
	4.17 SetTrac – set default track acceleration
	4.18 SetTrvl – set default track speed
	4.19 SetUnits – set default travel and time unit
	4.20 SetUserSpecCode – set user-specific code
	4.21 UseLineNumbers – line numbering on / off

