

POSITIONING AND CONTOURING
CONTROL SYSTEM

APCI-8001, APCI-8008 AND
CPCI-8004

PROGRAMMING AND
REFERENCE MANUAL / PM

Rev. 11/022014

www.addi-data.com

CONTENTS 3

1 Introduction ..11

2 Internal details of the rw_MOS operating system software ..12

2.1 The xPCI-800x position controller..12
2.1.1 Control loop opened/closed ..12

2.1.1.1 PIDF filter..12
2.1.1.2 The filter parameters KD, KI, KP ..12
2.1.1.3 Additional phase element ...13
2.1.1.4 Scan time..13

2.2 The xPCI-800x profile generator..13
2.2.1 Profile generation for JOG commands..14
2.2.2 Profile generation for MOVE commands...14
2.2.3 Acceleration...15
2.2.4 Maximum velocity..15
2.2.5 Target velocity ...16
2.2.6 Velocity correction ...16
2.2.7 Target position / Traverse distance...16
2.2.8 Operating modes for command processing ..16

2.2.8.1 Direct mode ..16
2.2.8.2 Spool mode ..17
2.2.8.3 Additional notes on spooler operation..17

2.3 Interpolation with xPCI-800x ..17
2.3.1 Linear interpolation..18

2.3.1.1 Formal linear interpolation..18
2.3.2 Circular interpolation ...18
2.3.3 Helical interpolation ...18
2.3.4 Surface area processing ...18
2.3.5 Synchronous and asynchronous interpolations ..19

2.4 xPCI-800x limit switch handling ...19
2.4.1 TOM limit switch function (Turn-Off-Motor) ...19
2.4.2 SMA limit switch function (Stop-Motor-Abruptly)...20
2.4.3 SMD limit switch function (Stop-Motor-Decelerate) ..20

3 xPCI-800x Programming methods ...21

3.1 PC application programming (PCAP programming, or direct programming)...............................21
3.2 Stand-alone application programming (SAP programming) ..21

3.2.1 SAP-Multitasking ...22

4 PC application programming..23

4.1 Introduction ..23
4.2 Example programs for using the function libraries...23
4.3 Definitions, structures and records ..24

4.3.1 Definitions..24
4.3.2 Structures, records and types ...24

4.3.2.1 Structure/record type AS ..24
4.3.2.2 Structure/record type TSRP ...25
4.3.2.3 Structure/record type TRU (Trajectory Units)...26
4.3.2.4 Structure/record type LMP (Linear Motion Parameters)26
4.3.2.5 Structure/record type CMP (Circular Motion Parameters)26
4.3.2.6 Structure/record type HMP (Helical Motion Parameters)27
4.3.2.7 Structure/record type HMP 3D (Helical Motion Parameters 3Dimensional)27
4.3.2.8 Structure/record type ROSI (Risc Operating System Information)28
4.3.2.9 Structure/record type CBCNT (Common Buffer CNC-Task)..............................28
4.3.2.10 Structure/record type CNCTS (Computerized Numerical Control Task Status) 29

4 CONTENTS

4.4 PCAP high-level language function reference list..29
4.4.1 Structure of the reference list ..29
4.4.2 General information...30
4.4.3 azo, activate zero offsets...30
4.4.4 BootErrorReport, initialisation error report ..30
4.4.5 BootFile, boot operating system file ..31
4.4.6 CardSelect...31
4.4.7 ClearCI99 ..31
4.4.8 cl, close loop..32
4.4.9 clv, close loop velocity...32
4.4.10 contcnct, continue numeric controller task ..32
4.4.11 ctru, change trajectory units ..33
4.4.12 getEnvStr, get Environment String..33
4.4.13 gettskinfo, Get Task Informations ...34
4.4.14 gettskstr, Get Task Message String ..34
4.4.15 InitMcuErrorReport, initialisation error report ..35
4.4.16 InitMcuSystem, initialise mcu system..35
4.4.17 InitMcuSystem2, initialise mcu system (2nd method) ..36
4.4.18 InitMcuSystem3, initialise mcu system (3rd method) ...36
4.4.19 ja, jog absolute ..37
4.4.20 jhi, jog home index ..37
4.4.21 jhl, jog home left ..38
4.4.22 jhr, jog home right..38
4.4.23 jr, jog relative ...38
4.4.24 js, jog stop ...38
4.4.25 lpr – Latch Position Registers ...39
4.4.26 lprs – Latch Position Registers Synchronous ...39
4.4.27 lps, latch position synchronous ...39
4.4.28 mca, move circular absolute - smca, spool motion circular absolute..............................40
4.4.29 mcr, move circular relative - smcr, spool motion circular relative40
4.4.30 mca3d, move circular absolute three dimensional - smca3d, spool motion circular

absolute three dimensional ...40
4.4.31 mcr3d, move circular relative three dimensional - smcr3d, spool motion circular relative

three dimensional ..41
4.4.32 mcuinit, motion control unit initialisation..41
4.4.33 MCUG3_SetBoardIntRoutine..42
4.4.34 MCUG3_ResetBoardIntRoutine..42
4.4.35 mha, move helical absolute - smha, spool motion helical absolute42
4.4.36 mhr, move helical relative - smhr, spool motion helical relative......................................43
4.4.37 mla, move linear absolute - smla, spool motion linear absolute43
4.4.38 mlr, move linear relative - smlr, spool motion linear relative ...43
4.4.39 ms, motion stop ...44
4.4.40 MsgToScreen, message to screen ...44
4.4.41 ol, open loop..44
4.4.42 ra, reset axis..45
4.4.43 rdap, read axis parameters ...45
4.4.44 rdaux, read auxiliary register...45
4.4.45 rdaxst, read axis status ...46
4.4.46 rdaxstb, read axis status bit ..47
4.4.47 rdcbcnct, read common buffer CNC-Task...48
4.4.48 rdcd, read common double ...48
4.4.49 rdci, read common integer ..49
4.4.50 rdcncts, read computerized numeric controller task status...49
4.4.51 rddigi, read digital inputs ...49

4.4.51.1 Axis-qualifier digi ..50
4.4.52 rddigib, read digital input bit ..51
4.4.53 rddigo, read digital outputs..52

CONTENTS 5

4.4.54 rddigob, read digital output bit ...52
4.4.55 rddp, read desired position..52
4.4.56 rddpoffset, read desired position offset ...53
4.4.57 rddpd – read desired position in display unit...53
4.4.58 rddv, read desired velocity ..53
4.4.59 rddvoffset, read desired velocity offset..54
4.4.60 rdEffRadius – Read Effective Radius..54
4.4.61 rdepc, read EEPROM programming cycle..54
4.4.62 rdErrorReg, read Error Register..54

4.4.62.1 Register ErrorReg...55
4.4.63 rdf, read filter ...56
4.4.64 rdGCR, read gear configuration register ...56
4.4.65 rdgf, read gear factor...56
4.4.66 rdgfaux, read gear factor auxiliary channel ...56
4.4.67 rdhac, read home acceleration..57
4.4.68 rdhvl, read home velocity ..57
4.4.69 rdifs, read interface status...57

4.4.69.1 Axis qualifier ifs...57
4.4.70 rdifsb, read interface status bit ..58
4.4.71 rdigi, reset digital inputs...58
4.4.72 rdipw, read in position window ..58
4.4.73 rdirqpc, read interrupt request PC...59
4.4.74 rdjac, read jog acceleration ...59
4.4.75 rdJerkRel, read jerkrel ...59

4.4.75.1 Axis qualifier jerkrel ..59
4.4.76 rdjtvl, read jog target velocity ..60
4.4.77 rdjvl, read jog velocity..60
4.4.78 rdledgn, read led green ...60
4.4.79 rdledrd, read led red..61
4.4.80 rdledyl, read led yellow..61
4.4.81 rdlp, read latched position ...61
4.4.82 rdlpndx, read latched position index..62
4.4.83 rdlsm, read left spool memory...62
4.4.84 rdMaxAcc – Read Maximum Acceleration Check...62
4.4.85 rdMaxVel – Read Maximum Velocity Check...63
4.4.86 rdMCiS – Read Move Commands in Spooler ...63
4.4.87 rdmcp, read motor command port...63
4.4.88 rdMDVel – Read Maximum Velocity Skip ...64
4.4.89 rdModeReg – Read MODEREG ...64
4.4.90 rdmpe, read maximum position error ..64
4.4.91 rdnfrax – read No-Feed-Rate-Axis ..64
4.4.92 rdPosErr, read Position Error ..65
4.4.93 rdrp, read real position ..65
4.4.94 rdrpd – read real position in display unit ...65
4.4.95 rdrv, read real velocity ...65
4.4.96 rdSampleTime – Read Sample Time..66
4.4.97 rdsdec, read stop deceleration..66
4.4.98 rdsll, read software limit left...66
4.4.99 rdslr, read software limit right ..66
4.4.100 rdslsp, read Slits / Stepperpulses..66
4.4.101 rdtp, read target position ...67
4.4.102 rdtpd – read target position in display unit ...67
4.4.103 rdtrovr, read trajectory override...67
4.4.104 rdtrovrst, read trajectory override settling time..67
4.4.105 rdzeroOffset, read zero offset ...68
4.4.106 rifs, reset interface status register ...68
4.4.107 RPtoDP, Real-Position to Desired-Position ..68

6 CONTENTS

4.4.108 rs, reset system...69
4.4.109 scp – set controller params ...69
4.4.110 sdels, spooler delete synchronous..69
4.4.111 shp, set home position ..69
4.4.112 ssms, start spooled motions synchronous ..70
4.4.113 sstps, spooler stop synchronous...70
4.4.114 ssf, Spool-Special-Function ..70

4.4.114.1 Notes on SSF wait commands ...72
4.4.115 startcnct, start numeric controller task ..72
4.4.116 stepcnct, step numeric controller task...72
4.4.117 stopcnct, stop numeric controller task...72
4.4.118 szpa, set zero position absolute..73
4.4.119 szpr, set zero position relative...73
4.4.120 txbf, transmit binary file ...73
4.4.121 txbfErrorReport, initialisation error report ..74
4.4.122 uf, update filter...74
4.4.123 utrovr, update trajectory override ..75
4.4.124 wraux, write auxiliary register..75
4.4.125 wrcbcnct, write common buffer CNC-Task..75
4.4.126 wrcd, write common double ..76
4.4.127 wrci, write common integer ...76
4.4.128 wrdigo, write digital outputs...76
4.4.129 wrdigob, write digital output bit ..77
4.4.130 wrdp, write desired position...78
4.4.131 wrdp offset, write desired position offset ...78
4.4.132 wrdvoffset, write desired velocity offset...79
4.4.133 wrEffRadius – Write Effective Radius ...79
4.4.134 wrGCR, write gear configuration register ..79
4.4.135 wrgf, write gear factor..79
4.4.136 wrgfaux, write gear factor auxiliary channel ..80
4.4.137 wrhac, write home acceleration...80
4.4.138 wrhvl, write home velocity ...80
4.4.139 wripw, write in position window ...80
4.4.140 wrjac, write jog acceleration ..81
4.4.141 wrJerkRel, write jerkrel ..81
4.4.142 wrjovr, write jog override ...81
4.4.143 wrjtvl, write jog target velocity ...82
4.4.144 wrjvl, write jog velocity...82
4.4.145 wrledgn, write led green ..82
4.4.146 wrledrd, write led red...82
4.4.147 wrledyl, write led yellow...83
4.4.148 wrlp, write latched position ..83
4.4.149 wrlpndx, write latched position index...83
4.4.150 wrMaxAcc – Write Maximum Acceleration Check ..83
4.4.151 wrMaxVel – Write Maximum Velocity Check...84
4.4.152 wrmcp, write motor command port..84
4.4.153 wrMDVel – Write Maximum Velocity Skip ...85
4.4.154 wrModeReg – Write MODEREG...85
4.4.155 wrmpe, write maximum position error ...85
4.4.156 wrnfax, write No-Feed-Rate-Axis ..86
4.4.157 wrrp, write real position ...86
4.4.158 wrsdec, write stop deceleration...86
4.4.159 wrsll, write software limit left..86
4.4.160 wrslr, write software limit right ...87
4.4.161 wrslsp, write Slits / Stepperpulses...87
4.4.162 wrtp – write target position ..87
4.4.163 wrtrovr, write trajectory override..87

CONTENTS 7

4.4.164 wrtrovrst, write trajectory override settling time...88

5 The rw_SymPas programming language for stand-alone application programming.........................89

5.1 Introduction ..89
5.2 Lexical grammar...89

5.2.1 White space...89
5.2.2 Comments ...89
5.2.3 Symbols...90

5.2.3.1 Keywords..90
5.2.3.2 Designators ..90

a) Name and length restrictions..91
b) Designator upper and lower case...91
c) Unambiguity and validity of designators...91

5.2.3.3 Standard designators ...91
5.2.3.4 Axis designators ...91
5.2.3.5 Qualified designators..92
5.2.3.6 Labels ...92
5.2.3.7 Constants ...92

a) Integer constants ..93
b) Decimal constants ..93
c) Hexadecimal constants ..93
d) Floating-point constants ...93
e) The type of floating-point constants ...93
f) Declaration of constants...93
g) Punctuation characters...93
h) Parentheses ...94
i) Comma ...94
j) Semi-colon..94
k) Equals sign ...94

5.3 Semantic grammar...94
5.3.1 Declarations ..94

5.3.1.1 Objects ...94
5.3.1.2 Types..95

a) Boolean type...95
b) Integer type...95
c) Floating-point types (real types) ...95
d) Assignment compatibility of types ..96

5.3.1.3 Variables...96
a) Automatic type conversion ...96

5.3.2 Blocks, locality and range of application ...96
5.3.2.1 Syntax...96

a) Declaration section...97
♦ Label declaration section...97
♦ Constant declaration section...97
♦ Variable declaration section ..97

b) Command section...97
5.3.2.2 Range of application...98

a) Redeclaration in a subordinate block ...98
b) The location of a declaration in a block..98
c) Redeclarations inside a block...98
d) Standard designators ...98

5.3.3 Variables ...98
5.3.3.1 The declaration of variables ...98

a) Axis-type declaration ..99
b) Timer declaration..99

5.3.3.2 Conversion of variable types ..100
5.3.4 Expressions...100

8 CONTENTS

5.3.4.1 Syntax of expressions ..101
5.3.4.2 Operators..101
5.3.4.3 Arithmetical operators ..101
5.3.4.4 Logic operators...102
5.3.4.5 Boolean operators ..102
5.3.4.6 Relational operators ...102

5.3.5 Statements ..103
5.3.5.1 Assignments ...103
5.3.5.2 Procedure calls...103
5.3.5.3 The goto statement...103
5.3.5.4 Structured instructions..104
5.3.5.5 Compound statements ...104
5.3.5.6 Conditional statements...104

a) The if statement..105
5.3.5.7 Loops..105

a) The while statement ...105
b) The repeat statement ...105
c) The for statement ...106

5.3.6 Procedures and functions ...106
5.3.6.1 Procedure declarations ..106
5.3.6.2 Function declarations ...106

5.3.7 The syntax of an rw_SymPas program...107
5.3.7.1 The program descriptor ..107
5.3.7.2 The program block..107

6 Stand-alone application programming ..108

6.1 Introduction ..108
6.2 rw_SymPas example programs ...108
6.3 Abbreviations, system parameters, axis specifiers and axis qualifiers......................................108

6.3.1 System parameters ...108
6.3.1.1 PC interrupt generation ..110
6.3.1.2 System parameters for unit processing..110
6.3.1.3 ERRORREG...111
6.3.1.4 MODEREG...111

6.3.2 Axis specifiers ...113
6.3.3 Axis qualifiers ..113
6.3.4 Structured axis qualifiers...116
6.3.5 Abbreviations...116

6.4 Reserved procedure names with event function..117
6.4.1 Event procedure EVEO...117
6.4.2 Event procedure EVDNR ..117
6.4.3 Event procedure EVLSH ...117
6.4.4 Event procedure EVLSS ...118
6.4.5 Event procedure EVMPE ..118
6.4.6 Event procedure EVUI...118
6.4.7 Priority and processing sequence for the event procedures...118

6.5 SAP block commands ..119
6.6 rw_SymPas SAP command reference list ...119

6.6.1 Structure of the reference list ..119
6.6.2 ABORT, abort..119
6.6.3 ABS, absolute function..120
6.6.4 ACOS, arc cosine function ..120
6.6.5 ASIN, arc sine function..120
6.6.6 ATAN, arc tangent function ...120
6.6.7 AZO, activate zero offsets...120
6.6.8 CL, close loop..121

CONTENTS 9

6.6.9 CLV..121
6.6.10 CONTCNCT, continue CNC-Task...121
6.6.11 COS, cosine function...121
6.6.12 COSH, hyperbolic cosine function ..122
6.6.13 DISEV, disable event ..122
6.6.14 ENEV, enable event ..122
6.6.15 EXP, exponential function ...122
6.6.16 JA, jog absolute...122
6.6.17 JAW, jog absolute waiting ...123
6.6.18 JHI, jog home index...123
6.6.19 JHIW, jog home index waiting...123
6.6.20 JHL, jog home left ...123
6.6.21 JHLW, jog home left waiting..124
6.6.22 JHR, jog home right...124
6.6.23 JHRW, jog home right waiting...124
6.6.24 JR, jog relative...124
6.6.25 JRW, jog relative waiting...124
6.6.26 JS, jog stop..125
6.6.27 JSW, jog stop waiting ..125
6.6.28 LN, natural logarithm function ...125
6.6.29 LPR, latch position registers ...125
6.6.30 LPRS, latch position registers synchronous ...125
6.6.31 MCA, move circular absolute - SMCA, spool motion circular absolute.........................126
6.6.32 MCAW, move circular absolute waiting...126
6.6.33 MCA3D, move circular absolute three-dimensional SMCA3D, spool move circular

absolute three-dimensional ...126
6.6.34 MCA3DW, move circular absolute three-dimensional waiting126
6.6.35 MCR3D, move circular relative three-dimensional SMCR3D, spool move circular relative

three-dimensional..126
6.6.36 MCR3DW, move circular relative three-dimensional waiting..127
6.6.37 MCR, move circular relative - SMCR, spool motion circular relative127
6.6.38 MCRW, move circular relative waiting ..127
6.6.39 MHA, move helical absolute - SMHA, spool motion helical absolute127
6.6.40 MHAW, move helical absolute waiting ..127
6.6.41 MHR, move helical relative - SMHR, spool motion helical relative128
6.6.42 MHRW, move helical relative waiting..128
6.6.43 MLA, move linear absolute - SMLA, spool motion linear absolute128
6.6.44 MLAW, move linear absolute waiting ..128
6.6.45 MLR, move linear relative - SMLR, spool motion linear relative128
6.6.46 MLRW, move linear relative waiting..129
6.6.47 MS, motion stop ..129
6.6.48 MSW, motion stop waiting...129
6.6.49 OL, open loop..129
6.6.50 POWER...129
6.6.51 RA, reset axis ..130
6.6.52 RDCBD, read COMMON BUFFER double function ...130
6.6.53 RDCBI, read COMMON BUFFER integer function...130
6.6.54 RDCBS, read COMMON BUFFER single function ...131
6.6.55 RPTODP, Real-Position to Desired-Position ..131
6.6.56 RS, reset system...131
6.6.57 SHP, set home position...131
6.6.58 SIN, sine function ..132
6.6.59 SINH, hyperbolic sine function ..132
6.6.60 SQR, square function..132
6.6.61 SQRT, square root function ..132
6.6.62 SSF, Spool-Special-Function ..133
6.6.63 SSMS, start spooled motions synchronous ..133

10 CONTENTS

6.6.64 SSMSW, start spooled motions synchronous waiting...133
6.6.65 STARTCNCT, start CNC-Task..134
6.6.66 STOP, stop..134
6.6.67 STEPCNCT, stop CNC-Task ..134
6.6.68 STOPCNCT, stop CNC-Task..135
6.6.69 STOPTOSS,..135
6.6.70 SZPA – Set Zero Position Absolut ..135
6.6.71 SZPR – Set Zero Position Relativ ...136
6.6.72 TAN, tangent function..136
6.6.73 TANH, hyperbolic tangent function ...136
6.6.74 UF, update filter...136
6.6.75 UTROVR, update trajectory override ..137
6.6.76 WRCBI, write COMMON BUFFER integer procedure ..137
6.6.77 WRCBS, write COMMON BUFFER single procedure ..137
6.6.78 WRCBD, write COMMON BUFFER double procedure...138
6.6.79 WRITE 138
6.6.80 WRITELN ..138
6.6.81 WT, wait timer ...139

6.7 Compiler commands ..139
6.7.1 Include file ...139
6.7.2 Task selection ...140
6.7.3 Full system compiling ..140

6.8 SAP run time errors..141

PM / PROGRAMMING AND REFERENCE MANUAL 11

1 Introduction

What is the content
of this manual?

 This manual contains all the details you will need for programming the
xPCI-800x controllers. The complete documentation is divided into 3 parts:
OM (Operating Manual), PM (Programming and Reference Manual) and
CM (Commissioning Manual).

Which boards
belong to the xPCI-
800x family?

 The xPCI-800x family includes positioning and contouring control systems of the
third generation, that is the boards APCI-8001, APCI-8008 and CPCI-8401.
Other devices are being developed to round the family off.

Further remarks If the functions described in this manual do not apply to all devices of the
xPCI-800x family, they are specially marked. In this case, the respective function
only applies to the marked device!
Before the various programming methods and operating modes can be presented,
we must first describe various functions provided by the rw_MOS operating system
software. You will find further information on rw_MOS in the Operating Manual,
Chapter 4.1.

12 PM / PROGRAMMING AND REFERENCE MANUAL

2 Internal details of the rw_MOS operating system software

As already mentioned in the Operating Manual, one of the main factors in the performance capabilities of the
xPCI-800x controllers is the rw_MOS operating system software. The following chapters will describe the
functions implemented in rw_MOS, like profile generation or limit switch handling.

2.1 The xPCI-800x position controller

The basic operating mode of the xPCI-800x controllers is the position control mode. In this operating mode,
the board attempts to keep the motor position in the setpoint position. The control loop usually consists of
the following components: digital controller - digital/analogue converter - power section - motor - encoder -
pulse acquisition. The encoder is in most cases attached directly to the motor, i.e. rigidly connected to the
motor axis.
If this is not the case, the transmission elements between motor axis and encoder axis are also incorporated
in the control loop. The load is also connected to the motor axis. The response of the control system is
determined by all the elements contained in the control loop and by the load. In any given system, the
control response can be influenced only by the filter parameters of the digital filter. Remember that all
possible operating cases (e.g. changes in load) have to be allowed for.

2.1.1 Control loop opened/closed

After power-up, the control loop is at first open. The value 0 is outputted on the manipulated variable output
(Motor-Command-Port). The connected axis can be traversed in uncontrolled mode by outputting a value.
The PCAP command cl() (close loop) is used to close the control loop. Note that the current position is
adopted as the setpoint position, in order to prevent the motor axis being traversed unintentionally.
Traversing profiles cannot be carried out until the position control has been activated. This also applies for
stepping motors.

2.1.1.1 PIDF filter

The digital filter has the structure of a real PIDF filter. Almost all controlled systems encountered in practice
can be stably adjusted with this type of controller.

2.1.1.2 The filter parameters KD, KI, KP

The setting procedure utilizes the filter parameters KD , KI and KP. The significance of these parameters can
be very simply understood in terms of the common parameters encountered in the literature: proportional
amplification KP , derivative-action time KD and integral-action time KI.

 KP - Proportional amplification
 KI - Integral-action coefficient
 KD - Derivative-action coefficient
 TV - Derivative-action time
 TN - Integral-action time

KI = KP / TN
KD = KP * TV

If a controller with a different structure is to be implemented, the individual components involved can be
simply de-activated by setting them to zero.

PM / PROGRAMMING AND REFERENCE MANUAL 13

2.1.1.3 Additional phase element

The digital PIDF filter provided is in the standard version cascaded with a first-order time-delay element with
a time constant of TA/2 (half the scan time). This is why it is referred to as a real PIDF filter. The filter
parameter KPL can now be used to reduce this time-delay still further, thus making a harder controller setting
possible. The KPL parameter may in theory assume any value between 0 and 1. In practice, however, a value
greater than approx. 0.95 is no longer expedient.

The connection between KPL and the time delay can be simply represented as:

 KPL - Filter parameter
 TDELAY - real time-delay of the PIDF filter
 TA - Scan time

 TDELAY = (1 - KPL) * TA / 2

2.1.1.4 Scan time

In the paragraph above, the scan time TA was used: this is a characteristic variable for the digital controller.
The scan time is the time after which setpoint and actual values are each scanned and the command value
is computed using the control algorithm. If the scan time is small compared to the system time constants
involved, the controller can be dimensioned like a continuous controller. This means that no special
knowledge of digital control engineering is required for adjustment purposes.

Note: In the xPCI-800x standard version of the controller boards, the scan time has been set to
1.28 ms.

2.2 The xPCI-800x profile generator

When traversing with the individual axes, the specified paths are approached with a trapezoidal speed
profile. For a trapezoidal speed profile of this kind, the determinant variables are initial velocity, initial
position, acceleration, maximum velocity, target position and target velocity. The profile generation feature
under discussion here generates the appropriate setpoint values for the position controller [chapter 2.1]
synchronously with the scans, so that starting from the current position the axis accelerates from the current
velocity up to the maximum velocity. The initial velocity and initial position are instantaneous values and are
not specified as parameters for a motion profile. Before the target position is reached, the profile generator
decelerates in good time with the specified deceleration, so that the target velocity is reached in the specified
target point.

2.2.1

14 PM / PROGRAMMING AND REFERENCE MANUAL

Profile generation for JOG commands

There are certain special cases possible when running a trapezoidal speed profile with JOG traversing

The initial velocity is negative in relation to the traversing direction. This means that the axis is initially

• the

• ial velocity is equal to the maximum velocity.
ity. In this case, the axis is automatically decelerated

• to the maximum velocity.
e axis has to be decelerated beforehand in order to

ll these cases will be correctly handled if the distance to be traversed is sufficient. In addition, a positive

r

g commands, it is thus possible to program acceleration ramps and braking ramps with

 the cases listed below, velocity jumps occur (undesirably high accelerations). If these cannot be

The traverse distance specified is not sufficient for deceleration.
se, the traversing velocity is set to target

2.2.2 Profile generation for MOVE commands

When running a trapezoidal speed profile with MOVE traversing commands (multiple-axis movements with

The final velocity is negative in relation to the traversing direction. The system first traverses beyond the

• ity is equal to the maximum velocity.
elocity. With direct MOVE commands, the system

•
tem must decelerate beforehand in order to reach the

ll these cases are handled correctly if the traverse distance is sufficient in each case. Furthermore, a

commands (single-axis movements):

•

traversing in the wrong direction, but decelerates, reverses and now accelerates in the right direction.
The final velocity is negative in relation to the traversing direction. The axis initially moves beyond
target point, decelerates, reverses its direction and has the target velocity when it reaches the target point
again.
The init

• The initial velocity is higher than the maximum veloc
to the maximum velocity.
The final velocity is equal

• The maximum velocity is not reached, because th
reach the target velocity by the time it gets to the target position. In this case, a triangular speed profile is
run.

A
maximum velocity and acceleration must always be specified and the final velocity must be smaller than o
equal to the maximum velocity. When a negative acceleration is stated, this will be utilized for the profile's
braking ramp.
With JOG traversin
differing degrees of steepness.

In
implemented by the system, a position error will occur, which will, however, generally be corrected after a
limited time period. When stepping motors are used, these cases cannot usually be permitted.

•
• The target velocity is higher than the maximum velocity. In this ca

velocity at the end of the profile.

interpolation) with one or more than one axis, the following special cases are possible:

•

target point, decelerates, reverses direction and when it reaches the target point again possesses the
target velocity.
The initial veloc

• The initial velocity is higher than the maximum v
automatically decelerates down to maximum velocity in this case. With spooler commands, the initial
velocity is set to maximum velocity. This corresponds to a velocity jump.
The final velocity is equal to the maximum velocity.

• The maximum velocity is not reached, since the sys
target velocity by the time the target position is reached. In this case, a triangular speed profile is run.

A
positive maximum velocity and acceleration must always be stated and the final velocity must be smaller
than or equal to the maximum velocity. If a negative acceleration or negative maximum velocity is stated, the
profile will be discarded.

PM / PROGRAMMING AND REFERENCE MANUAL 15

With MOVE traversing commands, it is not possible to program acceleration ramps and braking ramps with
differing degrees of steepness in one traversing command. Should this be required, you can, however,
program several MOVE commands consecutively.

In the cases listed below, velocity jumps are involved, i.e. unwantedly high accelerations. If these cannot be
implemented by the system, a position error will occur, which will, however, generally be corrected again
after a limited time period. These cases must not as a rule be permitted in conjunction with stepping motors.

• The traverse distance stated is not sufficient for accelerating up to target velocity. In this case, the target

velocity is set to a value which can actually be reached within the profile stated. In this case, there will
however be no velocity jump.

• The traverse distance stated is not sufficient for deceleration. In this case, the profile's initial velocity is set
to a value which permits deceleration down to final velocity within the profile stated.

• The target velocity is higher than the maximum velocity. In this case, the traversing velocity is set to target
velocity at the end of the profile.

• The traversing profile's direction is altered. In this case, the amount of the velocity vector is taken from the
previous direction and placed in the direction now to be traversed. In this case, there will be velocity
jumps of varying magnitude at the axes involved. Special caution is required here when stepping motor
systems are used.

This type of profile generation is not only executed when linear MOVE commands are being run. This pattern
is also used for generating the trajectory velocity when running circular movements with two axes.

2.2.3 Acceleration

If an acceleration smaller than zero is stated, then the data record is discarded with MOVE commands. With
JOG commands, a negative acceleration specifies the steepness of the braking ramp. As a default, the
braking ramp and the acceleration ramp are of identical steepness. The units for the acceleration can be
axis-specifically stated in the mcfg.exe utility program. For the interpolation commands (MOVE commands)
there are various options for selecting the units. The value for acceleration is specified as a floating-point
number, meaning that the value range is almost unlimited. If you specify an acceleration higher than the
system can implement, an enlarged position error will be produced during the acceleration phase.

2.2.4 Maximum velocity

The maximum velocity must always be specified as greater than zero, otherwise the data record will be
rejected (MOVE commands) or an endless profile will be run in the wrong direction (JOG). The units for the
maximum velocity can be axis-specifically specified in the mcfg.exe utility program. For the interpolation
commands there are various options for selecting the units. The value for the maximum velocity is specified
as a floating-point number, meaning that the value range is almost unlimited. If you specify a velocity higher
than the system can implement, an enlarged position error will be produced during traversing. If the
maximum velocity specified is smaller than the initial velocity, the conditions mentioned above shall apply,
depending on the command type involved.

16 PM / PROGRAMMING AND REFERENCE MANUAL

2.2.5 Target velocity

The target velocity can be specified as positive, negative or set to 0. The direction of the target velocity is
always referenced to the direction of traversing. If traversing is in a negative direction and the target velocity
is positive, this means the system will continue to move in a negative direction. The target velocity has the
same unit as the maximum velocity. The value is specified as a floating-point number, meaning that the
value range is almost unlimited. If you specify a velocity higher than the system can implement, an enlarged
position error will be produced during traversing. If the target velocity specified is greater than the maximum
velocity, the traversing profile will be concluded with a velocity jump. The current velocity will in this case be
set to the target velocity at the end of the profile.

2.2.6 Velocity correction

In certain cases, you may want to alter the axis or trajectory velocity during execution of a trapezoidal speed
profile. A typical example of this is manual velocity correction (override). You have various SAP and PCAP
commands available for this purpose.
The velocity correction factor, whose default value is 1.0, acts on velocities and accelerations alike.
According to the operating mode it is important to differentiate the way the override is used by programming:
For one-axis traversing commands (JOG commands) the JOG override can be separately programmed for
each axis. Yet it must not be made by interpolation travel. For interpolation commands (MOV commands) the
trajectory override is to be set and taken over with the command utrovr synchronously for all axes, which
take part to the interolation travel. The synchronisation of the axes to be interpolated can only be ensured
this way. When the trajectory override is taken over, the value is automatically accepted as a JOG override
by the working axes. (can be switched off). To avoid velocity jumps during the programming of the override,
an adjustment time can be programmed for the trajectory-override.

2.2.7 Target position / Traverse distance

The target can be specified as a relative or absolute value. If you specify a relative value, traversing will be
by the distance specified, i.e. you have programmed a traverse distance. If you specify an absolute value,
the system will traverse to the position specified, i.e. you have programmed a target position. The reference
point for absolute target positions is the machine zero.

2.2.8 Operating modes for command processing

Traversing commands and other commands can be executed in two different operating modes, the "direct
mode" and the "spool mode". The operating mode being implemented at any time is automatically specified
by the syntax of the command involved.

Note: The command abbreviations for the spool commands are distinguished from the direct commands by
the character 's' as the first letter in the command word. There are identical spool commands available for
both programming methods, SAP and PCAP programming alike.

2.2.8.1 Direct mode

Direct mode is activated automatically by calling special move and jog commands. When you program a
traversing command in direct mode, the program begins to execute the specified command after a system-
entailed time-delay (approx. 2 - 3 scan intervals). A profile which is already running will not be run till its end:
the instantaneous values for velocity and position will be accepted as initial values for the current traversing
command. If the profile data and the initial values are consistent, i.e. comply with the above requirements, a
currently running profile will be seamlessly continued.

PM / PROGRAMMING AND REFERENCE MANUAL 17

It is thus possible, for example, to alter the target point of a running profile, to increase the velocity again, to
subsequently alter the deceleration of the braking ramp, or even alter the acceleration during an acceleration
ramp. If different profiles are to be run in succession, you have to wait for the end of the profile concerned in
each case.

Note: Any data present in the spooler will be rejected when commands are executed in direct mode.

2.2.8.2 Spool mode

In spool mode, a large number of traverse or other commands can be entered in a queue (spooler). Each
axis has its own spooler. Once an interpolation command has occurred, the respective spoolers are
synchronously loaded and processed. Processing of the commands entered in the spooler is started by the
PCAP command ssms(), for example. During processing, you can write further commands into the spooler.
Commands from the spooler are processed one after another without any time-delay. The free spooler area
becomes smaller each time a command is entered, but becomes larger again every time a command is
executed. When all commands in the spooler have been processed, the system automatically switches back
to direct mode, i.e. after more spool commands have been entered, their processing has to be started anew.

Note: For the spooler entries to be processed correctly, the following conditions are to be satisfied:

• All axes for which commands are to be spooled must be in position control at the first spooler

entry.
• The velocity of these axes must be zero before the first spool command is executed, which is

why the Start Spooled Motions Synchronized ssms() command may be executed only when all axes
involved are at rest.

• Traverse profiles in the spooler need an execution time that is higher than the scan time of
the control (default: 1.28 ms). The execution time of a traverse profile is calculated (approx.) by way /
velocity. Shorter traverse profiles must be suppressed by the application program.

2.2.8.3 Additional notes on spooler operation

In order that a contour programmed with spooler commands can be run on an accurate path, within a
command sequence, all axes must always be programmed and started synchronously. Furthermore, any
override value must always be taken over synchronously for all interpolation axes (utrovr command). As
soon as the spooler operation is interrupted by an asynchronous operation, it can be expected that the
programmed contour is not complied with. Automatic spooler synchronisation monitoring can be used to
detect this type of error. This is available from RWMOS V2.5.3.88.
If an asynchronous spooler operation is detected by the operating system, the SAF (#19) bit is set. If the
JSatSAF (#28) bit is set in the MODEREG register, in this case, all axes are stopped using Jog-Stop with the
programmed stop deceleration.

2.3 Interpolation with xPCI-800x

Individual axes are moved with the board xPCI-800x using the jog commands. The move commands are
available for moving more than one axis in interpolated mode. The xPCI-800x boards enable you to perform
circular, linear and helical interpolations. It can process several interpolation profiles simultaneously, with any
initial and final velocities you want. All interpolation computations are synchronized with the scan function
(1.28 ms).

18 PM / PROGRAMMING AND REFERENCE MANUAL

2.3.1 Linear interpolation

With linear interpolation, any desired number of axes are moved on a line of space (n-dimensional) from the
starting point to the target point (absolute positioning) or by a space vector (relative positioning). Parameters
used in linear interpolation are the axes involved, the traverse distance or the target position, the trajectory
acceleration, the maximum trajectory velocity and the trajectory target velocity. When interpolating with an
initial velocity, you should make sure that the direction vectors for the initial velocity and for the interpolation
profile coincide. Otherwise the direction of the velocity vector will be altered and this may lead to velocity
jumps at the axes involved. If the interpolation direction has to be altered from one profile to the next, an
intermediate stop should be made. For direction reversal, there is an option for ending the first profile with
negative target velocity.

2.3.1.1 Formal linear interpolation

When running contours, one axis can remain in the instantaneous motor position, while the other axes are
run in interpolated mode. This stationary axis can, however, participate formally in this interpolation for the
other axes and thus remains synchronized with them. This formal interpolation is particularly important in the
spool operating mode and is selected automatically for all axes at which a traverse distance of 0 is
programmed.

2.3.2 Circular interpolation

Circular interpolation is performed with any two axes. Parameters used for circular interpolation are the axes
involved, the coordinates of the circle's centre, the traverse angle (positive or negative), the trajectory
acceleration, the trajectory maximum velocity and the trajectory target velocity. The coordinates of the
circle's centre can be specified in absolute or relative coordinates.
When interpolating a circle with an initial velocity, you must always make sure that the initial velocity has the
direction you want, i.e. the direction of the tangent in the circle's starting point. Otherwise the direction of the
velocity vector will be altered and this may lead to velocity jumps at the axes involved. If the interpolation
direction has to be altered from one profile to the next, an intermediate stop should be made. For direction
reversal, there is an option for ending the first profile with negative target velocity.

2.3.3 Helical interpolation

Helical interpolation is executed for any two axes as a circular interpolation and with any third axis as a linear
interpolation.

2.3.4 Surface area processing

For interpolation commands the trajectory parameters speed and acceleration are defined with the system
parameters PositionUnit (PU) and TimeUnit (TU). The conditiotion is that axes of the same type (translatory
or rotatory axes) always take part to the interpolation travel. This is to ensure that the PositionUnit is
processed appropriately. When only rotatory axes are involved in translatory interpolation travel as for
example by processing cylinder surface. the effective radius must be defined. It will then enable the
conversion of the rotatory axes values in translatory interpolation values.
For this, the axis-specific value effradius is available. The trajectory speed and acceleration can be set
correctly. The radius is given in the unit set in the linear interpolation. This setting is possible for linear,
circular as well as helical interpolation.

PM / PROGRAMMING AND REFERENCE MANUAL 19

Example:

The surface of a pipe must be welded. This pipe has a diameter of 200mm and is turned with an axis C
defined as rotaroryt.

PU := 0; // Position Unit = mm
C.effradius := 100; // Enter radius

The axis C kann nows be used in the linear interpolation:

mlr (X := 25, C := 60);

The traverse distance of the rotatory axis is given in the translatory position unit (here mm). In case the
traverse distance of the rotary axis must be given in the axis-specific rotatory unit (e.g. deg), the Bit 10 must
set in the register MODEREG (see chapter 6.3.1.4). The conversion can be made simultaneously for all
axes.

2.3.5 Synchronous and asynchronous interpolations

One of the options provided by the xPCI-800x board is to process several different interpolations at the same
time. It is possible, for example, to execute two circular interpolations with two different axis channels each.
The interpolations concerned can be executed synchronously or asynchronously with each other. The
synchronous operating mode is supported particularly well by the spooler mechanism. Of course, besides an
interpolation, any other axis you want that is not used in an interpolation context can be run independently.

2.4 xPCI-800x limit switch handling

The xPCI-800x board offers a wide range of options for limit switch handling and traversing range limitation.
You have options, for example, for configuring any one or more digital inputs as left or right hardware limit
switches. During configuration, a TOM, SMA or SMD function is additionally assigned to the limit switch
input. What's more, you can additionally define a software limit switch (left and right) for each axis channel.
You can select any limit switch positions you want. Here too, you can choose between the TOM, SMA and
SMD functions. The state of the limit switches can be taken from the axst status flag.
A particular limit switch state is erased if the setpoint position is below the limit switch position.

Note: All limit switch states are erased when the control loop is closed [chapter 4.4.6 - cl()].

2.4.1 TOM limit switch function (Turn-Off-Motor)

With this limit switch function, the motor is turned off in the limit switch direction, i.e. the axis comes to rest in
uncontrolled mode when the limit switch is tripped and cannot be moved further into the limit switch zone,
only against the limit switch direction. The setpoint position can, however, continue to run into the limit switch
zone, e.g. due to a profile currently being run. When it exits from the limit switch zone, uncontrolled velocity
jumps may occur.

20 PM / PROGRAMMING AND REFERENCE MANUAL

2.4.2 SMA limit switch function (Stop-Motor-Abruptly)

With this limit switch function, the setpoint position is retained when the limit switch position is exceeded. The
position controller halts the axis in this position. The setpoint position computed by the profile generator will,
however, be correctly continued internally. When the setpoint value position leaves the limit switch zone,
uncontrolled velocity jumps may occur.

2.4.3 SMD limit switch function (Stop-Motor-Decelerate)

With this limit switch function, the axis concerned is decelerated with the stop deceleration {sdec} specified
down to zero velocity. The axis is switched to direct mode and any spooler entries are discarded. It is no
longer possible to perform further controlled traversing into the limit switch area. The axis can be moved out
of the limit switch area with all traversing commands. This is the multi-purpose limit switch function.

PM / PROGRAMMING AND REFERENCE MANUAL 21

3 xPCI-800x Programming methods

One of the important features of the xPCI-800x positioning and contouring control system is the real-time
multi-task operating system rw_MOS (Mips Operating System).
This is contained in the rwmos.elf file and is loaded, once per PC boot, into the local main memory of the
xPCI-800x board within a few seconds, using the mcfg.exe boot menu or a user program.
The rw_MOS operating system software is divided up into various tasks, which basically provide for two
different kinds of user programming.

Note: rwmos.elf and mcfg.exe form part of the xPCI-800x TOOLSET software. You will find further
information in the Operating Manual.

3.1 PC application programming (PCAP programming, or direct
programming)

The xPCI-800x application programming (PCAP) is handled with a user program running on the PC.
Programs are written using a higher-level programming language like Borland C, Microsoft C, Borland Delphi
or Microsoft Visual Basic. By using the function libraries included in the scope of delivery for these
programming languages, you can draw on a powerful reservoir of commands, enabling you to create your
programs quickly and effectively. The commands available include traversing commands, for example, with
and without interpolation, input/output commands, interrogation commands, spool commands, etc.
A typical application program transmits one or more of these commands to the xPCI-800x board and then
waits for these orders to be processed. After the commands concerned have been autonomously executed
by the PC-Task in the rw_MOS operating system, new command orders can be transferred to the PC-Task.
The time between command order and command processing can be utilized by the application program to
perform other application-specific tasks.
Since programming is performed by directly accessing a PC application program, this programming method
is also referred to as "PC direct programming".

Note: In the following chapters, you will occasionally find the term "PCAP command". This type of command
is based on the programming method outlined above.

3.2 Stand-alone application programming (SAP programming)

In contrast to PC application programming, stand-alone application programming permits a program to be
processed entirely without the aid of a PC application program. An application program written in the
rw_SymPas programming language is compiled using the NCC compiler integrated in the development
environment mcfg.exe or the commando line compiler ncc.exe and generates an operating program which
the xPCI-800x board can understand.
This operating program can be loaded onto the xPCI-800x board and is executed autonomously using the
CNC-Task (CNC = Computerized Numerical Control) in rw_MOS. If synchronization is required between a
PC application program and the xPCI-800x board stand-alone program, this can be carried out using
predefined system variables, which both system partners (PC and xPCI-800x board) can access.

Note: In the following chapters, you will often encounter the term "SAP command". This type of command is
based on the programming method outlined above.

22 PM / PROGRAMMING AND REFERENCE MANUAL

3.2.1 SAP-Multitasking

The operating system software rw_MOS can process up to 4 SAP programs simultaneously. All tasks
executed simultaneously have the same priority. The different tasks are addressed by means of numbers.
The smallest task number has the value of 0 and the largest thus the value of 3.
Multitasking programming enables a complex task to be divided up into small, easy-to-handle subtasks. For
example, one task could be used for reference travel, another for monitoring the drive with appropriate
EVENT handlers and yet another for PLC control pure and simple, with appropriate accessing of digital I/O or
PC communication with predefined registers.
The various SAP programs can autonomously stop, start or continue by means of various task control
commands.
The CNC tasks are synchronized with each other, synchronization with any parallel-running PCAP
application program and exchange of data between these, can be carried out using predefined registers,
what are referred to as COMMON variables. 1,000 common integer and 1,000 common floating-point
registers are available to all CNC tasks for this purpose.
Each CNC task can also utilize a local memory area of 1,000 bytes (COMMON BUFFER), which the PC and
the CNC task involved can access in both read and write modes. This can be used to build up a user-specific
command set, for example.

23 PM / PROGRAMMING AND REFERENCE MANUAL

4 PC application programming

4.1 Introduction

The xPCI-800x TOOLSET Software includes library functions for the programming languages Borland
Delphi,
C (e.g. Borland C++Builder, Microsoft Visual C++) and Microsoft Visual Basic. These are programming tools
for the Windows platforms Windows 95, 98, Me, Windows NT 4.0, Windows NT Embedded 4.0, Windows
2000, XP, Vista and Windows 7. The individual functions of the high-level language libraries are executed by
using the system driver mcug3.dll. The meaning of the individual function parameters and their data types is
identical for all programming languages listed above.
Integration of the function libraries into the programming language involved is explained below:

Programming language Use description
Borland Delphi The name of the function library is mcug3.pas. These functions are used to

establish the link between the PC application program and the system driver
mcug3.dll. This file is declared as a unit and is linked to the application program by
means of the uses statement.
Important: Various system parameters possess the data type double. This means
that the user program has to be compiled with the {$N+} option!

C (Borland C,
Microsoft C or others)

The function library's name is mcug3.lib. These functions are used to establish the
link between the PC application program and the system driver mcug3.dll. The Lib
files are available for various C programming tools and are to be linked with the
application program. The file mcug3.h contains the function declarations. It should
be incorporated in the application program by using the #include-instruction.

Microsoft Visual Basic The name of the function library is mcug3.bas. The link between PC application
program and the system driver mcug3.dll is created by the functions declared in
mcug3.bas. This file is available as a basic module and can be inserted in the
project environment of the application program.

4.2 Example programs for using the function libraries

The example programs included in the xPCI-800x TOOLSET software show simple applications for the
functions described below. The source texts for the example programs are provided with comments to render
them self-explanatory. So there is no need for a detailed description of these example programs at this point.
The individual example programs for the two programming languages can be found in the subdirectories
specified here and have the following names:

Programming language Sub-directory Files
Borland Delphi Delphi mcug3.pas, ld.pas, move.pas etc.
Borland C++ Builder C

C/Borland
mcug3.h, ld.c, move.c etc.
mcug3.lib

Microsoft Visual C++ C
C/mvc

mcug3.h, ld.c, move.c etc.
mcug3.lib

Microsoft Visual Basic Vb mcug3.bas, ld.bas, move.bas etc.

24 PM / PROGRAMMING AND REFERENCE MANUAL

4.3 Definitions, structures and records

Before the individual functions are explained, certain definitions, structures and records will be described,
some of which are required as parameters for these functions. The structure/record data fields required are
always declared in the application program. The advantage of this is that the system driver does not take up
too much PC RAM memory and that several PC applications can access the xPCI-800x controllers at the
same time.
All the structure/record types and system constants listed below have been defined in the mcug3.h,
mcug3.pas or mcug3.bas files using the programming languages mentioned above.

4.3.1 Definitions

Table 1: System constants
Name Type Function
MAXAXIS integer Maximum number of possible axes. Currently, the TOOLSET software supports up

to 18 axes.
Warning: This value must not be modified!

LONGINT integer
int
long

Synonym for the data type int or integer in the C or DELPHI Pascal programming
language and longint in the Microsoft Visual Basic programming language.

4.3.2 Structures, records and types

Depending on the programming language involved, we speak either of structures (C), records (Pascal) or
types (Visual Basic). The composition and the functioning of these data types is identical in all programming
languages. In the description below the term structure or record type is used. For easier comprehension, all
structure or record types are written in capitals and their components in lower-case characters.

4.3.2.1 Structure/record type AS

Table 2: Structure/record type AS
Element Type (Abbreviation meaning), Function
unoa LONGINT (used number of axis) Number of axes to be selected at various

function calls.
san Field with MAXAXIS LONGINT (selected axis number) Field of the axes to be

selected. This field must be initialized beginning with Index 0,
depending on the number of axes used.

Note: Counting for axis channels begins with the value 0.

Example: Selecting the first and third axes

as.unoa = 2; // number of axes
as.san[0] = 0; // first axis
as.san[1] = 2; // third axis

25 PM / PROGRAMMING AND REFERENCE MANUAL

4.3.2.2 Structure/record type TSRP

A structure/record type TSRP has to be declared for each axis to work with the individual axis systems.
Using the structure/record elements contained in TSRP, data are exchanged with the xPCI-800x board at
various PCAP commands. For example, axis-specific system variables like accelerations, velocities and
positions can be interrogated or set using special read and write commands.
Important: The individual elements of the TSRP structure are not initialized automatically, i.e. you have to
update them by setting them directly and reading them in beforehand.

Note: You have to make sure that, when more than one axis channel are used, the TSRP structures/records
are located directly behind each other in memory, since the system driver mcug3.dll sometimes accesses the
various axis parameters using address computations. Therefore the data alignment has to be defined on 4
bytes if necessary. Correct arrangement in the PC's main memory is reliably achieved by declaring TSRP as
a field variable.
The size of the field is to be defined for the MAXAXIS axes.

Before use, this data structure must have been initialised. The initialisation is done, e.g. with the commands
InitMcuSystem, InitMcuSystem2 or InitMcuSystem3. In the most cases an instance of this data structure for
each control in the system is defined globally and is initalised when calling the program or after booting of the
control. A use of locally declared instances without previous initialisation is not allowed and can lead to
unexpected error functions.

Table 3: Structure/record type TSRP (axis-specific parameters)
Element Type (Abbreviation meaning), Function
an LONGINT (axis number)
kp double (PIDF filter parameter kp)
ki double (PIDF filter parameter ki)
kd double (PIDF filter parameter kd)
kpl double (PIDF filter parameter kpl)
kfca double (PIDF forward compensation acceleration)
kfcv double (PIDF forward compensation velocity)
jac double (jog acceleration)
jvl double (jog velocity)
jtvl double (jog target velocity)
jovr double (jog override)
hac double (home acceleration)
hvl double (home velocity)
rp double (real position)
dp double (desired position)
tp double (target position)
sll double (software limit left)
slr double (software limit right)
ipw double (in position window)
mpe double (maximum position error)
gf double (gear factor)
mcp LONGINT (motor command port)
axst LONGINT (axis status)
lsm LONGINT (left spool memory)
epc LONGINT (eeprom programming cycle)
digi LONGINT (digital inputs)
digo LONGINT (digital outputs)
ifs LONGINT (interface status)
scratch Field with 4

times
LONGINT

(scratch field) wildcard for next TSRP record

26 PM / PROGRAMMING AND REFERENCE MANUAL

4.3.2.3 Structure/record type TRU (Trajectory Units)

This structure or record type is a parameter for the PCAP command ctru().

Table 4: Structure/record type TRU
Element Type Abbreviation meaning/Function
pu LONGINT position unit
tu LONGINT time unit

4.3.2.4 Structure/record type LMP (Linear Motion Parameters)

This structure or record type is a parameter with all linear interpolation commands.

Table 5: Structure/record type LMP
Element Type (Abbreviation meaning), Function
ac double (acceleration) trajectory acceleration
vl double (velocity) trajectory velocity
tvl double (target velocity) trajectory target velocity
dtm Field with MAXAXIS

double
(distance to move) This field must be initialized in accordance with the
index of the axes used. Index counting begins from 0.
The traverse distances desired are entered into the
individual elements to suit the positioning mode involved (absolute or
relative). The entries in this data field must correspond with the selected
axes in the AS structure/record type.
E.g. the traverse distance of the 5th axis (axis index 4) always must be
entered in the element dtm[4]

4.3.2.5 Structure/record type CMP (Circular Motion Parameters)

This structure or record type is a parameter with all circular interpolation commands.

Table 6: Structure/record type CMP
Element Type (Abbreviation meaning), Function
ac double (acceleration) trajectory acceleration
vl double (velocity) trajectory velocity
tvl double (target velocity) trajectory target velocity
phi double traverse angle in degrees
dtca1 double (distance to center x-axis)
dtca2 double (distance to center y-axis)

The assignment of dtca1 and dtca2 to the desired axis channels is established
with the structure/record type AS. The axis channel entered there in Field 0 is the
x-axis. The y-axis is correspondingly entered in Field 1.

27 PM / PROGRAMMING AND REFERENCE MANUAL

4.3.2.6 Structure/record type HMP (Helical Motion Parameters)

This structure or record type is a parameter with all helical interpolation commands.

Table 7: Structure/record type HMP
Element Type (Abbreviation meaning), Function
ac double (acceleration) trajectory acceleration
vl double (velocity) trajectory velocity
tvl double (target velocity) trajectory target velocity
phi double traverse angle in degrees

The sign determines the circular direction.
If the traverse angle ≤ 1e-100 a circle is run according to information of the
target point.

dtca1 double (distance to center x-axis)
dtca2 double (distance to center y-axis)
dtm Field with MAXAXIS

double
(distance to move z-axis and higher) This field must be initialized in
accordance with the index of the axes used. Index counting begins from 0.
(see also LMP).
The traverse distances desired are entered into the
individual elements to suit the positioning mode involved (absolute or
relative).
By running a circle specified by the traverse angle, the traverse direction
amd target points of the axes to be linearly interpolated are entered from
Index 2.
By running a circle specified by the target point, the target points of the
circular axes are entered as well.

4.3.2.7 Structure/record type HMP 3D (Helical Motion Parameters 3Dimensional)

This structure or record type is a parameter with all 3D interpolation commands.

Table 8: Structure/record type HMP3D
Element Type (Abbreviation meaning), Function
ac double (acceleration) trajectory acceleration
vl double (velocity) trajectory velocity
tvl double (target velocity) trajectory target velocity
phi double traverse angle in degrees

The sign determines the circular direction.
Running with target point instructions is not possible here.

dtca1 double (distance to center x-axis)
dtca2 double (distance to center y-axis)
dtca3 double (distance to center z-axis)
pn1 double Surface normal X-vector
pn2 double Surface normal Y-vector
pn3 double Surface normal Z-vector
dtm Field with MAXAXIS

double
reserved for future program extensions

28 PM / PROGRAMMING AND REFERENCE MANUAL

4.3.2.8 Structure/record type ROSI (Risc Operating System Information)

This structure or record type is a parameter for the PCAP initialization command mcuinit(). After successful
initialization of the xPCI-800x board, the following rw_MOS data (rwmos.elf) are entered in the ROSI
structure:

Table 9: Structure/record type ROSI
Element Type (Abbreviation meaning), Function
revision Field with

SIZE_STRREV
characters

Current software revision of the rw_MOS operating system software.

number_axis LONGINT Number of axis channels available
sysfile_loaded LONGINT This status variable indicates with the value 1 whether

the system file has already been transferred to the xPCI-800x board.

Note: You can use the PCAP load command InitMcuSystem2() or InitMcuSystem3() to transfer the
system.dat system file (which is altered mainly by means of the TOOLSET program mcfg.exe) to the xPCI-
800x board, where it will trigger initialization of intra-system parameters like accelerations, velocities, filter
coefficients, limit values, etc. This load operation must be run once per system boot.

4.3.2.9 Structure/record type CBCNT (Common Buffer CNC-Task)

Each CNC task is provided with a local memory area with a size of 1,000 bytes (COMMON BUFFER), which
both the PC and the CNC task involved can access in both read and write modes. This buffer can be used,
for example, to build up a user-specific command set.

The structure/record type CBCNCT is a parameter for the PCAP commands rdcbcnct() and wrcbcnct(),
which can be used to read or write the COMMON BUFFERs.

Table 10: Structure/record type CBCNCT
Element Type (Abbreviation meaning), Function
Task number LONGINT Task number (0..3)
Size LONGINT Size of buffer [Bytes]
Buffer Pointer Pointer to a buffer which is to be transferred to the xPCI-800x board, or

read in from the xPCI-800x board. The buffer must be at least size bytes in
size!

29 PM / PROGRAMMING AND REFERENCE MANUAL

4.3.2.10 Structure/record type CNCTS (Computerized Numerical Control Task Status)

This structure/record type is a parameter for the PCAP status interrogation command rdcncts().

Table 11: Structure/record type CNCTS
Element Type (Abbreviation meaning), Function
errnum LONGINT Internal CNC task error number. If no error has occurred, then errnum has

the value 0. Information about runtime errors can be found in section 6.8
errline LONGINT In connection with errnum, this element is used to display the error-causing

source text line of the CNC stand-alone application program.
stackfree LONGINT Currently free stack areas [bytes] for the CNC task.
running LONGINT This status word shows in Bit 0 whether the CNC task is currently

processing a program.
Bit 1 shows that the task is in single step operating mode, the system waits
for a step (stepcnct) or continuation command (contcnct). If in the Halt-
mode Bit 2 is set, it is indicated that the Task-stopp was caused by the
SAP-command writelin. (see also notes to the register MODEREG Bit26 in
section 6.3.1.4).

4.4 PCAP high-level language function reference list

4.4.1 Structure of the reference list

The function and command reference list is sorted alphabetically. The descriptions for the individual
commands and functions are structured as follows:

Element Description
FUNCTION NAME: This is the name which is used to call the function subsequently described.
ABBREVIATION MEANING: Here you will find a detailed description of the function name concerned.
BORLAND DELPHI : Here you will find the prototype definitions for the Borland Delphi programming

language (Pascal programming language). The parameters necessary to call up
the function are listed.

C: Prototype definition for the C programming language, e.g. Microsoft Visual C++ or
Borland C++Builder otherwise for Borland Delphi.

VISUAL BASIC: Prototype definition for the Microsoft Visual Basic or Borland Delphi programming
language.

TSRP COMPONENTS: Various functions require components of the structure or record TSRP as
parameters. They are listed here.

DESCRIPTION: Plaintext description of the command.
RETURN VALUE: If the function returns a value, you will find here a description.
NOTE: For recurrent notes and explanations, you will find a cross-reference to the

corresponding chapters here.
EXAMPLE: Occasionally, examples are given for the function calls involved.

30 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.2 General information

All commands and functions, except the spool commands, are executed immediately after being called. For
all move and jog commands, you must make sure before they are executed that the axes involved have
been switched into position control beforehand (PCAP command cl()). In addition, some of the motion
functions require differentiation between absolute and relative traversing commands. The absolute traversing
commands are executed in the absolute measurement system, i.e. are referenced to the machine zero. The
relative traversing commands are executed incrementally, i.e. starting from the current motor position.
The end of profile processing is indicated both in direct mode and in spool mode by the pe flag in the axst
register of the structure/record TSRP [chapter 4.4.45 - rdaxst()].
In the case of the axis-specific motion commands, (jog commands), all system parameters like positions,
traverse distances, accelerations and velocities are specified in the axis-specific units stated in the
TOOLSET program mcfg.exe. For the interpolation commands (move commands), the units selected in the
TRU structure (record) are utilized. This means that a PCAP function is to called up before executing the
move commands.
Conversion between application-specific and intra-system units is made automatically, using the factors
specified in mcfg.exe. Conversion is determined by the encoder resolution or step number, the gear factor
and the distance and time units selected.

4.4.3 azo, activate zero offsets

DESCRIPTION: Each axis channel can be assigned five different zero offsets. You can use the
azo() command to activate the axis-specific offset parameters you want. In the set
(or set_) parameter, you specify which set of zero offsets is to be activated.
This variable, with the value 0 .. 4, is used to select the set of zero offsets you
want. But if the variable has a value greater than 4, no zero offsets will be taken
into account any more.

BORLAND DELPHI: procedure azo(set_: integer);
C: void azo(int set);
VISUAL BASIC: Sub azo(ByVal set_ As Long)
NOTE: Zero offsets are used to specify a new system of coordinates, without having to

influence (new setting) the actual machine zero. The currently set position value of
the zero offset can be read with the command rdZeroOffset (Chapter 4.4.105).

4.4.4 BootErrorReport, initialisation error report

DESCRIPTION: This functions explains in plaintext the error return values of the function BootFile()
described below. A message box displays it on the screen. The user has then to
close it.

BORLAND DELPHI: procedure BootErrorReport(filename:PChar; error:integer);
C: void BootErrorReport(char *filename, int error);
VISUAL BASIC: Sub BootErrorReport (ByVal filename As String, ByVal error As Long)
NOTE: PCAP command BootFile()
EXAMPLE: booterror = BootFile(...); // execute boot sequence

BootErrorReport(..., booterror); // In case of error, display error return value

31 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.5 BootFile, boot operating system file

DESCRIPTION: The function transfers the operating system software (rwmos.elf) to the control
process. The system is reset first. Afterwards the file specified in BootFileName
(usually rwmos.elf) is loaded for the control.

BORLAND DELPHI: function BootFile(var BootFileName:string; TpuBaseAddress: integer):integer;
C: int BootFile(char* BootFileName, int TpuBaseAddress);
VISUAL BASIC: Function BootFile(ByVal filename As String, ByVal TpuBaseAddress As Long) As

Long
NOTE: After successful booting the function InitMcuSystem2() or InitMcuSystem3() is to be

called up in order to initialise the control completely.
TpuBaseAddress is available to be compliant with the PA 8000 controller and is to
be initialised with the value 0.

RETURN VALUE: The function delivers return values as follows:

Return value Error description
0 No error, boot process is completed successfully
10 The file name specified in BootFileName is not correct.
11 The file specified in BootFileName cannot be opened.
12 Unknown file format. At the moment only files with

ELF file format are allowed
13 Incorrect ELF file format or transfer error.
14 An incorrect start address in RWMOS.ELF has been

detected. RWMOS.ELF may be incorrect.
15 Incorrect platform for RWMOS.ELF

The used RWMOS.ELF is not suited for the available
hardware platform.

16 Verify has failed while transferring the boot file, the file has
been incorrectly transferred.

4.4.6 CardSelect

DESCRIPTION: With this function you can select an xPCI-800x controller if several should be
 installed in the PC. The selection is active until the function CardSelect is called for

another device or until the application is terminated. After the selection all
commands of the mcug3.dll, which are called within the application, refer to to
selected device.

BORLAND DELPHI: function CardSelect (CardNum: integer): integer;
C: int CardSelect (int CardNumber);
VISUAL BASIC: Function CardSelect (ByVal CardNr As Long) As Long
PARAMETER: Index of the board in the PC (0, 1, ...)
RETURN VALUE: Index of the board that has been selected successfully. –1 if the selected device is

not in the PC, in this case the device is selected with Index 0).
NOTE: See also CM, Chapter 5.3

4.4.7 ClearCI99

DESCRIPTION: With this function, the common integer variable CI99 is reset synchronously to the
 operating system software RWMOS.ELF.
BORLAND DELPHI: procedure ClearCI99 ();
C: void ClearCI99 (void);
VISUAL BASIC: Sub ClearCI99 ()

32 PM / PROGRAMMING AND REFERENCE MANUAL

PARAMETER: none
RETURN VALUE: none, the variable CI99 is set to 0
NOTE: This function has to be used when the ssf functions 1005 – 1025 for the

synchronisation of spooler commands are used.

4.4.8 cl, close loop

DESCRIPTION:

All axis channels specified in AS are brought into position control with this
command. Note that the actual positions of the axes involved are accepted as
setpoint positions, in order to avoid large system deviations. In addition, all digital
outputs planned with PAE are set. These outputs can, for example, be used for
controlling relays, which in turn can be used to enable power amplifier units.
Depending on the selected axis channel, the release relays of the assigned axis
channel are switched on (CM / Chapter 5.2.9).

BORLAND DELPHI: procedure cl(var as:AS);
C: void cl(struct AS far *as);
VISUAL BASIC: Sub cl(DASEL As ASEL) 'close loop
NOTE: The position control causes the PIDF filter to be processed with the appropriately

set filter coefficients.
When the position control loop is closed, all spooler data for the axis channels
specified will be rejected!
See also PCAP command clv().

4.4.9 clv, close loop velocity

DESCRIPTION:

All axis channels specified in AS are brought in position control with the command.
The actual positions of the axes involved are accepted as setpoint positions and
the actual speeds as setpoint speeds in order to avoid large system deviations. In
addition, all digital outputs planned with PAE are set. This command is to be used
when the axes are moving before the control loop is closed. The corresponding
axes obtain the current speed when the control loop is closed and are running
further with this command. They can now be decelerated e.g. through js() to
prevent a hard stop of the axes when the control loop is closed.
Depending on the selected axis channel, the release relays of the assigned axis
channel are switched on (CM / Chapter 5.2.9).

BORLAND DELPHI: procedure clv(var as:AS);
C: void clv(struct AS far *as);
VISUAL BASIC: Sub clv(DASEL As ASEL) 'close loop velocity
NOTE: See also PCAP command cl()

4.4.10 contcnct, continue numeric controller task

DESCRIPTION: You can use this command to continue a SAP program which has previously been
halted with the SAP command STOP, STOPCNCT() or with the PCAP command
stopcnct(). The task selected in TaskNr (values 0..3) will be continued.

BORLAND DELPHI: procedure contcnct(TaskNr:integer);
C: void contcnct(int TaskNr);
VISUAL BASIC: Sub contcnct(ByVal TaskNr As Long)
NOTE: A SAP program which has been halted with the SAP command ABORT, can only

be restarted (i.e. not continued) with the SAP command STARTCNCT() or the
PCAP command startcnct().

33 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.11 ctru, change trajectory units

DESCRIPTION: This command can be used to switch over the units for the velocity, acceleration
and position parameters of all interpolation commands (move commands). The
parameters are specified in the units selected. The following values are permitted
for the TRU structure component pu (position unit).

BORLAND DELPHI: procedure ctru(var tru:TRU);
C: void ctru(struct TRU far *tru);
VISUAL BASIC: Sub ctru(DTRU As tru)
ALL LANGUAGES: The following values are permitted for the TRU structure component pu (position

unit):

Index Unit Description
0 mm Millimeter
1 inch Inch
2 m Meter
3 rev Revolution
4 deg Degree
5 rad Radiant
6 counts Counts
7 steps Steps

The following values are permitted for the TRU structure component tu (time unit):

Index Unit Description
0 sec Seconds
1 min Minutes
2 tsample Sampling time

NOTE: The default value for pu and tu is 0. This means that for all distance particulars the
unit [mm] is assumed, for velocities the unit [mm/s] and for accelerations the unit
[mm/s²]. The units selected are utilized only for interpolation commands (all move
commands)! If the commands involved are axis-specific motion commands (all jog
commands), the axis units specified in mcfg.exe are taken into account.
The units selected are also determinant for any SAP program running in parallel.

4.4.12 getEnvStr, get Environment String

DESCRIPTION: With this command the environment variable, which is specified in the string or sign
parameter, is read out from the control and the value is entered into the calling
parameter.

BORLAND DELPHI: function getEnvStr (var EnvStr:string):integer;
C: int getEnvStr (char far * EnvStr);
VISUAL BASIC: Function getEnvStr (ByVal EnvStr As String) As Long
RETURN VALUE: The function can return the following values:

Return
value

Errror description

-1 Error: E.g. RWMOS does not supply the function
0 The parameter was not found or is an empty string
> 0 Indicates the string lenth of the found string (without

concluding zero byte).

34 PM / PROGRAMMING AND REFERENCE MANUAL

NOTE: With this function an application program can check the availabilty of environment
variables that are significantly important for the application. In this way an
application can react even then controlled, if for example because of a hardware
change important characteristics of the control are not available anymore.
Th writing of environment variables is only possible with unbooted system in
fwsetup
This function firstly is available in RWMOS.ELF from V2.5.3.37 on and in mcug3.dll
from V2.5.3.25 on.

4.4.13 gettskinfo, Get Task Informations

DESCRIPTION: With this command a task can be asked if there is still a string that is not already
read out.

BORLAND DELPHI: function gettskinfo (TaskNr: integer; var tskinfo: integer): integer;
C: int gettskinfo (int TaskNr, int *tskinfo);
VISUAL BASIC: Function gettskinfo (ByVal tasknr As Long, tskinfo As Long) As Long
Parameter: TaskNr: Tasknummer (0..3)

tskinfo: In this variable the function value is returned.
Return value: < 0: Command is not supported by RWMOS.ELF.

= 0: Command has been executed successfully.
> 0: Time excess. Command not executed.

NOTE: This function is returned in tskinfo. Bit 0 indicates that there is a not already
completed string (write). Bit 1 indicates that there is a completed string (writeln).
The respecting bits are reset automatically by reading the string by gettskstr().
Task message strings can be generated in the programming environment of the
Stand-Alone-Tasks by WRITE or WRITELN (chapter 6.6.78 and 6.6.79).

4.4.14 gettskstr, Get Task Message String

DESCRIPTION: With this command the task specific output string can be read.
BORLAND DELPHI: function gettskstr (TaskNr: integer; buffer: PChar, szbuffer: integer): integer;
C: int gettskstr (int TaskNr, char * buffer, int szbuffer);
VISUAL BASIC: Function gettskstr (ByVal tasknr As Long, ByVal buffer As String, ByVal szbuffer)

As Long
Parameter: TaskNr: Task number (0..3)

buffer: In this variable the read string is returned.
szbuffer: Max. size of the string to be read.

Return value: Number of the read signs
NOTE: This call resets the respecting status bits in tskinfo. The storage section of TskStr

must be sufficient in order to store the returned string. Max. 512 bytes will be
returned.
Task Message Strings can be generated in the programming environment of the
Stand-Alone-Tasks by WRITE or WRITELN (chapter 6.6.78 and 6.6.79).

35 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.15 InitMcuErrorReport, initialisation error report

DESCRIPTION: This functions explains in plaintext the error return values of the functions
InitMcuSystem(), InitMcuSystem2() and InitMcuSystem3() described below. A
message box displays it on the screen. The user has then to close it.

BORLAND DELPHI: procedure InitMcuErrorReport(error:integer);
C: void InitMcuErrorReport (int error);
VISUAL BASIC: Sub InitMcuErrorReport (ByVal error As Long)
NOTE: PCAP command InitMcuSystem(), InitMcuSystem2() and InitMcuSystem3()
EXAMPLE: initerror = InitMcuSystem3(...); // Start initialisation

InitMcuErrorReport(initerror); // In case of error, display error return value

4.4.16 InitMcuSystem, initialise mcu system

DESCRIPTION: This function performs the complete software initialization for the drive system. The
function call should be executed at the beginning of every PCAP application
program at any case before any other PCAP calls. Inside this function, various
PCAP basic functions are called. This includes initialization of the axis numbers
{an} in the tsrp structure. If the system.dat system file has not yet been transferred
onto the xPCI-800x board, this will be done here. At the end of the function, the
axis parameters of all axes are read into the tsrp structure.

BORLAND DELPHI: function InitMcuSystem(var tsrp:TSRP):integer;
C: int InitMcuSystem(var TSRP far *tsrp);
VISUAL BASIC: Function InitMcuSystem(DTSRP As TSRP) As Long
NOTE: PCAP commands txbf2(), mcuinit(), structure/record type ROSI

Important: This function has been written to be compliant with the PA 8000. You
should use instead the functions InitMcuSystem2() or rather InitMcuSystem3().

RETURN VALUE: The function can return the following values:

Return value Error description
0 No error
31 No xPCI-800x controller found
32 The rw_MOS operating software has not been loaded or has

been stopped. See PCAP command BootFile() or service
program mcfg.exe

33 Wrong operating system software. The file versions of the
mcug3.dll and rwmos.elf files have incompliant revision states
and do not match.

34 The driver rnwmc.sys (Windows NT 4.0, 2000) or rnwmc.vxd
(Windows 95/98/Me) cannot be opened.

35 Error by mapping the physical xPCI-800x board memory.
36 Error by mapping in the physical xPCI-800x board memory.
37 Error by mapping out the physical xPCI-800x board memory.
38 xPCI-800x board cannot be accessed
39 xPCI-800x board mail-box-interface cannot be accessed
lderr Error return value from PCAP command txbf()

36 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.17 InitMcuSystem2, initialise mcu system (2nd method)

DESCRIPTION: This function is identical to the InitMcuSystem(), except that the parameters
SystemFileName and TpuBaseAddress are specified. SystemFileName contains
the file name of the system file (usually system.dat) as well as path and drive
information.

BORLAND DELPHI: function InitMcuSystem2(var tsrp:TSRP; TpuBaseAddress: integer, var
SystemFileName: string):integer;

C: int InitMcuSystem2(struct TSRP *tsrp, int TpuBaseAddress, char
*SystemFileName)

VISUAL BASIC: Function InitMcuSystem2(DTSRP As TSRP, ByVal TpuBaseAddress As Long,
ByVal filename As String) As Long

RETURN VALUE: The function has the same return values as the function InitMcuSystem() txbf2
implicitly called up.

NOTE: See InitMcuSystem(),
TpuBaseAddress has no meaning and is to be transferred with the value 0.

4.4.18 InitMcuSystem3, initialise mcu system (3rd method)

DESCRIPTION: This function is identical to InitMcuSystem(), except that the parameters
SystemFileName, rosi, TpuBaseAddress and BoardType are specified.
SystemFileName contains the file name of the system file (usually system.dat) as
well as path and drive information.

BORLAND DELPHI: function InitMcuSystem3(var tsrp:TSRP; var rosi:ROSI, TpuBaseAddress: integer,
var SystemFileName: string; var BoardType: integer):integer;

C: int InitMcuSystem3(struct TSRP *tsrp, struct ROSI *rosi, int TpuBaseAddress, char
*SystemFileName, int *BoardType)

VISUAL BASIC: Function InitMcuSystem3(DTSRP As TSRP, DROSI As ROSI, ByVal
TpuBaseAddress As Long, ByVal filename As String, BoardType As Long) As Long

RETURN VALUE: The function has the same return values as the function InitMcuSystem(). Further
return values can returned by the function txbf2 implicitly called up. The structure
rosi is updated according to the system information returned by the control.
The value BoardType informs about the control type. BoardType can contain the
following values:
1 = PA 8000 (ISA board)
2 = PS 840 (ISA board)
4 = APCI-8001
16 (10 hex) = CPCI-8004
32 (20 hex) = APCI-8008
0 = unknown board or old RWMOS
other values = more recent products

NOTE: See InitMcuSystem()
TpuBaseAddress has no meaning and is to be transferred with the value 0.
As the initialisation function has currently the highest priority, the use of this
function is recommended.

37 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.19 ja, jog absolute

DESCRIPTION: The axis channels selected in AS are moved absolutely to the target positions
specified in TSRP[n].tp using a trapezoidal speed profile. The profile is generated
using the axis-specific system parameters jac (jog acceleration), jvl (jog-velocity)
and jtvl (jog target velocity). You can set and interrogate these parameters at any
time using write and read commands. The default values are specified in the
mcfg.exe utility program. The trajectory parameters are stated in the axis-specific
units (distance, time) specified in mcfg.exe.

BORLAND DELPHI: procedure ja(var as:AS; var tsrp:TSRP);
C: void ja(struct AS far *as, struct TSRP far *tsrp);
VISUAL BASIC: Sub ja(DASEL As ASEL, DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].tp

n = 0 .. Number of axes present-1
NOTE: If this command is executed simultaneously for more than one axis, these may

(due to the axis-specific system parameters) reach the target positions at different
points in time (see chapter 2.2.7)
You can set and interrogate the axis-specific parameters like accelerations and
velocities at any time using write and read commands. They are not transferred
automatically with ja.
Important: By calling out the function ja the element 0 of the global data structure
TSRP must be entered, as ja() takes the index of the used TSRP structure
elements from the AS structure entnimmt.

4.4.20 jhi, jog home index

DESCRIPTION:

You use this command to start the index search run for all the axis channels
selected in AS. The search run is terminated either when the index (zero track)
signal of the incremental encoder is activated or after the distance or angle
particular specified in tp has been exceeded. The search run is carried out using a
trapezoidal speed profile. The parameters for the profile generator are the system
data hac and hvl, which can be set using mcfg.exe or the appropriate write
commands. When the index signal (zero track) is detected, the motor is
decelerated with the deceleration hac to velocity 0. The tp parameter is stated as a
relative traverse distance in the axis-specific position unit. The search direction is
determined by the sign of tp. Generally, the axis system is first run in relation to a
reference switch (cam). To eliminate the mechanical inaccuracy of this cam, the
obvious solution is to perform the index search run afterwards.
The command can be executed with the aid of the profile end flag (PE) in the axst
register and the state of the index signal interrogated with the digi register (Chapter
4.4.51.1). The profile end flag remains set to 0 until the end of the search run.

BORLAND DELPHI: procedure jhi(var as:AS; var tsrp:TSRP);
C: void jhi(struct AS far *as, struct TSRP far *tsrp);
VISUAL BASIC: Sub jhi(DASEL As ASEL, TSRP As TSRP)
TSRP COMPONENTS: TSRP[n].tp

n = 0 .. Number of axes present -1
NOTE: To maximize the accuracy of index positioning, the search run should be executed

with as small a traversing velocity as possible. You do, however, also have an
option for performing the search run in two steps. In the first of these steps, the
search run can be started in a positive traversing direction, for example, at a
relatively high search speed. In the second step, the search run is then concluded
in the negative direction at a low search speed. The search speed can be read and
written with the PCAP commands rdhvl() and wrhvl().
Important: By calling out the function jhi() the element 0 of TSRP must be entered,
as jhi() takes the index of the used TSRP structure elements from the AS structure
entnimmt.

38 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.21 jhl, jog home left

DESCRIPTION: This command starts the reference search run for all axis channels specified in AS,
in a negative traversing direction. The search run is executed with the aid of an
endless trapezoidal speed profile. The axis-specific system data hac and hvl here
serve as parameters for profile generation. If a digital input of the xPCI-800x board
planned with REF function is activated at the axis channel selected, the search run
will be terminated by decelerating (with hac) the axis to a velocity of 0. This state
can be interrogated in the axst register with the aid of the pe profile flag. The profile
flag remains set to 0 until the end of the search run.

BORLAND DELPHI: procedure jhl(var as:AS);
C: void jhl(struct AS far *as);
VISUAL BASIC: Sub jhl(DASEL As ASEL)

4.4.22 jhr, jog home right

DESCRIPTION: This command functions in an identical way to the PCAP command jhl(), except
that the search run is started in the positive traversing direction.

BORLAND DELPHI: procedure jhr(var as:AS);
C: void jhr(struct AS far *as);
VISUAL BASIC: Sub jhr(DASEL As ASEL)

4.4.23 jr, jog relative

DESCRIPTION: This command is identical to the PCAP command ja(), except that the distance
particular tp is a relative (incremental) traverse distance. Starting from the
instantaneous position, the motor is moved by the specified distance (or angle) to
the left (negative values) or the right (positive values).

BORLAND DELPHI: procedure jr(var as: AS; var tsrp:TSRP);
C: void jr(struct AS far *as, struct TSRP far *tsrp);
VISUAL BASIC: Sub jr(DASEL As ASEL, DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].tp

n = 0 .. number of existing axes-1
NOTE: By calling out the function jr the element 0 of TSRP must be entered, as jr() takes

the index of the used TSRP structure elements from the AS structure entnimmt.

4.4.24 js, jog stop

DESCRIPTION: The axis channels - selected in AS - are decelerated with the axis-specific
time-delay sdec to velocity 0 and hold in position control. Until the end of
deceleration the pe flag is reset in the axst register. You can set and interrogate the
time-delay sdec at any time using write and read commands. The default value is
specified in the mcfg.exe utility program.

BORLAND DELPHI: procedure js(var as: AS);
C: void js(struct AS far *as);
VISUAL BASIC: Sub js(DASEL As ASEL)
NOTE: If this command is executed simultaneously for more than one axis, these may

(due to the axis-specific system parameters) reach the target positions at different
points in time [Chapter 2.2.7]. The value sdec = 0 forces an immediate axis stop
without braking ramp.

39 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.25 lpr – Latch Position Registers

DESCRIPTION: This command can start the recording of the graphical system analysis for one
axis.

BORLAND DELPHI: procedure lpr (var latch_infos: LATCH_INFOS);
C: void lpr (struct LATCH_INFOS *latch_infos);
VISUAL BASIC: Sub lpr (DLATCH_INFOS As LATCH_INFOS)
RETURN VALUE: None
EFFECT: After the command lprs has been executed the recording of the graphcal system

analyse is started. The recording parameters are given in latch_infos.
NOTE: See also command lprs and grafical system analyse in mcfg

Important: The data structure latch_infos must be aligned in 4 bytes.

4.4.26 lprs – Latch Position Registers Synchronous

DESCRIPTION: This command can start the recording of the graphical system analysis
synchronously for one or several axes.

BORLAND DELPHI: procedure lprs (var as: AS; var latch_infos: LATCH_INFOS);
C: void lprs (struct AS *as, struct LATCH_INFOS *latch_infos);
VISUAL BASIC: Sub lprs (DASEL As ASEL, DLATCH_INFOS As LATCH_INFOS)
RETURN VALUE: None
EFFECT: After the command lprs has been executed the recording of the graphcal system

analyse is started. The recording parameters are given in latch_infos. The element
san of the data structure latch_infos has no significance with this command as the
axes are specified in as.

NOTE: See also command lpr and grafical system analyse in mcfg
Important: The data structure latch_infos must be aligned in 4 bytes.

4.4.27 lps, latch position synchronous
DESCRIPTION: This command can be used to initiate a latch routine synchronized with the scan

cycle of the axis channel selected in an. After call-up, the actual position {rp} is put
into intermediate storage after every mst scan intervals. If a latch procedure has
taken place, this will be displayed in the axst register in the lpsf flag (Bit No. 16).
The PCAP read command rdlp() or the lp SAP axis qualifier can be used to read
out the position from intermediate storage. Readout will also erase the lpsf flag in
the axst register.

BORLAND DELPHI: procedure lps(an: integer; mst: integer);
C: void lps(int an, int mst);
VISUAL BASIC: Sub lps(ByVal an As Long, ByVal mst As Long)
NOTE: The command is primarily used when recording contours and teach-in applications,

since it enables position data in real time to be recorded from one or more axes.
Typical values for mst are 10 ... 100 scan intervals (-> 12.8 ms ... 128.0 ms). The
precise value will, however, depend on the processing speed of the application
concerned.

40 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.28 mca, move circular absolute - smca, spool motion circular absolute
DESCRIPTION: This command causes circular interpolation of the first two axis channels specified

in AS. There are no restrictions regarding axis selection. Circular interpolation is
carried out on the basis of a trapezoidal speed profile, i.e. taking into account
maximum acceleration and maximum velocity. The structure/record components
specified in CMP are utilized as interpolation parameters. These are the trajectory
acceleration ac, the trajectory velocity vl and the trajectory target velocity tvl. The
coordinates entered in dtca1 and dtca2 specify the circle's centre in an absolute
system of units. Note that dtca1 is assigned to the first axis programmed in AS and
dtca2 to the second axis specified in AS. The units for the trajectory parameters
are selected with the PCAP command ctru().
The angle phi specifies the traverse angle to be run with the unit degrees. The
sense of rotation is specified by the sign of the angle variable. Positive values
signify anti-clockwise rotation and negative values signify clockwise rotation. The
traverse angle range is not fixed to defined limits, i.e. part or multiple circles can be
run as well.

BORLAND DELPHI: procedure mca(var as: AS; var cmp: CMP);
procedure smca(var as: AS; var cmp: CMP);

C: void mca(struct AS far *as, struct CMP far *cmp);
void smca(struct AS far *as, struct CMP far *cmp);

VISUAL BASIC: Sub mca(DASEL As ASEL, CMP As CMP)
Sub smca(DASEL As ASEL, CMP As CMP)

NOTE: Chapter 2.3 Interpolation with the xPCI-800x.

4.4.29 mcr, move circular relative - smcr, spool motion circular relative

DESCRIPTION: This command is identical to the PCAP command mca(), except that the
coordinates specified in dtca1 and dtca2 are incrementally (or relatively)
referenced to the current motor position.

BORLAND DELPHI: procedure mcr(var as: AS; var cmp: CMP);
procedure smcr(var as: AS; var cmp: CMP);

C: void mcr(struct AS far *as, struct CMP far *cmp);
void smcr(struct AS far *as, struct CMP far *cmp);

VISUAL BASIC: Sub mcr(DASEL As ASEL, CMP As CMP)
NOTE: Chapter 2.3 Interpolation with the xPCI-800x.

4.4.30 mca3d, move circular absolute three dimensional -
 smca3d, spool motion circular absolute three dimensional

DESCRIPTION: This function is used to carry out the circular interpolation of the 3 specified axis
channels. There are not restrictions regarding axis selection. Circular interpolation
is carried out on the basis of a trapezoidal speed profile, i.e. considering the
maximum acceleration and maximum velocity. The trajectory acceleration ac, the
trajectory velocity vl and the trajectory target velocity tvl are used as interpolation
parameters in hmp3d. The coordinates entered in dtca1, dtca2 and dtca3 specify
the circle's center in absolute measurement system. Note that dtca1 is assigned to
the first axis programmed in AS, dtca2 to the second axis and dtca3 to the third
axis. The units of the trajectory parameters are selected with PCAP command
ctru().
The circle can be traversed in any wished level, which is specified in the surface
normal in PN1, PN2 and PN3. The current start coordinates always remain in the
given level.

41 PM / PROGRAMMING AND REFERENCE MANUAL

The angle phi specifies the traverse angle to be run with the unit Degree. The
sense of rotation is determined by the sign of the angle variable. Positive values
signify anti-clockwise rotation and negative values clockwise rotation. The traverse
angle range is not fixed to defined values, i.e. part or multiple circle can be runs as
well.
The data field dtm[] is not used here.

BORLAND DELPHI: procedure mca3d(var as: AS; var hmp3d: HMP3D);
procedure smca3d(var as: AS; var hmp3d: HMP3D);

C: void mca3d(struct AS far *as, struct HMP3D far *hmp3d);
void smca3d(struct AS far *as, struct HMP3D far *hmp3d);

VISUAL BASIC: Sub mca3d(DASEL As ASEL, HMP3D As HMP3D)
Sub smca3d(DASEL As ASEL, HMP3D As HMP3D)

NOTE: Chapter 2.3 Interpolation with the xPCI-800x.

4.4.31 mcr3d, move circular relative three dimensional -
smcr3d, spool motion circular relative three dimensional

DESCRIPTION: This function is identical to the PCAP command mca3d() except that the
coordinates specified in dtca1, dtca2 and dtca3 are incrementally or relatively
referenced to the instantaneous motor positions.

BORLAND DELPHI: procedure mcr3d(var as: AS; var hmp3d: HMP3D);
procedure smcr3d(var as: AS; var hmp3d: HMP3D);

C: void mcr3d(struct AS far *as, struct HMP3D far *hmp3d);
void smcr3d(struct AS far *as, struct HMP3D far *hmp3d);

VISUAL BASIC: Sub mcr3d(DASEL As ASEL, HMP3D As HMP3D)
Sub smcr3d(DASEL As ASEL, HMP3D As HMP3D)

NOTE: Chapter 2.3 Interpolation with the xPCI-800x.

4.4.32 mcuinit, motion control unit initialisation

DESCRIPTION: This function is used to carry out various initialization routines inside the system
driver mcug3.dll. It checks whether communication is possible between PC and
xPCI-800x board. If this is the case, the rw_MOS-specific system data returned by
the xPCI-800x board are entered in the structure/record ROSI, which can then be
used to check the rw_MOS-specific system information for validity.
If it has not proved possible to establish communication to the xPCI-800x, the
entire TOSI structure will have the value 0

BORLAND DELPHI: procedure mcuinit(var rosi:ROSI);
C: void mcuinit(struct ROSI far *rosi);
VISUAL BASIC: Sub mcuinit(DROSI As ROSI)
NOTE: This command does not trigger a reset on the xPCI-800x board. This must be

carried out with the PCAP commands ra() or rs().
You can use the ROSI.sysfile_loaded return value to ascertain whether the
system.dat system file has already been transferred to the xPCI-800x board with
the aid of the PCAP load command txbf2(). If this value is 0, then after a successful
mcuinit() PCAP command the PCAP command txbf2() must be executed, so that
you can work with the xPCI-800x board.
The PCAP example programs provided include this command in the
InitMcuSystem(), InitMcuSystem2() and InitMcuSystem3() functions, where the
monitoring mechanism for system initialization is once more illustrated.
Important: mcuinit() is compliant to the PA 8000 and is to be entirely replaced by
the InitMcuSystem3() command.

42 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.33 MCUG3_SetBoardIntRoutine

DESCRIPTION: With this function a user specific interrupt processing routine can be installed and
activated.

BORLAND DELPHI: function MCUG3_SetBoardIntRoutine (func : Pointer): integer;
C: int MCUG3_SetBoardIntRoutine(InterruptRoutine func);
VISUAL BASIC: Function MCUG3_SetBoardIntRoutine (ByVal func As Long) As Long
PARAMETER: func is a function pointer onto the interrupt processing routine that was written by

the user.
It is declared (in C++) e.g. in the following manner:
void CALLBACK EventHandler(int IRQLineBits) {}

RETURN VALUE: No meaning
NOTE: Within the interrrupt processing routine the programming conventions of the

Window operating system have to be observed. So, it is not allowed to generate
window objects in a callback-handler.
For Visual Basic 6.0 the additional module „MCUG3Interrupt.BAS“ is contained in
the scope of delivery for the use of this function

4.4.34 MCUG3_ResetBoardIntRoutine

DESCRIPTION: With this function a previously enabled user specific interrupt processing routine
can be disabled.

BORLAND DELPHI: function MCUG3_ResetBoardIntRoutine (): integer;
C: int MCUG3_ResetBoardIntRoutine(void);
VISUAL BASIC: Function MCUG3_ResetBoardIntRoutine () As Long
NOTE: Before quitting the application the currently installed interrupt service routine must

be desinstalled.

4.4.35 mha, move helical absolute - smha, spool motion helical absolute

DESCRIPTION: This command is used to perform a helical interpolation; it is an extension of
circular interpolation. This is why the particulars given for the PCAP command
mca() also apply to this command, except that the trajectory parameters are
entered in the structure/record HMP. For additional axes specified in AS, the dtm
parameter can be programmed as well. These are the absolute target positions for
additional axes. While the first two axes perform a circular interpolation, the other
ones execute a linear movement. All axes reach their target positions at the same
moment.
Unlike the circular interpolation the circle target point can be defined per target
position instead through the circle angle. This case must be displayed by the user
with a traverse angle value ≤ 1e-100. The angle sign indicates the traverse
direction.
The required circle target point are defined in this case in dtm [0] and dtm[1] of
HMP.
In case the given target point is not located on the circle which results from the
start point and the middle point, the target position is corrected.

BORLAND DELPHI: procedure mha(var as: AS; var hmp: HMP);
procedure smca(var as: AS; var hmp: HMP);

C: void mha(struct AS far *as, struct HMP far *hmp);
void smha(struct AS far *as, struct HMP far *hmp);

VISUAL BASIC: Sub mha(DASEL As ASEL, HMP As HMP)
Sub smha(DASEL As ASEL, HMP As HMP)

43 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.36 mhr, move helical relative - smhr, spool motion helical relative

DESCRIPTION: This command is identical to the PCAP command mha(), except that the distance
particulars programmed in dtca1, dtca2 and dtma3 are referenced to the
instantaneous motor position incrementally (or relatively).

BORLAND DELPHI: procedure mhr(var as: AS; var hmp: HMP);
procedure smhr(var as: AS; var hmp: HMP);

C: void mhr(struct AS far *as, struct HMP far *hmp);
void smhr(struct AS far *as, struct HMP far *hmp);

VISUAL BASIC: Sub mhr(DASEL As ASEL, HMP As HMP)
Sub smhr(DASEL As ASEL, HMP As HMP)

4.4.37 mla, move linear absolute - smla, spool motion linear absolute

DESCRIPTION: This command is used to carry out a linear interpolation with absolute target
particulars. All axes in n-dimensional space are permitted for interpolation. You
specify in AS which axes you want to participate in interpolation. You use LMP to
specify the trajectory acceleration ac, the trajectory velocity vl and the trajectory
target velocity tvl for linear interpolation. The units for the trajectory parameters are
selected with the ctru() command.
Depending on the number of axes involved (unoa), you enter the axes you want in
the san field and the corresponding traverse distances in the dtm field. Note that
the traverse distance in the dtm[n] field is assigned to the axis number n + 1. The
interpolation is referenced to the axes entered in AS. The traverse distances are
interpreted as absolute distance or angle information, i.e. referenced to the
machine zero.

BORLAND DELPHI: procedure mla(var as: AS; var lmp: LMP);
procedure smla(var as: AS; var lmp: LMP);

C: void mla(struct AS far *as, struct LMP far *lmp);
void smla(struct AS far *as, struct LMP far *lmp);

VISUAL BASIC: Sub mla(DASEL As ASEL, lmp As lmp)
Sub smla(DASEL As ASEL, lmp As lmp)

NOTE: Chapter 2.3 Interpolation with the xPCI-800x.

4.4.38 mlr, move linear relative - smlr, spool motion linear relative

DESCRIPTION: This command is identical to the PCAP command mla(), except that the traverse
distances specified in the dtm field are interpreted incrementally or relatively to the
instantaneous motor position.

BORLAND DELPHI: procedure mlr(var as: AS; var lmp: LMP);
procedure smlr(var as: AS; var lmp: LMP);

C: void mlr(struct AS far *as, struct LMP far *lmp);
void smlr(struct AS far *as, struct LMP far *lmp);

VISUAL BASIC: Sub mlr(DASEL As ASEL, lmp As lmp)
Sub smlr(DASEL As ASEL, lmp As lmp)

NOTE: Chapter 2.3 Interpolation with the xPCI-800x.

44 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.39 ms, motion stop

DESCRIPTION: The axis channels selected in AS are decelerated with the trajectory acceleration
or axis deceleration currently valid down to zero velocity and kept in position
control mode. The pe flag in the axst register is reset by the time the deceleration
procedure has been completed. The direction vector of a perhaps currently
ongoing interpolation function is not altered by this command. If the axes selected
are currently running a circle, deceleration will be performed on the circular
trajectory with the trajectory acceleration specified.
Axes which traverse with one final velocity are decelerated down to zero velocity
with the axis-specific deceleration sdec.

BORLAND DELPHI: procedure ms(var as: AS);
C: void ms(struct AS far *as);
VISUAL BASIC: Sub ms(DASEL As ASEL)
NOTE: Axes which are not interpolating jointly may reach the target point at different points

in time.

4.4.40 MsgToScreen, message to screen

DESCRIPTION: This command disables or enables the screen messages of the DDL driver. If the
parameter Enable = 0 the screen messages are disabled.

BORLAND DELPHI: procedure MsgToScreen (Enable: integer);
C: void MsgToScreen (long Enable);
VISUAL BASIC: Sub MsgToScreen (ByVal Enable As Long)
NOTE: This option is important for systems without user interface. If screen messages are

enabled the system can otherwise wait for an entry which cannot be used.
This command is available from the version 3.5.2.10.

4.4.41 ol, open loop

DESCRIPTION: This command opens the position control loop of all axes selected in AS. On each
of the Motor-Command-Ports, 0 V output voltage is outputted in the case of servo
axes and 0 Hz stepping frequency in the case of stepping motor axes. All xPCI-
800x digital outputs planned with PAE function are de-activated for the axis
channels programmed. Depending on the axis channels selected, the relays K2
(axis channel 1), K3 (axis channel 2) and K4 (axis channel 3) are switched off.
[CM / Chapter 5.2.9]

BORLAND DELPHI: Procedure ol(var as: AS);
C: void ol(struct AS far *as);
VISUAL BASIC: Sub ol(DASEL As ASEL)
NOTE: This command is used mainly in exceptional situations, like limit switch limitation,

position error violation, etc.

45 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.42 ra, reset axis

DESCRIPTION: This command can be used to carry out an axis-specific reset operation. This
means that any profile running will be aborted, the position control loop will be
opened, the setpoint value will be switched off, any spooler data will be rejected
and the position registers set to zero. The digital outputs are set to the default
values planned. The axis-specific override factors (PCAP commands wrjovr() and
wrtrovr()) are set to the value 1.0. Any software limits planned will no longer be
monitored for the axis channels selected in ra().

BORLAND DELPHI: Procedure ra(var as: AS);
C: void ra(struct AS far *as);
VISUAL BASIC: Sub ra(DASEL As ASEL)
NOTE: All system data, like accelerations, velocities, filter parameters, etc. remain stored

in memory and therefore need not be loaded anew. This command is mainly used
at system initialization or in exceptional situations.
Warning: PAE outputs of other axes in the same output group which could have
been set, are reset with this command.

4.4.43 rdap, read axis parameters

DESCRIPTION: This command can be used to read in all axis-specific input and output variables of
the structure and/or the TSRP record with one read command.

BORLAND DELPHI: procedure rdap(var tsrp:TSRP);
C: void rdap(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdap(DTSRP As TSRP)
TSRP COMPONENTS: all, i.e. TSRP[n].an .. TSRP[n].ifs
RETURN VALUE: Once the command has been executed, the input and output variables will be

located in the structure or record components concerned in each case, or in the
TSRP record.

NOTE: The individual structure or record components can also be interrogated, using
special read commands. Normally, these read commands are preferred due to the
shorter access time involved.

4.4.44 rdaux, read auxiliary register

DESCRIPTION: The function returns the axis-specific auxiliary register. [Chapter 6.3.3]
BORLAND DELPHI: procedure rdaux (var tsrp:TSRP);
C: void rdaux (struct TSRP *tsrp);
VISUAL BASIC: Sub rdaux(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].aux
NOTE: See also chapter 4.4.124

46 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.45 rdaxst, read axis status

DESCRIPTION: This command can be used to interrogate various axis-specific status and error
flags of the ramp and interpolation task. Normally this command is repeated
cyclically in the PCAP program, in order to check by means of the pe flag
described below whether the traversing commands of the axes involved have been
completely processed. In addition, this command causes a series of error flags in
the axst register to be updated. These should likewise be evaluated cyclically, to
guarantee reliable operating behaviour of the PCAP program.

BORLAND DELPHI: procedure rdaxst(var tsrp:TSRP);
C: void rdaxst(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdaxst(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].axst
RETURN VALUE: After this command has been executed, the bit-coded return value is located in the

structure/record component axst, with the structure described in the table below.

Table 12: Bit-decoded structure of the axst word
Bit No. Name Function
0
0000 0001

- Not assigned, this flag has an undefined value.

1
0000 0002

eo Emergency-Out Error-Flag: Has the value 1, when a digital input as EO planned is
active.

2
0000 0004

dnr 1. Drive-Not-Ready error-flag: Has the value 1, when a digital input (as DR-
planned) is inactive.

3
0000 0008

lslh Limit-Switch Left Hardware error-flag: Has the value 1, when a digital input
(as LSL_SMD, LSL_TOM or LSL_SMA planned) is active.

4
0000 0010

lsrh Limit-Switch Right Hardware error-flag: Has the value 1, when a digital input
(as LSL_SMD, LSR_TOM or LSR_SMA planned) is active.

5

0000 0020

lsls 2. Limit-Switch left software error-flag: Has the value 1, when the left
software limit is exceeded. The left software limit is filed in the axis-
specific system parameter {sll}. For this flag to become active, two
additional conditions must be satisfied: the software limit must be
planned with one of the functions TOM or SMA and the shp() command
must heave been executed beforehand.

6

0000 0040

lsrs 3. Limit-Switch right software error-flag: has the value 1, when the right
software limit is exceeded. The right software limit is filed in the axis-
specific system parameter {slr}. For this flag to become active, two
additional conditions must be satisfied: The software limit must be
planned with one of the functions TOM or SMA and the shp() command
must heave been executed beforehand.

7

0000 0080

mpe Maximum Position error-flag: Has the value 1, when the permissible position error
has been exceeded. The maximum permitted position error is specified in system
parameter {mpe}. The PCAP commands wrmpe() and rdmpe() can be used to alter
the parameter even during run time.

8

0000 0100

dhef 4. Data Handling error-flag: has the value 1, when a data error (e.g.
inconsistent profile data) is detected by the rw_MOS operating system.

5. In certain cases, when this bit occurs, the control loops of the axis
concerned in each case are opened. The resetting of this bit is only
possible by a system restart (BootFile) or by the execution of the ra()
[chapter 4.4.42] or rs() [chapter 4.4.107] commands. If necessary, also
the system variable ErrorReg must be taken into consideration.

47 PM / PROGRAMMING AND REFERENCE MANUAL

Bit No. Name Function
9

0000 0200

cef Data Configuration error-flag. The cef flag is set when the information for operating
modes, signal processing or CPU number on the xPCI-800x do not agree with the
system data (system.dat). The configuration-check is carried out automatically after
the following events:
 after every reset statement (e.g. PCAP command rs())
 after every transfer of the system.dat system file with the PCAP command

 txbf2().
The cause of the error can be eliminated by saving the system data in the [Save
Changes] menu.

10..11 6. Not assigned, these flags always have an non-definied value .
12
0000 1000

pe 7. Profile-End status-flag: Has the value 1, when the end of the profile has
been reached.

13
0000 0200

cl 8. Closed-Loop status-flag: Has the value 1, when the axis channel is in
position control.

14

0000 4000

ip 9. In-Position Status-flag: Has the value 1, when the profile end has been
reached and in addition the difference of setpoint and actual position of
the axis channel is smaller then the position differential contained in the
axis-specific system parameter {ipw}.

15
0000 8000

ui 10. User Input status-flag: Has the value 1, when a digital input (as UI-
planned) is active.

16

0001 0000

lpsf The Latch Position Synchronous Flag indicates that latching has occurred
synchronously to the sampling cycle [chapter 4.4.25], or that a digital input (planned
with the LP function) has been activated (MCFG / Chapter 1.7.2.5). The flag is reset
by reading the latched position LP, e.g. by the command rdlp.

17

0002 0000

reference
d

This flag indicated that the respecting axis is reduced with the command shp. The
flag is reset at booting with the commands rs(), ra() or by writing on rp.
At stepper motor axes the flag is also reset at opening and closing the control loop.
This flag is only available from RWMOS version V2.5.3.16.

18

0004 0000

refh Ref-hardware input flag: Has value 1 if a digital input projected as REF is enabled.
This flag is only available from RWMOS version V2.5.3.47.

19

0008 0000

saf Spooler-Asynchronous-Flag – indicates that the spooler of this axis in the
interpolation compound is asynchronous. The flag is reset by ResetAxis (ra) or
when the control loop is closed (cl). This flag is only available from RWMOS version
V2.5.3.88.

18..31 11. Not assigned, these flags always have a non-defined value and are
reserved for future use.

4.4.46 rdaxstb, read axis status bit

DESCRIPTION: This function can be used to interrogate one piece of the axis status-information of
the xPCI-800x board. The axis number must be specified in the an parameter
(0, 1, ... MAXAXIS).

BORLAND DELPHI: function rdaxstb(an:integer; bitnr:integer):integer;
C: int rdaxstb(int an, int bitnr);
VISUAL BASIC: Function rdaxstb(ByVal an As Long, ByVal bitnr As Long) As Long
RETURN VALUE: The function returns the value 1 or if the corresponding input of bitnr is active.

Assignment of bitnr to the axis status information involved is described in Table 12,
but in the case of bitnr counting starts with the value 1, so that to interrogate pe, for
example, bitnr must have the value 13!

NOTE: See also PCAP command rdaxst()

48 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.47 rdcbcnct, read common buffer CNC-Task

DESCRIPTION: Each CNC task has a local memory area, referred to as the "Common Buffer",
which can be read and written both by the CNC task involved and by a PCAP
program.
This function can be used to read in the complete CNC-task-specific buffer (or part
of it). The function parameter cbcnct is used to select the CNC task buffer, the
read-in size in bytes and the memory address where this block is to be read in.

BORLAND DELPHI: function rdcbcnct(var cbcnct:CBCNCT):integer;
C: int rdcbcnct(struct CBCNCT far *cbcnct);
VISUAL BASIC: Sub rdcbcnct(DCBCNCT As CBCNCT)
RETURN VALUE: The function rdcbcnct() has the following bit-coded return value:

Bit
number

Return
value

Error description

0 0 No error
0 1 when invalid Task Number
1 0 No error
1 1 when maximum permitted buffer size exceeded.

This means that the function normally returns the
value 0.

NOTE: The CNC-task-specific buffer size is 1,000 bytes.
The record structure of CBCNCT is described in chapter 4.3.2.9.
PCAP command wrcbcnct(), SAP commands RDCBx() and WRCBx()

4.4.48 rdcd, read common double

DESCRIPTION: This function can be used to read in predefined variables of the CNC task. The
variables concerned are the rw_SymPas variables CD0 .. CD99. The first
parameter here specifies the number -index- of the variable you want to have read
in. The value range of index here is 0 to 999. The second parameter is a pointer to
a field with 1,000 double variables.

BORLAND DELPHI: procedure rdcd(ndx: integer; var cdbuf:CDBUF);
C: void rdcd(int ndx, struct CDBUF far *cdbuf);
VISUAL BASIC: Sub rdcd(ByVal ndx As Long, CDBUF As CDBUF)
RETURN VALUE: The rdcd() command enters the current value of the relevant CD variable in the

field specified with index.
NOTE: The content of all common variables remains stored in memory even after a

system reset operation, executed by the rs() command, for example. If you do not
want this, you should set the variables concerned to the value you want when
starting the program.
Special note: With Index 100, variables 0 to 99 are read together. The variable
with Index 100 cannot be read with rdcd.
With Index 1000, variables 0 to 999 are read together.

49 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.49 rdci, read common integer

DESCRIPTION: This command is identical to the PCAP command rdcd(), except that here it is not
values of the double type that are read in, but of the LONGINT type. The values
concerned are the rw_SymPas variables CI0 .. CI999.

BORLAND DELPHI: procedure rdci(ndx: integer; var cibuf:CIBUF);
C: void rdci(int ndx, struct CIBUF far *cibuf);
VISUAL BASIC: Sub rdci(ByVal ndx As Long, CIBUF As CIBUF)
NOTE: Special note: With Index 100, variables 0 to 99 are read together. The variable

with Index 100 cannot be read with rdci.
With Index 1000, variables 0 to 999 are read together.

4.4.50 rdcncts, read computerized numeric controller task status

DESCRIPTION: This command can be used to interrogate the current status of the CNC task
selected in TaskNr (values 0..3). After this command has been executed, the
results can be found in the structure/record CNCTS.

BORLAND DELPHI: procedure rdcncts(TaskNr:integer; var cncts:CNCTS):integer;
C: void rdcncts(int TaskNr, struct CNCTS far *cncts);
VISUAL BASIC: Sub rdcncts(ByVal TaskNr As Long, CNCTS As CNCTS)
RETURN VALUE: The return values obtained in CNCTS after rdcncts() has been executed are

described in chapter 4.3.2.10.

4.4.51 rddigi, read digital inputs

DESCRIPTION: This function you can be used to interrogate the following signal states:
The current status of the 16 xPCI-800x digital inputs
The current status of the zero-track (index) signal from the incremental coder
An error of the measured-value-acquisition system put into intermediate storage
An edge of the zero-track (index) signal from the incremental coder put into
intermediate storage

 An edge of the hardware latch signal (strobe) put into intermediate storage. If
an input is active, this will be indicated by the bit concerned having the value
1. As an optional extra, all digital inputs in the mcfg.exe TOOLSET program
can be planned with inversion. It is likewise possible to plan the polarity you
want when an incremental coder with index signal is used.

BORLAND DELPHI: procedure rddigi(var tsrp:TSRP);
C: void rddigi(struct TSRP far *tsrp);
VISUAL BASIC: Sub rddigi(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].digi

n = 0 .. Number of axes -1
RETURN VALUE: The bit-encoded return value is located in the digi structure or record component

and is structured as described in the table printed below.
NOTE: There is no specified axis assignment for the digital inputs.

Bits 16 ... 19 can be reset by means of the rdigi() command [chapter 4.4.71].
(MCFG / Chapters 1.7.2.5 and 1.7.2.5.1).

50 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.51.1 Axis-qualifier digi

The register digi can be used to check the state of the xPCI-800x digital inputs. Active inputs have the value
1 at the concerned bit position.

Table 13: Bit-coded structure of the digi word
Bit No. Function X1/Pin

APCI-8001
APCI-8008

0 Input 1 9
1 Input 2 10
2 Input 3 11
3 Input 4 12
4 Input 5 13
5 Input 6 14
6 Input 7 15
7 Input 8 16
8 Input 9 42
9 Input 10 43
10 Input 11 44
11 Input 12 45
12 Input 13 46
13 Input 14

APCI-8001/APCI-8008: hardware strobe signal for latching the actual position
(axis channel 1)

47

14 Input 15
APCI-8001/APCI-8008: hardware strobe signal for latching the actual position
(axis channel 2)

48

15 Input 16
APCI-8001/APCI-8008: hardware strobe signal for latching the actual position
(axis channel 3)

49

16 Zero track of incremental encoder, axis-specific --
17 Error of the encoder data acquisition system, axis-specific --
18 Value of the zero-track signal from the incremental coder (axis-specific) put into

intermediate storage
--

19 Value of the latch signal (hardware strobe) (axis-specific) put into intermediate
storage

--

20 APCI-8008/CPCI-8004: AEA alarm error encoder channel A --
21 APCI-8008/CPCI-8004: AEB alarm error encoder channel B --
22 APCI-8008/CPCI-8004: AEN alarm error encoder channel Index --
23 APCI-8008/CPCI-8004: AES alarm error encoder group error --
24 CPCI-8004: Input 17 --
25 CPCI-8004: Input 18 --
26 CPCI-8004: Input 19 --
27 CPCI-8004: Input 20 --
28 CPCI-8004: Input 21 and hardware strobe signal for latching axis channel 1 --
29 CPCI-8004: Input 22 and hardware strobe signal for latching axis channel 2 --
30 CPCI-8004: Input 23 and hardware strobe signal for latching axis channel 3 --
31 CPCI-8004: Input 24 and hardware strobe signal for latching axis channel 4 --

51 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.52 rddigib, read digital input bit

DESCRIPTION: This function can be used to interrogate the current state of one xPCI-800x digital
input and other logic signals. The axis number must be specified in the an
parameter (0, 1, ... MAXAXIS).

BORLAND DELPHI: function rddigib(an:integer; bitnr:integer):integer;
C: int rddigib(int an, int bitnr);
VISUAL BASIC: Function rddigib(ByVal an As Long, ByVal bitnr As Long) As Long
RETURN VALUE: The function returns the value 1 or TRUE, if the corresponding input of bitnr is

active.
NOTE: Bit numbers 17..20 can be reset via the rdigi() command [Chapter 4.4.71], (MCFG /

Chapters 1.7.2.5 and 1.7.2.5.1) and PCAP command rddigi()
Caution: The bit number counting begins at 1.

Table 14: Assignment of bitnr to the various xPCI-800x digital inputs

‘bitnr’ Function X1/Pin
APCI-8001
APCI-8008

1 Input 1 9
2 Input 2 10
3 Input 3 11
4 Input 4 12
5 Input 5 13
6 Input 6 14
7 Input 7 15
8 Input 8 16
9 Input 9 42
10 Input 10 43
11 Input 11 44
12 Input 12 45
13 Input 13 46
14 Input 14 47
15 Input 15 48
16 Input 16 49
17 Zero track of incremental encoder, axis-specific --
18 Error of the encoder data acquisition system, axis-specific --
19 Value of the zero-track signal from the incremental coder (axis-specific) put into

intermediate storage
--

20 Value of the latch signal (hardware strobe) (axis-specific) put into intermediate
storage Strobe), axis-specific

--

21 APCI-8008/CPCI-8004: AEA alarm error encoder channel A --
22 APCI-8008/CPCI-8004: AEB alarm error encoder channel B --
23 APCI-8008/CPCI-8004: AEN alarm error encoder channel Index --
24 APCI-8008/CPCI-8004: AES alarm error encoder group error --
25 CPCI-8004: Input 17 --
26 CPCI-8004: Input 18 --
27 CPCI-8004: Input 19 --
28 CPCI-8004: Input 20 --
29 CPCI-8004: Input 21 --
30 CPCI-8004: Input 22 --
31 CPCI-8004: Input 23 --
32 CPCI-8004: Input 24 --
21..32 The flags that are not assigned depending on the control type have an undefined

value and are reserved for future use.
--

52 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.53 rddigo, read digital outputs

DESCRIPTION: This command is used to read the current output status of the xPCI-800x digital
outputs into the axis-specific structure/record component digo. The bits set there
represent outputs set.

BORLAND DELPHI: procedure rddigo(var tsrp:TSRP);
C: void rddigo(struct TSRP far *tsrp);
VISUAL BASIC: TSRP[n].digo
TSRP COMPONENTS: Sub rddigo(DTSRP As TSRP)
RETURN VALUE: After this command has been executed the bit-coded return values are located in

the structure/record component digo. This component has the structure/record
defined in the PCAP-command wrdigo().

4.4.54 rddigob, read digital output bit

DESCRIPTION: This function can be used to interrogate the current state of one xPCI-800x digital
output. The axis number must be specified in parameter an (0, 1, ... MAXAXIS-1).

BORLAND DELPHI: function rddigob(an:integer; bitnr:integer):integer;
C: int rddigob(int an, int bitnr);
VISUAL BASIC: Function rddigob(ByVal an As Long, ByVal bitnr As Long) As Long
RETURN VALUE: This function returns the value 1 or TRUE, if the corresponding output of bitnr is

active. Assignment of bitnr to the outputs involved is shown in the PCAP command
wrdigob().

4.4.55 rddp, read desired position

DESCRIPTION: The xPCI-800x profile generator computes an internal reference variable, referred
to as the "setpoint position" (= desired position). This can be read in with this
command. Normally, in the position control operating mode, the actual position
[[chapter 4.4.93 - rdrp()])] and this setpoint position must be identical, apart from
tolerable deviations.

BORLAND DELPHI: procedure rddp(var tsrp:TSRP);
C: void rddp(struct TSRP far *tsrp);
VISUAL BASIC: Sub rddp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].dp
RETURN VALUE: After the command has been executed, the setpoint position is available in the dp

field. The value is returned in the axis-specific position unit.
NOTE: This setpoint position is also utilized for setpoint/actual-differential formation, for the

automatic position error monitoring function.

53 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.56 rddpoffset, read desired position offset

DESCRIPTION: With this function the currently programmed value of the axis qualifier dpoffset can
be read.

BORLAND DELPHI: function rddpoffset (an: integer; var value: double): integer;
C: int rddpoffset(int an, double *value);
VISUAL BASIC: Function rddpoffset (ByVal an As Long, value As Double) As Long
PARAMETER: With an, the axis channel which has to be read out is indicated (0, 1, ...).

In value, the positon offset which has to be written is returned in the axis-specific
position unit.

RETURN VALUE: 0 at success,
unequal 0 at failure, if e.g. RWMOS.ELF does not support this function yet.

NOTE See also chapter 4.4.129

4.4.57 rddpd – read desired position in display unit

DESCRIPTION: The xPCI-800x profile generator computes an internal reference variable, referred
to as the "setpoint position" (= desired position). This can be read with this
command in the axis-specific display unit.

BORLAND DELPHI: procedure rddpd(var tsrp:TSRP);
C: void rddpd(struct TSRP far *tsrp);
VISUAL BASIC: Sub rddpd(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].dp
RETURN VALUE: None
EFFECT: After the command has been executed, the setpoint position is available in the dp

field. The value is returned in the axis-specific position unit.
NOTE: See also commands rddp, rdrp, rdrpd

4.4.58 rddv, read desired velocity

DESCRIPTION: This function returns the axis-specific setpoint velocity of the xPCI-800x profile
generator. In best case the value read in corresponds to the real axis velocity
(actual velocity).

BORLAND DELPHI: procedure rddv(var tsrp:TSRP);
C: void rddv(struct TSRP far *tsrp);
VISUAL BASIC: Sub rddv(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].dv
RETURN VALUE: After the command has been executed, the setpoint velocity is available in the dv

register with the axis-specific velocity unit.
NOTE: The setpoint velocity can only be influenced by corresponding traversing

commands.

54 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.59 rddvoffset, read desired velocity offset

DESCRIPTION: With this function, the currently programmed value of the axis qualifier dvoffset can
be read.

BORLAND DELPHI: function rddvoffset (an: integer; var value: double): integer;
C: int rddvoffset(int an, double *value);
VISUAL BASIC: Function rddvoffset (ByVal an As Long, value As Double) As Long
PARAMETER: With an, the axis channel which has to be read out is indicated (0, 1, ...).

In value, the currently set velocity value is returned in the axis-specific position unit.
RETURN VALUE: 0 at success,

unequal 0 at failure, if e.g. RWMOS.ELF does not support this function yet.

4.4.60 rdEffRadius – Read Effective Radius

DESCRIPTION: The effective radius can be read with this command for a rotatory axis (see chapter
0).

BORLAND DELPHI: rdEffRadius (an: integer; var value: double);
C: void rdEffRadius (long an, double *value);
VISUAL BASIC: Sub rdEffRadius (an As Long, ByVal value As Double)
PARAMETER: The axis number is given in an. The effective radius is returned in value in the unit

defined through PU.
RETURN VALUE: None
NOTE: see chapter 6.3.3

4.4.61 rdepc, read EEPROM programming cycle

DESCRIPTION: This function can be used to read the instantaneous number of xPCI-800x
EEPROM programming cycles. The cycle number is increased by one in the
EEPROM for every save operation in the TOOLSET program mcfg.exe. The
EEPROM can be written at least 10,000 times.

BORLAND DELPHI: Procedure rdepc(var tsrp:TSRP);
C: void rdepc(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdepc(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].epc
RETURN VALUE: After this command has been executed, the current programming cycle number is

in the structure/record component epc.

4.4.62 rdErrorReg, read Error Register

DESCRIPTION: This function can be used ro read the Error Register for the RWMOS operating
system software.

BORLAND DELPHI: procedure rdErrorReg(var ErrorReg: integer);
C: void rdErrorReg (long *ErrorReg);
VISUAL BASIC: Sub rdErrorReg (ErrorReg As Integer)
RETURN VALUE: The bit-coded value of the Error Register is returned in ErrorReg.

The function has no return value.
NOTE: For the layout of the Error Register, see next chapter.

55 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.62.1 Register ErrorReg

The ErrorReg register displays various error states of the RWMOS operating system software. The register
is bit-coded.

Table 15: Bit-coded construction of the ErroReg word
Bit No. Name Function Hex
0 errAxDef Axis in AS was selected more than once in a positioning command 1
1 errTargetVel Target velocity <> 0 at spooler end, although ForbidTargetVel set:

System has been reset
2

2 errUnit An invalid unit was used 4
3 errCenterPoint Invalid center point programmed for circle or a circle with a radius = 0 has

been programmed
8

4 errSpooler
Overrun

Spooler overrun detected for an axis 10

5 ProfileToSmall In spooler operation, at least two traverse profiles whose execution time is
shorter than the scan time are executed consecutively. This may cause
errors in the program flow and is not allowed.

20

6 SplineSizeErr Too many spline sets loaded 40
7 RotationFail Error in axis rotation 80
8 PciBusError Error detected in Interrupt Cause Register of PCI bridge 100
9 CheckMonitor

Screen
Incorrect output to Monitor Screen generated 200

10 SsfWait
Refused

At least one SSF wait command was ignored, because the target velocity
of the previous traversing command did not equal 0.
This suggests a programming error in the user software!

400

11 SpoolerLoad
Error

Error while writing on the spooler, as at the same time, a positioning
profile was generated by the system. This may happen if, for example, a
limit switch switches during the call of an interpolation command.

800

12 VelocityZero This bit indicates that an interpolation command with a traversing velocity
= 0 was detected. Depending on the bit InhibitProfileRefuse (register
MODEREG Chapter 6.3.1.4), the profile is automatically rejected.
This suggests a programming error in the user software or a configuration
problem of the user!

1000

13 AccelZero This bit indicates that an interpolation command with an acceleration = 0
was detected. Depending on the bit InhibitProfileRefuse (register
MODEREG Chapter 6.3.1.4), the profile is automatically rejected.
This suggests a programming error in the user software or a configuration
problem of the user!

2000

14 LimitDefError An incorrect limit value has been detected in mcpmax, mcpmin, mcpcp or
mcpcn (incorrect numerical value).

4000

15 ZeroProfile An interpolation command has been rejected because the indicated
traverse distance is almost or equal 0.

8000

16 RadiusError A circle or helix command has been rejected because the circle radius to
be implemented is almost or equal 0.

10000

14..31 Reserved for future use; these flags have an undefined value

56 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.63 rdf, read filter

DESCRIPTION: This command can be used to read in the current axis-specific PIDF filter
coefficients of the xPCI-800x board. The default values of these coefficients are
specified using the TOOLSET program mcfg.exe.

BORLAND DELPHI: Procedure rdf(var tsrp:TSRP);
C: void rdf(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdf(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].kp, TSRP[n].ki, TSRP[n].kd, TSRP[n].kpl, TSRP[n].kfca, TSRP[n].kfcv

n = 0 .. Number of axis present -1
RETURN VALUE: After the command has been executed, the return values are in the TSRP

structure/record components listed above.
NOTE: You will find further details on the PIDF filter in chapter 2.1.1.1, OM / Chapter 4.1.1,

CM / Chapter 6.2 and PCAP command uf()

4.4.64 rdGCR, read gear configuration register

DESCRIPTION: With this function, the axis-specific Gear Configuration Register can be read.
[Chapter 6.3.3]

BORLAND DELPHI: procedure rdGCR (an: integer; var value: integer);
C: void rdGCR (long an, long *value);
VISUAL BASIC: Sub rdGCR (ByVal an As Long, value As Long)
PARAMETER: With an, the axis channel which has to be read out is indicated (0, 1, ...).

In value, the contents of the GCR register is returned.
RETURN VALUE: None
NOTE: See also document on the resource interface - GEAR

4.4.65 rdgf, read gear factor

DESCRIPTION: This function returns the axis-specific gear factor {gf}. The default value is specified
using the TOOLSET program mcfg.exe.

BORLAND DELPHI: Procedure rdgf(var tsrp:TSRP);
C: void rdgf(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdgf(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].gf
RETURN VALUE: After the command has been executed, the factor is available in the gf field with the

axis-specific unit.
NOTE: The gear factor can be set at any time with the PCAP command wrgf().

4.4.66 rdgfaux, read gear factor auxiliary channel

DESCRIPTION: This function returns the axis-specific ratio of stepper motor resolution to encoder
channel in stepper systems with encoder verification. The default value is 1.0; the
value can only be changed at runtime.

BORLAND DELPHI: function rdgfaux (an: integer; var value: double) : integer;
C: int rdgfaux(int an, double *value)
VISUAL BASIC: Function rdgfaux (ByVal an As Long, value As Double) As Long
RETURN VALUE: After successful execution, the function returns 0. In this case, the axis-specific

value of gfaux is available in value. With a return value ≠ 0, the value could not be
read, because e.g. RWMOS.ELF does not support the command.

NOTE: The factor can be set at any time with the PCAP command wrgfaux(). See also
Chapter 6.3.3

57 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.67 rdhac, read home acceleration

DESCRIPTION: This command can be used to read in the axis-specific reference travel
acceleration hac. The default value is specified using the TOOLSET program
mcfg.exe.

BORLAND DELPHI: Procedure rdhac(var tsrp:TSRP);
C: void rdhac(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdhac(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].hac
RETURN VALUE: After the command has been executed, the reference travel acceleration is

available in the hac field. The value is returned in the axis-specific acceleration
unit.

NOTE: The reference travel acceleration can be set at any time with the PCAP command
wrhac().

4.4.68 rdhvl, read home velocity

DESCRIPTION: This command can be used to read in the axis-specific reference travel velocity hvl.
The default value is specified using the TOOLSET program mcfg.exe.

BORLAND DELPHI: procedure rdhvl(var tsrp:TSRP);
C: void rdhvl(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdhvl(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].hvl
RETURN VALUE: After the command has been executed, the reference travel velocity is available in

the hvl field. The value is returned in the axis-specific velocity unit.
NOTE: The reference travel velocity can be set at any time with the PCAP command

wrhvl().

4.4.69 rdifs, read interface status

DESCRIPTION: This command can be used to read in status information of the xPCI-800x.
BORLAND DELPHI: procedure rdifs(var tsrp:TSRP);
C: void rdifs(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdifs(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].ifs
RETURN VALUE: The bit-coded return value is located in the structure/record component ifs and has

the structure described in the table below.

4.4.69.1 Axis qualifier ifs

This register can be used to interrogate various pieces of status information for the xPCI-800x. If the status
or error information concerned is valid, this is indicated by the value 1 at the bit position involved. The bits
represent important internal status information for the APCI-8001. Possible causes of errors can be problems
at the voltage supply, EMC or hardware problems and should not actually occur. In case such an error
occurs the controlling internal I/0 interface is reset. A normal working process is then ensured once the
controller is booted anew.
The status information must be controlled cyclically by an application program.

58 PM / PROGRAMMING AND REFERENCE MANUAL

Table 16: Bit-coded structure of the ifs word
Bit-No. Function
0 edv the system information and data filed in the EPROM are valid.
1 cncrdy: The CNC ready to operate relay is active (closed).
16 pfe: The Power Fail Error flag is set to "1" whenever the operating voltage at the xPCI-800x falls below

a threshold voltage of 2.85V. After the module is switched on, the flag is likewise set to "1".
17 wdog: The Watchdog flag is set to "1" if the watchdog logic on the xPCI-800x has been tripped.
18 iae: The Invalid Access Error flag is set to "1" if an invalid access operation has taken place within the

rw_MOS operating system software.
19 scwdog: The watchdog flag is set to „1“, if the watchdog safety logic (Secondary circle) has tripped the

xPCI-800x.
20 scpfe: The Power Fail Error flag is always set to „1“, when the operating voltage at the xPCI-800x falls

below a threshold of 4.75V. After the module is switched on, the flag is likewise set to „1“.
21..31 Not assigned, these flags always have the value 0

Note: In an initialization routine of the rw_MOS firmware, error flags 16 ... 20 are copied from an internal
logic register into the ifs register. The logic register is then erased, i.e. the flags are no longer available after
a second booting routine (BootFile). The flags can also be reset by the rifs() command [chapter 4.4.69].

4.4.70 rdifsb, read interface status bit

DESCRIPTION: This function can be used to interrogate one piece of APCI-8001 interface status
information. The axis number must be specified in the an parameter (0, 1, ...
MAXAXIS-1)

BORLAND DELPHI: function rdifsb(an:integer; bitnr:integer):integer;
C: int rdifssb(int an, int bitnr);
VISUAL BASIC: Function rdifsb(ByVal an As Long, ByVal bitnr As Long) As Long
RETURN VALUE: This function returns the value 1 or TRUE, if the corresponding input of bitnr is

active.
Assignment of bitnr to the status information concerned is described in Table 16,
but in the case of bitnr counting starts with the value 1, i.e. to interrogate edv, for
example, bitnr has to have the value 1!

NOTE: See also PCAP command rdifs()

4.4.71 rdigi, reset digital inputs

DESCRIPTION: This function can be used to clear axis-specific status information(s) filed in digi.
BORLAND DELPHI: procedure rdigi(var tsrp:TSRP);
C: void rdigi(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdigi(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].digi

n = 0 .. number of axes -1
NOTE: rddigi() [Chapter 4.4.51]

4.4.72 rdipw, read in position window

DESCRIPTION: This function returns the axis-specific In-Position Window.
BORLAND DELPHI: procedure rdipw(var tsrp:TSRP);
C: void rdipw(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdipw(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].ipw
NOTE: After the command has been executed, the In-Position Window is available in the

ipw register in the axis-specific position unit. PCAP command wripw()

59 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.73 rdirqpc, read interrupt request PC

DESCRIPTION: This command can be used to interrogate the instantaneous status of the interrupt
source generated on the xPCI-800x board. If the interrupt is active, the function
returns the value 1, otherwise the value 0.

BORLAND DELPHI: function rdirqpc: integer;
C: int rdirqpc(void);
VISUAL BASIC: Function rdirqpc() As Long
NOTE: The interrupt can be set or reset by the system variable IRQPC using an SAP

program [chapter 6.3.1.1 - PC interrupt generation].

4.4.74 rdjac, read jog acceleration

DESCRIPTION: This command can be used to read in the axis-specific jog acceleration jac. The
default value is specified using the TOOLSET program mcfg.exe.

BORLAND DELPHI: procedure rdjac(var tsrp:TSRP);
C: void rdjac(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdjac(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].jac
RETURN VALUE: After the command has been executed, the jog acceleration is available in the jac

field. The value is returned in the axis-specific acceleration unit.
NOTE: The jog acceleration can be set at any time with the PCAP command wrjac().

4.4.75 rdJerkRel, read jerkrel

DESCRIPTION: This command can be used to read in the axis-specific paramter jerkrel in value.
BORLAND DELPHI: procedure rdJerkRel (an: integer; var value: double);
C: void rdJerkRel (long an, double *value);
VISUAL BASIC: Sub rdJerkRel (an As Long, ByVal value As Double)
PARAMETER: an = axis number (0..n)

Double = free variable for function value
RETURN VALUE: None
NOTE: jerkrel has always a value from 0..1.

See also chapter 6.3.3.

4.4.75.1 Axis qualifier jerkrel

This variable can parameterise the acceleration characteristics for S-form speed profiles (jerk limitation). This
factor is only effective when an S profile is selected (see register MODEREG chapter 6.3.1.4) and has the
following meaning:
The acceleration defined for S profiles is constantly the medium acceleration above the whole
acceleration/deceleration process. The maximum acceleration in the acceleration/braking ramp is calculated
as follows:

amax = a * (1 + jerkrel)

The value of jerkrel has the following consequence on the acceleration course.

0 = rectangular acceleration course
1 = triangular acceleration course
inbetween = trapezoidal acceleration course

60 PM / PROGRAMMING AND REFERENCE MANUAL

Example: The value 0.2 is allocated to jerkrel.

- The acceleration has now a trapezoidal course for all profiles.
- The maximum acceleration in the middle of the trapez is 1.2 times faster as the set acceleration.

The medium acceleration above the whole acceleration/deceleration process is the programmed
acceleration (jac at JOG commands or trac at MOVE commands).
Values between 0 and 1 are possible for jerkrel. The default value is 1. Values out of the range 0..1 are
limited either to 0 or 1.

4.4.76 rdjtvl, read jog target velocity

DESCRIPTION: This command can be used to read in the axis-specific jog target velocity jtvl. The
default value is specified using the TOOLSET program mcfg.exe.

BORLAND DELPHI: procedure rdjtvl(var tsrp:TSRP);
C: void rdjtvl(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdjtvl(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].jtvl
RETURN VALUE: After the command has been executed, the jog target velocity is available in the jtvl

field. The value is returned in the axis-specific velocity unit.
NOTE: The jog target velocity can be set at any time using the PCAP command wrjtvl().

4.4.77 rdjvl, read jog velocity

DESCRIPTION: This command can be used to read in the axis-specific jog velocity jvl. The default
value is specified using the TOOLSET program mcfg.exe.

BORLAND DELPHI: Procedure rdjvl(var tsrp:TSRP);
C: void rdjvl(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdjvl(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].jvl
RETURN VALUE: After the command has been executed, the jog velocity is available in the jvl field.

The value is returned in the axis-specific velocity unit.
NOTE: The jog velocity can also be set at any time using the PCAP command wrjvl().

4.4.78 rdledgn, read led green

DESCRIPTION:
APCI-8001:

APCI-8008:

CPCI-8004:

This function can be used to read in the current state of LED D29 (green).

This function can be used to read in the current state of LED D53 (green).

This function can be used to read in the current state of LED D36 (green).

BORLAND DELPHI: function rdledgn: integer;
C: int rdledgn(void);
VISUAL BASIC: Function rdledgn() As Long
RETURN VALUE: The function's return value is 1, provided the LED is switched on, otherwise it is 0.
NOTE: PCAP command wrledgn(), system variable LEDGN

61 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.79 rdledrd, read led red

DESCRIPTION:
APCI-8001:

APCI-8008:

CPCI-8004:

This function can be used to read in the current state of LED D31 (red).

This function can be used to read in the current state of LED D56 (red).

This function can be used to read in the current state of LED D38 (red).

BORLAND DELPHI: function rdledrd: integer;
C: int rdledrd(void);
VISUAL BASIC: Function rdledrd() As Long
NOTE: PCAP command wrledrd(), system variable LEDRD

4.4.80 rdledyl, read led yellow

DESCRIPTION:
APCI-8001:

APCI-8008:

CPCI-8004:

This function can be used to read in the current state of LED D30 (yellow).

This function can be used to read in the current state of LED D55 (yellow).

This function can be used to read in the current state of LED D37 (yellow).

BORLAND DELPHI: function rdledyl: integer;
C: int rdledyl(void);
VISUAL BASIC: Function rdledyl() As Long
NOTE: PCAP command wrledyl(), system variable LEDYL

4.4.81 rdlp, read latched position

DESCRIPTION: This function returns the axis-specific latch position. The latching procedure can be
triggered by various mechanisms:
1. When an input planned with LP function is activated. Here, the maximum time
delay is two scan intervals (2.56 ms). A new latching procedure will only be
enabled after the latching input has been de-activated.
2. If an lps() PCAP command [chapter 4.4.25] has previously been executed and
the time delay specified there in the mst parameter has elapsed.
3. In real time (max. 1 μs time delay) by means of default-setting xPCI-800x digital
inputs.
A new latching procedure will only be enabled after the latching input has been de-
activated.
In all these methods, the actual position {rp} of the motor axis is put into
intermediate storage.
In stepper motor systems or analog feedback with encoder verification, also the
auxiliary channel AUX can be latched if the option “Use Encoder for position
feedback” is activated (mcfg system data).

BORLAND DELPHI: procedure rdlp(var tsrp:TSRP);
C: void rdlp(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdlp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].lp
RETURN VALUE: After the function has been executed, the latch position is available in the lp

register in the axis-specific position unit.
The priority of the three methods is the same as the order of their listing, i.e. real-
time latching has top priority

NOTE: PCAP command wrlp()

62 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.82 rdlpndx, read latched position index

DESCRIPTION: This function returns the axis-specific latch position of the index signal (zero track).
When the incremental coder's zero track is activated, the actual position {rp} of the
motor axis in real time is put into intermediate storage.

BORLAND DELPHI: procedure rdlpndx(var tsrp:TSRP);
C: void rdlpndx(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdlpndx(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].lp
RETURN VALUE: After the function has been executed, the latch position is available in the lp

register in the axis-specific position unit.
NOTE: Latching of the incremental coder's zero track is helpful in the coder verification

routine and for reference travel programming.
PCAP command wrlpndx()

4.4.83 rdlsm, read left spool memory

DESCRIPTION: This command returns the free spool area in bytes. By means of a PCAP or SAP-
application program, the freely available spool area can be interrogated at any time
you want and reloaded if necessary. This enables you to load very large traversing
profiles without interrupting profile generation. The spool area is loaded with spool
commands, using both programming methods (PCAP and SAP). All spool
commands cause the freely available spool area to decrease and all commands
executed from the spool area cause it to grow again.

BORLAND DELPHI: procedure rdlsm(var tsrp:TSRP);
C: void rdlsm(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdlsm(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].lsm
NOTE: The spooler size is axis-specific, i.e. the free spool area of the individual axis

channels may vary significantly. Approx. 145 kByte of spool area are available for
each axis channel.
The required spool memory per command can be modified by the future operating
system versions. It should not be used to determine the traverse profiles present in
the spooler.

4.4.84 rdMaxAcc – Read Maximum Acceleration Check

DESCRIPTION: With this command the maximum axis-specific acceleration value (MaxAcc) can be
read. This value can be used by RWMOS operating system software in order to
limit the trajectory acceleration so that no axis involved in a linear interpolation
exceeds the maximum acceleration accepted. If required, the trajectory
acceleration can be reduced.

BORLAND DELPHI: rdMaxAcc (an: integer; var value: double);
C: void rdMaxAcc (long an, double *value);
VISUAL BASIC: Sub rdMaxAcc (an As Long, ByVal value As Double)
PARAMETER: The number of axes is entered in an the maximum acceleration accepted is

returned in value.
RETURN VALUE: None
NOTE: See chapter 4.4.150 and 6.3.3

63 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.85 rdMaxVel – Read Maximum Velocity Check

DESCRIPTION: With this command the maximum axis-specific velocity value (MaxVel) can be read
for linear interpolation commands. The value can be used by RWMOS operating
system software in order to limit the trajectory velocity so that no axis involved in a
linear interpolation exceeds the maximum velocity accepted. If required the
trajectory velocity can be reduced.

BORLAND DELPHI: rdMaxVel (an: integer; var value: double);
C: void rdMaxVel (long an, double *value);
VISUAL BASIC: Sub rdMaxVel (an As Long, ByVal value As Double)
PARAMETER: The number of axes is entered in an the maximum velocity accepted is returned in

value.
RETURN VALUE: None
NOTE: See chapter 4.4.151 and 6.3.3

4.4.86 rdMCiS – Read Move Commands in Spooler

DESCRIPTION: With this function the number of motion commands in the spooler of an axis.
BORLAND DELPHI: procedure rdMCiS (an: integer; var value: integer);
C: void rdMCiS (long an, long *value);
VISUAL BASIC: Sub rdMCiS (an As Long, ByVal value As Long)
PARAMETER: an = axis number
RETURN VALUE: The number of motion commands in spooler of the correspondung axis is returned

in value.
COMMENT: This functionality is only available in versions from May 2002 and later.
NOTE: This commands gives the current process state in Spooler.

4.4.87 rdmcp, read motor command port

DESCRIPTION: This command can be used to read in the current command values of the Motor-
Command-Ports.

BORLAND DELPHI: procedure rdmcp(var tsrp:TSRP);
C: void rdmcp(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdmcp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].mcp
RETURN VALUE:

The return value is available in the mcp field after the command has been
executed.

In the case of servo axes, a value in the range -32,767 .. 32,767 is
returned. This corresponds to a setpoint output voltage of approx. -10V ..
+10V.
In the case of stepping motor axes, this value is a time-delay, which is
determinant for the stepping frequency outputted. The time-delay can be
converted into the unit [s] as follows:

 tver = (mcp+1) * 2 / CLOCK;
 Example: with mcp = 12,499 and CLOCK = 70MHz
 tver = 0.333ms and f = 3kHz

Each time the time-delay tver elapses, the pulse signal is switched over,
i.e. after 2*tver a stepping signal with f = 1 / (2*tver) [Hz] is outputted.
The value returned in mcp lies within the range of
-1,048,575 .. +1,048,575.

64 PM / PROGRAMMING AND REFERENCE MANUAL

The sign determines the current sense of rotation, i.e. for computing tver
only the absolute value of mcp must be utilized. If the value 0 is returned in
mcp, this means that no stepping signal is being output, i.e. the motor is at
a standstill.

4.4.88 rdMDVel – Read Maximum Velocity Skip

DESCRIPTION: The maximum axis-specific velocity jump (MDVEL) can be read with this
command. The value is used by the Look-Ahead functionality of the operating
system software RWMOS to reduce the trajectory velocity so that no axis involved
in an interpolation exceeds the maximum velocity jump accepted.

BORLAND DELPHI: rdMDVel (an: integer; var value: double);
C: void rdMDVel (long an, double *value);
VISUAL BASIC: Sub rdMDVel (an As Long, ByVal value As Double)
PARAMETER: The number of axis is given in an, the maximum velocity jump accepted of the axis-

specific velocity unit is returned in value.
RETURN VALUE: None
NOTE: See Chapter 4.4.153 and 6.3.3

4.4.89 rdModeReg – Read MODEREG

DESCRIPTION: With this command the register MODEREG of the operating system software
RWMOS can be read.

BORLAND DELPHI: rdModeReg (var value: integer);
C: void rdModeReg(long *value);
VISUAL BASIC: rdModeReg (ByVal value As Long)
PARAMETER: The ModeReg is returned in value.
NOTE: See also chapter 6.3.1.4 and function wrModeReg chapter 4.4.154.

4.4.90 rdmpe, read maximum position error

DESCRIPTION: This function returns the axis-specific position error limit value.
BORLAND DELPHI: procedure rdmpe(var tsrp:TSRP);
C: void rdmpe(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdmpe(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].mpe
NOTE: After the function has been executed, the maximum permitted position error is

available in the mpe register in the axis-specific position unit.
PCAP command wrmpe()

4.4.91 rdnfrax – read No-Feed-Rate-Axis

DESCRIPTION: With this command the register NFRAX of the RWMOS operating system software
is read.

BORLAND DELPHI: Rdnfrax (var value: integer);
C: void rdnfrax (long *value);
VISUAL BASIC: Sub rdnfrax (ByVal value As Long)
PARAMETER: In value NFRAX is returned
NOTE: See also chaper 6.3.1 and function wrnfrax chapter 4.4.156

65 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.92 rdPosErr, read Position Error

DESCRIPTION: This function returns the axis-specific position error of the xPCI-800x controller
actual value channel.

BORLAND DELPHI: procedure rdPosErr (var an: integer; var value: double);
C: void rdPosErr (long an, double *value)
VISUAL BASIC: Sub rdPosErr (an As Long, value As Double)
PARAMETER: an = Number of axes (0..n)

value = read position error
RETURN VALUE: After this function has been executed the position error of the axis an is available in

the variables value in the axis-specific poition unit.
NOTE: The position error cannot be written in [Chapter 6.3.3]

4.4.93 rdrp, read real position

DESCRIPTION: This function returns the axis-specific current position (= actual position or real
position). The position can be read out at any time you want, even while the axis is
being moved. A new actual value is available in each scan cycle (1.28 ms).

BORLAND DELPHI: procedure rdrp (var tsrp:TSRP);
C: void rdrp(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdrp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].rp
NOTE: After the function has been executed, the current position is available in the rp

register in the axis-specific position unit

4.4.94 rdrpd – read real position in display unit

DESCRIPTION: The function returns the current axis-specific position (= real position) in axis-
specific display unit. The position can be read at any time also during the running
of an axis. Per scan cycle (1.28ms) a new actual value is available.

BORLAND DELPHI: procedure rdrpd(var tsrp:TSRP);
C: void rdrpd(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdrpd(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].rp
RETURN VALUE: None
EFFECT: After the execution of the function the rea position is available in the field rp in the

axis-specific display unit.
NOTE: See also the commands rddp, rdrp, rddpd

4.4.95 rdrv, read real velocity

DESCRIPTION: The function returns the axi-specific actual velocity of the xPCI-800x controller
actual valu channel.

BORLAND DELPHI: Procedure rdrv (var an: integer; var value: double);
C: void rddv (int *an, double *value);
VISUAL BASIC: Sub rddv (an As Long, value As Double)
PARAMETER: an = Number of axes (0..n)

value = Read velocity value
RETURN VALUE: After the execution of the function the actual velocity is available in the variable

value in the axis-specific velocity unit.
NOTE: The actual velocity cannot be written in, yet can be read even if the control loop is

open.

66 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.96 rdSampleTime – Read Sample Time

DESCRIPTION: This command can be used to determine the sample time of the control.
BORLAND DELPHI: function rdSampleTime (var value: integer) as integer;
C: void rdSampleTime(long *value);
VISUAL BASIC: Function rdSampleTime (ByVal value As Long) As Long
RETURN VALUE: 1 for success,

0 for failure, where e.g. RWMOS.ELF does not yet support this function
PARAMETERS: Sample time returned in μs
NOTE: The sample time is displayed as a whole number of μs. The default value is 1280.

4.4.97 rdsdec, read stop deceleration

DESCRIPTION: This command returns the axis-specific stop deceleration sdec.
The default value is specified using the TOOLSET program mcfg.exe.

BORLAND DELPHI: procedure rdsdec(var tsrp:TSRP);
C: void rdsdec(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdsdec(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].sdec
RETURN VALUE: After the command has been executed the stop deceleration is available in the

sdec field. The value is returned in the axis-specific acceleration unit.
NOTE: The stop deceleration can be set at any time using the PCAP-command wrsdec().

4.4.98 rdsll, read software limit left

DESCRIPTION: This function returns the axis-specific left software limit position.
BORLAND DELPHI: procedure rdsll(var tsrp:TSRP);
C: void rdsll(struct TSRP far *tsrp);
VISUAL BASIC: TSRP[n].sll
TSRP COMPONENTS: Sub rdsll(DTSRP As TSRP)
NOTE: After the function has been executed, the left software limit position is available in

the sll register in the axis-specific position unit.
PCAP command wrsll()

4.4.99 rdslr, read software limit right

DESCRIPTION: This function returns the axis-specific right software limit position.
BORLAND DELPHI: procedure rdslr(var tsrp:TSRP);
C: void rdslr(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdslr(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].slr
NOTE: After the function has been executed, the right software limit position is available in

the slr register in the axis-specific position unit.
PCAP command wrslr()

4.4.100 rdslsp, read Slits / Stepperpulses

DESCRIPTION: This function determines the axis-specific resolution per motor turn {slsp} at
encoder or stepper motor system. The default value is determined with the
TOOLSET program mcfg.exe.

BORLAND DELPHI: function rdslsp (an: integer; var value: double): integer;
C: int rdslsp (long an, double *value);
VISUAL BASIC: Function rdslsp (ByVal an As Long, value As Double) As Long

67 PM / PROGRAMMING AND REFERENCE MANUAL

TSRP-COMPONENTS: None
RETRUN VALUE: 1 when succesful, 0 when not successful, e.g.if the function RWMOS.ELF is not yet

supported.
After successful execution of the function, the factor slsp in value is available in
units, which were selected in mcfg.

NOTE: slsp can be set with the PCAP command wrslsp(). See also axis qualifier slsp.

4.4.101 rdtp, read target position

DESCRIPTION: This function can be used to interrogate the axis-specific target position. The target
position is always returned as an absolute distance or angle quantity.

BORLAND DELPHI: Procedure rdtp(var tsrp:TSRP);
C: void rdtp(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdtp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].tp
NOTE: After the function has been executed, the target position of the last traversing

command is available in the tp register in the axis-specific position unit. This
command is used for monitoring purposes only.

4.4.102 rdtpd – read target position in display unit

DESCRIPTION: This function can be used to interrogate the target position) in the axis-specific
display unit. The target position is always returned as an absolute position value.

BORLAND DELPHI: Procedure rdtpd(var tsrp:TSRP);
C: void rdtpd(struct TSRP far *tsrp);
VISUAL BASIC: Sub rdtpd(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].tp
RETURN VALUE: none
EFFECT: After the function has been executed, the target position of the last traversing

command is available in the tp register in the axis-specific position unit. This
command is used for monitoring purposes only.

NOTE: See also commands rdtp, rddp, rdrp, rdrpd, rddpd

4.4.103 rdtrovr, read trajectory override

DESCRIPTION: This command reads a state variable of the currently set trajectory velocity
correction value, which is taken into account for all interpolation commands (move
commands) and the correspondingly selected axes (PCAP command utrovr()).

BORLAND DELPHI: procedure rdtrovr(var value:double);
C: void rdtrovr(double *value);
VISUAL BASIC: Sub rdtrovr(value As Double)
RETURN VALUE: After the command has been executed, the trajectory velocity correction value will

be in the value variable.
NOTE: PCAP commands utrvr(), wrtrovr(), wrjovr(), rdtrovr() and rdjovr()

4.4.104 rdtrovrst, read trajectory override settling time

DESCRIPTION: With this command the programmed override-settling-time (see wrtrovrst chapter
4.4.162) can be read out.

BORLAND DELPHI: function rdtrovr(var value:double) : integer;
C: int rdtrovr(double *value);
VISUAL BASIC: Function rdtrovr(value As Double) as long

68 PM / PROGRAMMING AND REFERENCE MANUAL

RETURN VALUE: 0 for success
-1: command is not available in RWMOS version
-4: time-out, reason unknown
The set override settling time is returned in value.

NOTE: PCAP command wrtrovrst

4.4.105 rdzeroOffset, read zero offset

DESCRIPTION: With this command the currently set axis specific zero offset can be read. The
absolute value of th currently set axis specific zero offset is returned in value in the
axis specific position unit. With the parameter an the axis index of the axis channel
to be read (0..n) is indicated.

BORLAND DELPHI: Function rdZeroOffset (an: integer; var value: double) : integer;
C: Int rdZeroOffset (integer an, double *value);
VISUAL BASIC: Function rdZeroOffset (ByVal an As Long, value As Double) As Long
RETURN VALUE: <0: command is not supported by RWMOS.ELF

=0: command executed successfully
>0: time exceeded, command not executed

NOTE: The zero offset can be set for example with the PCAP commands szpa (see
chapter 4.4.118) or szpr (see chapter 4.4.119).

4.4.106 rifs, reset interface status register

DESCRIPTION: This command causes various error flags in the xPCI-800x interface status register
ifs (error bits 16, 17, 18 - pfe, wdog and iae) to be reset. Resetting should be
performed only in exceptional situations, e.g. in an error monitoring routine.

BORLAND DELPHI: procedure rifs(var tsrp:TSRP);
C: void rifs(struct TSRP far *tsrp);
VISUAL BASIC: Sub rifs(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].ifs
NOTE: [chapter 4.4.69.1 - rdifs()]

4.4.107 RPtoDP, Real-Position to Desired-Position

DESCRIPTION: This command enables the setpoint position {dp} of an axis to adopt the current
position {rp}. The command is executed without delay. It only takes effect though if
the relevant axes are not in a positioning profile, as otherwise the setpoint position
will be immediately replaced by the computed value of the profile generation.
However, it is possible to correct an axis traversing with a target velocity ≠ 0. The
relevant axes serve as parameters.

BORLAND DELPHI: procedure RPtoDP(var as: AS);
C: void RPtoDP (struct AS far *as);
VISUAL BASIC: Sub RPtoDP (DASEL As ASEL)
RETURN VALUE: none
NOTE: This command can be used when one or more axes are no longer regulated due to

a position error caused, for example, by axis blocking. Once the error has been
cleared, regulation can be continued from the previous position, even with
traversing axes. This command is available from RWMOS.ELF V2.5.3.100 and
mcug3.dll V2.5.3.80.

69 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.108 rs, reset system

DESCRIPTION: This command causes the complete axis system to be reset. The digital outputs
are set to the default values planned with the aid of the TOOLSET program
mcfg.exe. On the setpoint value channels 0 V output voltage is outputted in the
case of servo axes and 0 Hz stepping frequency in the case of stepping motor
axes. The position control loop is opened for all axes. The spooler data are
rejected in their entirety. All CNC task are halted. All software limits planned will no
longer be monitored. All override factors (PCAP commands wrjovr() and wrtrovr())
are set to the value 1.0.

BORLAND DELPHI: procedure rs;
C: void rs(void);
VISUAL BASIC: Sub rs()
NOTE: All system data, like accelerations, velocities, filter parameters, etc. remain stored

in memory and therefore need not be loaded again.
The status flags in register ifs are not influenced by this command.
The contents of all common integers and double variables are retained

4.4.109 scp – set controller params

DESCRIPTION: This function is used for customised extensions and serves for transferring a
parameter field of 15 x 15 floating points (predefined data structure
CTRLRPARAMS) axis-specifically to the control process.

BORLAND DELPHI: procedure scp (an: integer; var ctrlrparams: CTRLRPARAMS);
C: void scp (long an, struct CTRLRPARAMS *ctrlrparams);
VISUAL BASIC: Sub scp (ByVal an As Long, DCTRLRPARAMS As CTRLRPARAMS)
RETURN VALUE: None
EFFECT: The values in CTRLRPARAMS are transferred to the control system.
NOTE: Use and significance of the data to be transferred are described according to the

application.

4.4.110 sdels, spooler delete synchronous

DESCRIPTION: All commands entered in the spooler will be rejected. The entire spooler area is
again freely available. Spooler data rejection takes place for the axes specified in
AS.

BORLAND DELPHI: procedure sdels(var as:AS);
C: Void sdels(struct AS far *as);
VISUAL BASIC: Sub sdels(DASEL As ASEL)
NOTE: The ongoing operation, like a traversing command, will be concluded.

4.4.111 shp, set home position

DESCRIPTION: This command can be used to set the axis-specific zero (home position). The tp
parameter is stated in the axis-specific position unit. The command is generally
used after a reference search run for setting the machine zero. It can be executed
in both operating modes: control loop open and control loop closed. In order to
prevent jerky motor movements, however, it should not be used while the selected
axis channel is being moved.

BORLAND DELPHI: procedure shp(var tsrp:TSRP);
C: Void shp(struct TSRP far *tsrp);
VISUAL BASIC: Sub shp(DTSRP As TSRP)

70 PM / PROGRAMMING AND REFERENCE MANUAL

TSRP COMPONENTS: TSRP[n].tp
n = 0 .. Number of axes present-1

NOTE: Until the first time this command is executed, the software limits planned are not
being monitored. This means that before execution of the shp() command a
reference travel can be carried out using all move and jog commands. After the
shp() command has been executed, the software limits are monitored until the next
ra() or RA() or rs() or RS command.

4.4.112 ssms, start spooled motions synchronous

DESCRIPTION: Spool commands can be used to transfer commands to the individual axis
channels of the xPCI-800x: they are entered in a queue. The PCAP command
ssms() causes a synchronous start for spooler command processing for all axes
specified in AS.

BORLAND DELPHI: procedure ssms(var as:AS);
C: void ssms(struct AS far *as);
VISUAL BASIC: Sub ssms(DASEL As ASEL)
NOTE: chapter 2.2.8.2 - Spool-Mode

4.4.113 sstps, spooler stop synchronous

DESCRIPTION: This command is used to interrupt command processing from the spooler for all
axis channels selected in AS.

BORLAND DELPHI: procedure sstps(var as:AS);
C: void sstps(struct AS far *as);
VISUAL BASIC: Sub sstps(DASEL As ASEL)
NOTE: The current command is completely processed. The commands that are in the

spooler are preserved and can be continued with SSMS. But please pay attention if
the spooler contains traverse commands with target velocities ≠ 0.
In error situations, when the spooler contents are to be rejected, it is better to use
direct commands to stop the axes concerned (ms or js), as these commands
discontinue the current contour and at the same time reject the spooler contents.

4.4.114 ssf, Spool-Special-Function

DESCRIPTION: This commands allows to enter other commands as traverse commands in the
spooler. The command you want to execute is entered with the parameter
command.

BORLAND DELPHI: procedure ssf(an: integer; command: integer; value:double); far; stdcall;
C: void ssf(int axis, int command, double value);
VISUAL BASIC: Sub ssf(ByVal an As Long, ByVal command As Long, ByVal value As Double)
CALLING PARAMETER: The value value is entered to the axis defined in axis.

The following commands are available at the moment:

Command Description
0 .. 999 Describe CI-Variable with Value.
1000 Stop the spooler processing, this command is only carried

out when the target velocity of the profile last entered is 0.
1001 Set digital outputs, the outputs to be set are specified

bitwise in Value.
1002 Reset digital outputs, the outputs to be reset are specified

bitwise in Value.

71 PM / PROGRAMMING AND REFERENCE MANUAL

1003 Stop the spooler processing during the time defined in
Value. The time unit is 64 µs. The real waiting time is
multiplied several times by the scan time. This command is
only carried out if the target velocity of the profile last
entered is 0. The waiting process can be prematurely
ended e.g. with the command SSMS.

1004 Stop the spooler processing until the inputs specified in
Value are active. The inputs are specified in bit-coded
form. This command is only carried out if the target
velocity of the profile last entered is 0.
The waiting process can be prematurely ended e.g. with
the command SSMS. Only inputs of the respective axis
group can be specified at a time.

1005 Stop the spooler processing until the value 0 is entered in
the common variable CI99. The value entered in Value is
first entered in CI99. When the command is to be executed
the CI99 is set by default and must not be used for any
other purpose (see also Chapter 4.4.114.1).
Note: The PCAP command ClearCI99 must be used to
delete CI99, because otherwise, the axes may be started
asynchronously.

1006 Stop the spooler processing until the command was
activated or executed with the same parameter for all bit-
coded axes entered in Value. With this command the
spooler processing can be synchronised by different axes
(see also Chapter 4.4.114.1).

1015 The parameter value is added to CI99. Then the spooler
processing is stopped until CI99 contains the value 0. The
wait command is only executed if the target velocity of the
previous profile is 0 (see also Chapter 4.4.114.1).
Note: The PCAP command ClearCI99 must be used to
delete CI99, because otherwise, the axes may be started
asynchronously.

1025 In the variable CI99, the bit assigned to the axis is set.
Then the spooler processing is stopped until this bit is
reset in CI99. The wait command is only executed if the
target velocity of the previous profile is 0 (see also Chapter
4.4.114.1).
Note: The PCAP command ClearCI99 must be used to
delete CI99, because otherwise, the axes may be started
asynchronously.

1101 Activate PC interrupt request
1200
...
1207

Write the Motor-Command-Port mcp of an axis in the
system with the index 0..7
1200 = 1. axis, 1201 = 2. axis, etc.

2001 Reset the target velocity in the last spooled traverse
profile.

10000
...
10999

Set bits in CI-variable. The bits to be set are indicated in
Value.

11000
...
11999

Reset bits in CI-Variable. The bits to be reset are indicated
in Value.

20000
...
20999

Write on CD-variable with value.

72 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.114.1 Notes on SSF wait commands

Some of the above described wait commands use the common integer variable CI99.
Here it should be noted that these variables from the PCAP programming are written on via direct PCI
memory access and thus asynchronously to the RWMOS operating system software. To achieve error-free
synchronicity of axes after a profile continuation via an SSF wait command, the DLL command ClearCI99
must therefore be used.
In some of the commands specified above, bit-coded data, e.g. of inputs, outputs or axes, is expected. Here,
the corresponding bit numbers are assigned to the relevant number of the value to be programmed.
Inputs 1 and 3, for example, are to be specified in bit-coded form. In this case, the hexadecimal value 5 must
be programmed. This means it is possible to specify multiple axes, inputs or outputs in one data word.

EXAMPLES: ssf(A1, 125, 999); // Write CI125 with the value 999

ssf(A1, 1001, 1); // Set output O1 at axis 1
ssf(A1, 1002, 4); // Reset output O3 at axis 1

4.4.115 startcnct, start numeric controller task

DESCRIPTION: This command can be used to start a previously loaded SAP program. The CNC
task selected in TaskNr (values 0..3) processes the SAP program right from its
beginning. The PCAP command txbf2() can be used for loading.

BORLAND DELPHI: procedure startcnct(TaskNr:integer);
C: void startcnct(int TaskNr);
VISUAL BASIC: Sub startcnct(ByVal TaskNr As Long)
NOTE: A currently running SAP program will be stopped automatically before this

command is executed.
PCAP command txbf2()

4.4.116 stepcnct, step numeric controller task

DESCRIPTION: This command is used for executing an SAP program line by line.
BORLAND DELPHI: procedure stepcnct (TaskNr:integer);
C: void stepcnct(int TaskNr);
VISUAL BASIC: Sub stepcnct(ByVal TaskNr As Long)
NOTE: The PCAP command stepcnct() has not yet been implemented at present!

4.4.117 stopcnct, stop numeric controller task

DESCRIPTION: This command causes the SAP program currently being run to stop in the CNC
task selected with TaskNr (values 0..3) and de-activates this CNC task. The SAP
program can be continued with the SAP command CONTCNCT() or the PCAP
command contcnct() .

BORLAND DELPHI: procedure stopcnct(TaskNr:integer);
C: void stopcnct(int TaskNr);
VISUAL BASIC: Sub stopcnct(ByVal TaskNr As Long)
NOTE: Any EVENT handlers enabled in the SAP program will no longer be processed

after the stopcnct() command has been executed. Before this command is
executed, the drive should be put into a safe operating state.

73 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.118 szpa, set zero position absolute

DESCRIPTION: This command sets an axis-specific virtual zero position. The parameter Position is
specified in the axis-specific position unit. The parameter an specifies the axis
number. It can be executed in both operating modes: control loop open and control
loop closed. In order to prevent jerky motor movements, however it should not be
used while the selected axis channel is being moved.

BORLAND DELPHI: procedure szpa(an: integer; Position: double);
C: void szpa(int an, double Position);
VISUAL BASIC: Sub szpa(ByVal an As Long, ByVal Position As Double)
NOTE: By calling up szpa with the position value 0, a zero offset which has been possibly

set can be deleted. The currently set position value of the zero offset can be read
with the command rdZeroOffset Chapter 4.4.105). See also Bit ClearZeroPosition
in the register ModeReg.

4.4.119 szpr, set zero position relative

DESCRIPTION: This commands sets an axis-specific virtual zero position to a relative position. The
parameter Position is specified in the axis-specific position unit. The parameter an
specifies the axis number. It can be executed in both operating modes: control loop
open and control loop closed. In order to prevent jerky motor movements, however
it should not be used while the selected axis channel is being moved.

BORLAND DELPHI: procedure szpr(an: integer; Position: double);
C: void szpr(int an, double Position);
VISUAL BASIC: Sub szpr(ByVal an As Long, ByVal Position As Double)
NOTE: By calling up szpa with the position value 0, a zero offset which has been possibly

set can be deleted. The currently set position value of the zero offset can be read
with the command rdZeroOffset (Chapter 4.4.105). See also Bit ClearZeroPosition
in the register ModeReg.

4.4.120 txbf, transmit binary file

DESCRIPTION: This function is used to transfer the file specified in the string or character
parameter to the xPCI-800x board. The specified file is first searched in the current
working directory. Then the directories which are specified in the environment
variable PATH are searched. There is an additional function (txbf()) in the fucntion
library for compatibility reasons: yet this function txbf() does not support any file
name including drive or path information. When the function txbf2 is called up two
special file types are essentially permitted.
Firstly, the system.dat system file (or files with a compatible structure) and
secondly the autocode files (CNC files) with the file extension name ".CNC"
generated from the IDE or using the ncc.exe command line compiler.
Transferring the system.dat system file has the following results:
All axis channels will be initialized with the axis-specific system data. The filter
coefficients of the PIDF filter will be recomputed, as with the PCAP command uf().
These system data can also be edited in the TOOLSET program mcfg.exe. Any
system variables previously altered (e.g. axis-specific velocities, accelerations,
etc.) are overwritten again by this command.
Important! Transferring CNC files has the following result: the current program
main memory of a CNC task is overwritten with the contents of the specified
autocode file. This is why the task concerned is automatically halted before the
load operation. The CNC file also contains the information on which task it has to
be loaded into (Task 0..3). After the CNC file has been successfully transferred, it
can be started with the PCAP command startcnct() or the PCAP command
STARTCNCT().

74 PM / PROGRAMMING AND REFERENCE MANUAL

BORLAND DELPHI: function txbf2(var filename:string):integer;
C: int txbf2(char far *filename);
VISUAL BASIC: Function txbf2(ByVal filename As String) As Long
RETURN VALUE: The function can return the following values:

Return value Error description
0 No error
20 File cannot be opened. Possible causes are as follows:

 - Invalid file name
 - File does not exist
 - Path and search drive is invalid

21 The file too large for the CNC task main memory.
22 Invalid file type (Not a SAP file nor a system file)
23 Internal error when reserving memory.
24 Invalid task number is indicated. At a system file this

error shows that an invalid or damages system file was
used.

25 Data transfer error with remote systems (WebServices)
NOTE: Normally, the system.dat system file need be loaded only once per system start.

Please see the particulars given for the PCAP command mcuinit() in this context. If
you want, you can specify drive and path names in the filename parameter.

4.4.121 txbfErrorReport, initialisation error report

DESCRIPTION:

This function gives in plaintext the error return value of the function txbf2()
described above. A message box is displayed on screen and is to be closed after
reading.

BORLAND DELPHI: procedure txbfErrorReport(filename:PChar; error:integer);
C: void txbfErrorReport (char *filename, int error);
VISUAL BASIC: Sub txbfErrorReport (ByVal filename As String, ByVal error As Long)
NOTE: PCAP commands InitMcuSystem(), InitMcuSystem2() and InitMcuSystem3()
EXAMPLE: txbferror = InitMcuSystem3(...); // Execute file transfer

txbfErrorReport(..., initerror); // In case of error, display error return
 // value

4.4.122 uf, update filter

DESCRIPTION: You can use this command to set the xPCI-800x PIDF filter for specific axes.
Before the command is executed, you must make sure that all the structure
components listed above have been initialized. This command can be executed at
any time, even during profile generation. This characteristic enables the system to
be matched to different load conditions in real time.

BORLAND DELPHI: procedure uf(var tsrp:TSRP);
C: void uf(struct TSRP far *tsrp);
VISUAL BASIC: Sub uf(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].kp, TSRP[n].ki, TSRP[n].kd, TSRP[n].kpl, TSRP[n].kfca, TSRP[n].kfcv

n = 0 .. Number of axis present -1
NOTE: You will find more details on the PIDF filter in chapter 2.1.1.12, OM / Chapter 4.1.1,

CM / Chapter 6.2 and PCAP command rdf().

75 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.123 utrovr, update trajectory override

DESCRIPTION: The velocity override currently set is taken into account for all axis channels
selected in AS.

BORLAND DELPHI: procedure utrovr(var as:AS);
C: void utrovr(struct AS far *as);
VISUAL BASIC: Sub utrovr(DASEL As ASEL)
NOTE: With this command, the last written trajectory override value is adopted for the

selected axes. If the bit OvrMode is not set in the Modereg register, this value is
adopted for the axis-specific variable jovr. You will find further information under
the PCAP command wrtrovr(). Depending on the value set through the function
wrtrovrst(), the override value is not adopted at once, but is adapted to the given
ramp time.

4.4.124 wraux, write auxiliary register

DESCRIPTION: This function sets the axis-specific auxiliary register to the value set in aux.
BORLAND DELPHI: procedure wraux (var tsrp:TSRP);
C: void wraux (struct TSRP far *tsrp);
VISUAL BASIC: Sub wraux (DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].aux
NOTE: See also chapter 4.4.44 and 6.3.3

4.4.125 wrcbcnct, write common buffer CNC-Task

DESCRIPTION: Each CNC task has a local memory area (referred to as the "Common Buffer"),
which can be read and written both by the CNC task concerned and by a PCAP
program.
This function can be used to write the complete CNC-task-specific buffer (or only a
part of it). The cbcnct function parameter is used to select the CNC task buffer, the
number of bytes to be written and the start address of the block which is to be
transferred to the xPCI-800x board.

BORLAND DELPHI: function wrcbcnct(var cbcnct:CBCNCT):integer;
C: int wrcbcnct(struct CBCNCT far *cbcnct);
VISUAL BASIC: Sub wrcbcnct(DCBCNCT As CBCNCT)
RETURN VALUE: The wrcbcnct() function has the following bit-coded return value:

Bit-Nr
0 0 No error
0 1 if task number invalid.
1 0 no error
1 if maximum permitted buffer size exceeded

This means that the function in normal circumstances
returns the value 0.

NOTE: The CNC-task-specific buffer size is 1,000 bytes.
The record structure for CBCNCT is shown in Chapter 4.3.2.9. PCAP command
rdcbcnct(), SAP commands RDCBx() and WRCBx()

76 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.126 wrcd, write common double

DESCRIPTION: This function can be used for write access operations to the common variables,
which are predefined variables of the CNC task. The variables concerned are the
rw_SymPas system variables CD0 .. CD99. The first parameter here specifies the
number ndx of the double variable to be written. The value range of ndx here is 0 to
99. The second parameter is a pointer to the CDBUF structure with 100 double
variables. Before the command is executed, the variable to be written must be
initialized with the appropriate value you want.

BORLAND DELPHI: procedure wrcd(ndx: integer; var cdbuf:CDBUF);
C: void wrcd(int ndx, struct CDBUF far *cdbuf);
VISUAL BASIC: Sub wrcd(ByVal ndx As Long, CDBUF As CDBUF)
NOTE: The content of all common variables remains stored in memory even after a

system reset operation, which is executed by the rs() command, for example. If you
do not want this, you should set the variables concerned to the values you want
when you start the program.

4.4.127 wrci, write common integer

DESCRIPTION: This command is identical to the PCAP command wrcd(), except that here the
variables concerned are the rw_SymPas system variables CI0 .. CI999 of the
LONGINT type.

BORLAND DELPHI: procedure wrci(ndx: integer; var cibuf:CIBUF);
C: void wrci(int ndx, struct CIBUF far *cibuf);
VISUAL BASIC: Sub wrci(ByVal ndx As Long, CIBUF As CIBUF)
NOTE: PCAP command wrcd()

4.4.128 wrdigo, write digital outputs

Function description is only relevant for the APCI-8001 / APCI-8008
DESCRIPTION: This register can be used to set the digital outputs of the APCI-8001.

It has to be considered that the digital outputs of the xPCI-800x are not grouped in
an axis-specific way. If an output is to be set, this can be done by setting the
respective bit. The bit-coded structure of the digo status word can be found in the
table below:

 Table 17: Bit-coded structure of the status word digo

Bit
number

Function Connector X1 / PIN

0 Output 1 26
1 Output 2 27
2 Output 3 28
3 Output 4 29
4 Output 5 30
5 Output 6 31
6 Output 7 32
7 Output 8 33
8..31 Not assigned --

BORLAND DELPHI: procedure wrdigo(var tsrp:TSRP);
C: void wrdigo(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrdigo(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].digo

77 PM / PROGRAMMING AND REFERENCE MANUAL

Function description is only relevant for the CPCI-8004
DESCRIPTION: This register can be used to set the digital outputs of the CPCI-8004. It has to be

considered that the digital outputs of the xPCI-800x are not grouped in an axis-
specific way. If an output is to be set, this can be done by setting the respective bit.
The bit-coded structure of the digo status word can be found in the following table:

 Table 18: Bit-coded structure of the status word digo

Bit
number

Function Connector X1 / PIN

0 Output 1 17
1 Output 2 18
2 Output 3 19
3 Output 4 37
4 Output 5 38
5 Output 6 39
6..31 Not assigned --

BORLAND DELPHI: procedure wrdigo(var tsrp:TSRP);
C: void wrdigo(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrdigo(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].digo

4.4.129 wrdigob, write digital output bit

Function description is only relevant for the APCI-8001 / APCI-8008
DESCRIPTION: This function can be used to set or reset one APCI-8001 digital output. The axis

number must be specified in the an parameter (0, 1, ... MAXAXIS-1). The output is
reset with the value 0 or FALSE.

 Table 19: Assignment of bitnr to the respective xPCI-800x digital outputs

 ‘bitnr’ Function Connector X1 / PIN
1 Output 1 26
2 Output 2 27
3 Output 3 28
4 Output 4 29
5 Output 5 30
6 Output 6 31
7 Output 7 32
8 Output 8 33
9..32 Not assigned --

BORLAND DELPHI: procedure wrdigob(an:integer; bitnr:integer; value: integer);
C: wrdigob(int an, int bitnr, int value);
VISUAL BASIC: Sub wrdigob(ByVal an As Long, ByVal bitnr As Long, ByVal value As Long)
NOTE: PCAP command wrdigo()

78 PM / PROGRAMMING AND REFERENCE MANUAL

Funktionsbeschreibung is only relevant for the CPCI-8004
DESCRIPTION: This function can be used to set or reset one CPCI-8004 digital output. The axis

number must be specified in the an parameter (0, 1, ... MAXAXIS-1). The output is
reset with the value 0 or FALSE.

 Table 20: Assignment of bitnr to the respective xPCI-800x digital outputs

 ‘bitnr’ Function Connector X1 / PIN
1 Output 1 17
2 Output 2 18
3 Output 3 19
4 Output 4 37
5 Output 5 38
6 Output 6 39
7..32 Not assigned --

BORLAND DELPHI: procedure wrdigob(an:integer; bitnr:integer; value: integer);
C: wrdigob(int an, int bitnr, int value);
VISUAL BASIC: Sub wrdigob(ByVal an As Long, ByVal bitnr As Long, ByVal value As Long)
NOTE: PCAP command wrdigo()

4.4.130 wrdp, write desired position

DESCRIPTION: You can use this command to write the axis-specific setpoint position (dp). This
command is normally never needed and should be used only in quite exceptional
cases, like testing or commissioning jobs. Alteration of the setpoint position is
operative only in the position control operating mode. If there are significant
differences between this setpoint position (dp) and the current position (rp), you
must anticipate that the motor will be corrected to this position at maximum system
acceleration.

BORLAND DELPHI: procedure wrdp(var tsrp:TSRP);
C: void wrdp(struct TSRP far *tsrp) ;
VISUAL BASIC: Sub wrdp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].dp
NOTE: Writing the setpoint position (dp) during execution of motion commands may lead

to uncontrolled process behaviour and should therefore be avoided.
PCAP command rddp()

4.4.131 wrdp offset, write desired position offset

DESCRIPTION: With this command the axis specific set position offset (dpoffset) can be described.
BORLAND DELPHI: function wrdpoffset (an: integer; var value: double): integer;
C: int wrdpoffset(int an, double *value);
VISUAL BASIC: Function wrdpoffset (ByVal an As Long, value As Double) As Long
PARAMETER: With an the axis channel, which has to be called, is indicated (0, 1, ...).

In value the position offset, which has to be written, is transferred in the axis
specific position unit.

RETURN VALUE: 0 at access,
unequal 0 at failure, if e.g. RWMOS.ELF not yet supports this function.

NOTE: In general here only small changes may be programmed, because the set point
changes cause a jump of the axs. See also axis-qualifier dpoffset in Table 37. With
a dvoffset value (see Chapter 4.4.132), the velocity offset of dpoffset can be
parameterised, though.
This register can be used e.g. for a regulation, overlaying the position controller, or
for a spindle linearisation / spindle correction.

79 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.132 wrdvoffset, write desired velocity offset

DESCRIPTION: With this command, the velocity offset (dvoffset) of the axis-specific setpoint
position offset (dpoffset) can be written on.

BORLAND DELPHI: function wrdvoffset (an: integer; var value: double): integer;
C: int wrdvoffset(int an, double *value);
VISUAL BASIC: Function wrdvoffset (ByVal an As Long, value As Double) As Long
PARAMETER: With an, the axis channel which has to be accessed is indicated (0, 1, ...).

In value, the velocity offset which has to be written is returned in the axis-specific
position unit.

RETURN VALUE: 0 at success,
unequal 0 at failure, if e.g. RWMOS.ELF does not support this function yet.

NOTE: With the value 0, changes of dpoffset are immediately adopted. The default value
is 0.

4.4.133 wrEffRadius – Write Effective Radius

DESCRIPTION: With the command the effective radius can be written for a rotatory axis.
BORLAND DELPHI: wrEffRadius (an: integer; var value: double);
C: void wrEffRadius (long an, double *value);
VISUAL BASIC: Sub wrEffRadius (an As Long, ByVal value As Double)
PARAMETER: The number of axes is entered in and the effective radius is transmitted in value in

the unit which is used per PU.
NOTE: See chapter 6.3.3

4.4.134 wrGCR, write gear configuration register

DESCRIPTION: With this function, the axis-specific Gear Configuration Register can be written on.
[Chapter 6.3.3]

BORLAND DELPHI: procedure wrGCR (an: integer; var value: integer);
C: void wrGCR (long an, long *value);
VISUAL BASIC: Sub wrGCR (ByVal an As Long, value As Long)
PARAMETER: With an, the axis channel which has to be read out is indicated (0, 1, ...).

In value, the contents of the GCR register is returned.
RETURN VALUE: None
NOTE: See also document on the resource interface - GEAR

4.4.135 wrgf, write gear factor

DESCRIPTION: You can use this command for resetting the axis-specific gear factor in the
appropriate unit. This is necessary, for example, with indexing mechanisms or
runtime-entailed alterations to system variables, like workpiece or tool dimensions
or other correction factors.

BORLAND DELPHI: procedure wrgf(var tsrp:TSRP);
C: void wrgf(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrgf(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].gf
NOTE: Remember that (particularly if there are large alterations in the gear factor) the

current axis-specific acceleration and velocity parameters have to be matched to
this new factor, since this is utilized for converting these system parameters.
The value currently set for gf can be read with the PCAP command rdgf().

80 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.136 wrgfaux, write gear factor auxiliary channel

DESCRIPTION: With this function, the axis-specific ratio of stepper motor resolution to encoder
channel in stepper systems with encoder verification can be written. The default
value is 1.0; the value can only be changed at runtime.

BORLAND DELPHI: function wrgfaux (an: integer; var value: double) : integer;
C: int wrgfaux(int an, double *value)
VISUAL BASIC: Function wrgfaux (ByVal an As Long, value As Double) As Long
RETURN VALUE: After successful execution, the function returns 0. In this case, the value in value

could be successfully written to the axis an. With a return value ≠ 0, the value could
not be written, because e.g. RWMOS.ELF does not support the command.

NOTE: The factor can be read at any time with the PCAP command rdgfaux(). See also
Chapter 6.3.3.

4.4.137 wrhac, write home acceleration

DESCRIPTION: You use this command to set the axis-specific maximum acceleration hac for all
reference travel commands (home commands). If this command is not executed,
the system will work with the system parameter specified in the TOOLSET program
mcfg.exe. The system parameter can be overwritten any time you want.

BORLAND DELPHI: procedure wrhac(var tsrp:TSRP);
C: void wrhac(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrhac(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].hac
NOTE: The value currently set for hac can be read with the PCAP command rdhac().

4.4.138 wrhvl, write home velocity

DESCRIPTION: You use this command to set the axis-specific maximum velocity with the aid of the
hvl variable for all reference travel commands (home commands). If this command
is not executed, the system will work with the system parameter specified in the
TOOLSET program mcfg.exe. The system parameter can be overwritten any time
you want.

BORLAND DELPHI: procedure wrhvl(var tsrp:TSRP);
C: void wrhvl(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrhvl(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].hvl
NOTE: The value currently set for hac can be read with the PCAP command rdhvl().

4.4.139 wripw, write in position window

DESCRIPTION: This command can be used to alter (during the run time) the In-Position Window
{ipw} specified using the TSW program mcfg.exe. The window is re-specified to the
value set in ipw. The value is stated in the axis-specific position unit.

BORLAND DELPHI: procedure wripw(var tsrp:TSRP);
C: void wripw(struct TSRP far *tsrp);
VISUAL BASIC: Sub wripw(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].ipw
NOTE: The "In-Position-Window“ is monitored only when a value greater than 0.0 has

been specified.
(MCFG / Chapter 1.7.2.1.11)
PCAP command rdipw()

81 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.140 wrjac, write jog acceleration

DESCRIPTION: This command is identical to the PCAP command wrhac(), except that here the
maximum system acceleration is specified for all jog commands using the jac
variable.

BORLAND DELPHI: procedure wrjac(var tsrp:TSRP);
C: void wrjac(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrjac(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].jac
NOTE: The value currently set for jac can be read with the PCAP command rdjac().

4.4.141 wrJerkRel, write jerkrel

DESCRIPTION: With this command the axis-specific parameter jerkrel can be written in.
BORLAND DELPHI: procedure wrJerkRel (an: integer; var value: double);
C: void wrJerkRel (long an, double *value);
VISUAL BASIC: Sub wrJerkRel (an As Long, ByVal value As Double)
PARAMETER: an = Number of axes (0..n)

value = value to be zu written
RETURN VALUE: None
NOTE: Only one value between 0 and 1 can be allocated to jerkrel. Lower or higher values

are limited. See also chapter 4.4.75 and 6.3.3

4.4.142 wrjovr, write jog override

DESCRIPTION: This command sets the axis-specific velocity correction value. This correction value
is taken into account in all jog commands. The jovr parameter must have a value
greater than 0.0. All values smaller than 1.0 will result in a reduction in axis
velocity. If value has a value greater than 1.0, this will be manifested in an
increased velocity.

BORLAND DELPHI: procedure wrjovr(var trsp:TSRP);
C: void wrjovr(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrjovr(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].jovr
NOTE: Remember that the specified correction value acts equally on the current axis

acceleration. If the correction value is increased or reduced too rapidly, this may be
manifested in an acceleration jump (jerk) of the axis. The correction factor should
therefore be incremented or decremented in linear mode over time-delay loops,
until the final value you want has been reached. For execution of the PCAP
commands ra(), rs() or SAP commands RA(), RS, the override factor is initialized to
the default value of 1.0.
Whenn calling utrovr and selected axis, the value of jovr is set also, if this was not
switched off explicitely in the register variable ModeReg.
PCAP command rdjovr()

82 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.143 wrjtvl, write jog target velocity

DESCRIPTION: This command is used to set the axis-specific target velocity (jog) with the aid of
the jtvl variable for the jog commands ja() and jr(). If this command is not executed,
the system will work with the system parameter specified in the TOOLSET program
mcfg.exe. The system parameter can be overwritten any time you want.

BORLAND DELPHI: procedure wrjtvl(var tsrp:TSRP);
C: void wrjtvl(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrjtvl(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].jtvl
NOTE: The value currently set for jtvl can be read with the PCAP command rdjtvl().

4.4.144 wrjvl, write jog velocity

DESCRIPTION: This command is identical to the PCAP command wrhvl(), except that here the
maximum traversing velocity is specified using the jvl variable for all jog
commands.

BORLAND DELPHI: procedure wrjvl(var tsrp:TSRP);
C: void wrjvl(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrjvl(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].jvl
NOTE: The value currently set for jvl can be read with the PCAP command rdjvl().

4.4.145 wrledgn, write led green

DESCRIPTION:
APCI-8001:

APCI-8008:

CPCI-8004:

This command can be used to switch the green SMD LED D29 on and off.
It is switched on with the value 1 and switched off with the value 0.
This command can be used to switch the green SMD LED D53 on and off. It is
switched on with the value 1 and switched off with the value 0.
This command can be used to switch the green SMD LED D36 on and off. It is
switched on with the value 1 and switched off with the value 0.

BORLAND DELPHI: procedure wrledgn(value:integer);
C: void wrledgn(int value);
VISUAL BASIC: Sub wrledgn(ByVal value As Long)
NOTE: This command is primarily used as a testing and diagnostic tool. The SMD-LED is

located on the high back end of the solder side of the board.

4.4.146 wrledrd, write led red

DESCRIPTION:
APCI-8001:

APCI-8008:

CPCI-8004:

as for PCAP command wrledgn(), but for the red LED D31

as for PCAP command wrledgn(), but for the red LED D56

as for PCAP command wrledgn(), but for the red LED D38

BORLAND DELPHI: procedure wrledrd(value:integer);
C: void wrledrd(int value);
VISUAL BASIC: Sub wrledrd(ByVal value As Long)

83 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.147 wrledyl, write led yellow

DESCRIPTION:
APCI-8001:

APCI-8008:

CPCI-8004:

as for PCAP command wrledgn(), but for the yellow LED D30

as for PCAP command wrledgn(), but for the yellow LED D55

as for PCAP command wrledgn(), but for the yellow LED D37

BORLAND DELPHI: procedure wrledyl(value:integer);
C: void wrledyl(int value);
VISUAL BASIC: Sub wrledyl(ByVal value As Long)

4.4.148 wrlp, write latched position

DESCRIPTION: This command is used to set the axis-specific latch position to the value set in lp.
The value is specified in the axis-specific position unit.

BORLAND DELPHI: procedure wrlp(var tsrp:TSRP);
C: void wrlp(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrlp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].lp
NOTE: PCAP command rdlp()

4.4.149 wrlpndx, write latched position index

DESCRIPTION: This command is used to set the axis-specific latch position of the zero track
(index) to the value set in lp. The value is specified in the axis-specific position unit.

BORLAND DELPHI: procedure wrlpndx (var tsrp:TSRP);
C: void wrlpndx (struct TSRP far *tsrp);
VISUAL BASIC: Sub wrlpndx (DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].lp
NOTE: PCAP command rdlpndx()

4.4.150 wrMaxAcc – Write Maximum Acceleration Check

DESCRIPTION: With this command you can write the maximum axis-specific acceleration
(MAXACC). This value is used by the RWMOS operating system software to limit
the trajectory acceleration so that no axis involved in a linear interpolation excedd
the maximum acceleration accepted.

BORLAND DELPHI: wrMaxAcc (an: integer; var value: double);
C: void wrMaxAcc (long an, double *value);
VISUAL BASIC: Sub wrMaxAcc (an As Long, ByVal value As Double)
PARAMETER: The number of axes is entered in an, the maximum acceleration accepted is

transmitted in value in the axis-specific acceleration unit.
NOTE: To check this function the bit 7 in MODEREG register must be set (see chapter

6.3.1.4). When set to 0 the check function is disabled for the axis involved. The
function is only available with spooled commands.

84 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.151 wrMaxVel – Write Maximum Velocity Check

DESCRIPTION: With this command you can write the maximum axis-specific velocity (MAXVEL).
This value is used by the RWMOS operating system software to limit the trajectory
velocity so that no axies involved in a linear interpolation exceeds the maximum
velocity accepted.

BORLAND DELPHI: wrMaxVel (an: integer; var value: double);
C: void wrMaxVel (long an, double *value);
VISUAL BASIC: Sub wrMaxVel (an As Long, ByVal value As Double)
PARAMETER: The number of axes is entered in an, the maximum velocity accepted is transmitted

in value in the axis-specific velocity unit.
NOTE: To check this function the bit 7 in MODEREG register must be set (see chapter

6.3.1.4). When set to 0 the check function is disabled for the axis involved. The
function is only available with spooled commands.

4.4.152 wrmcp, write motor command port

DESCRIPTION:

APCI-8001:
APCI-8008:
CPCI-8004:

This command is used to write the Motor-Command-Port to the value set in the
mcp field. You will find this particularly helpful during commissioning work, if you
want to check the drive system's setpoint value channel, for example. In idle mode
(no position control), the motor axis can be moved with this command in
uncontrolled form. This means, for example, that you can check the drive's sense
of rotation, or check the pulse acquisition feature and limit switches for correct
functioning and so on, before commissioning work is continued in the position
control mode.

In the case of servo axes, mcp can be set to a value between -32,767 and
+32,767. This value range corresponds to the analogue output voltage
range of -10 V to +10 V. It may be necessary to allow for a planned
inversion of the analogue output signal.
In the case of stepping motor axes, mcp can be used to specify a time-
delay, with the aid of which a stepping signal for stepping motor power
output stages is generated. The frequency of this stepping signal can be
computed as follows:

 fPulse = CLOCK/2/(mcp+1)

 Example: with mcp = 999 and CLOCK = 70MHz
 fPulse=35,000[Hz]

The CLOCK value is 70 MHz for the APCI-8001 and 66.66666 MHz for the
APCI-8008.
The value range of mcp lies between -1,048,574 and +1,048,574. The sign
selects the desired traversing direction and influences the axis-specific
directional signal. For the stepping signal fPulse, only the absolute value of
mcp is determinant. Remember that the value 0 in mcp causes a stepping
signal of 0 Hz, i.e. the motor halts.

BORLAND DELPHI: procedure wrmcp(var tsrp:TSRP);
C: void wrmcp(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrmcp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].mcp
NOTE: If the axis system is in position control, this command will be effective at most for

the duration of a scan interval, since the Motor-Command-Ports are set to new
values after the PIDF filter has been processed.
PCAP command rdmcp()

85 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.153 wrMDVel – Write Maximum Velocity Skip

DESCRIPTION: With this command you can write the maximum axis-specific velocity jump
(MDVEL). This value is used by the look-ahead functionality RWMOS operating
system software verwendet to limit the trajectory velocity so that no axis involved in
an interpolation exceeds the maximum velocity accepted.

BORLAND DELPHI: wrMDVel (an: integer; var value: double);
C: void wrMDVel (long an, double *value);
VISUAL BASIC: Sub wrMDVel (an As Long, ByVal value As Double)
PARAMETER: The number of axes is entered in an, the maximum velocity accepted is transmitte

in value in the activated position and time units (PU and TU) übergeben.
NOTE: The look-ahead mode is activated by setting the bit 0 in MODEREG register (see

chapter 6.3.1.4). The check function of the axis is disabled with the value 0. In this
case please consider also the bit 6 of MODEREG.
Important: In look-ahead mode the different profiles must be programmed with a
target velocity > 0 (generally = maximum velocity) so that the look ahead is really
effective.

4.4.154 wrModeReg – Write MODEREG

DESCRIPTION: With this command the register MODEREG of the RWMOS operating system
software can be described.

BORLAND DELPHI: wrModeReg (var value: integer);
C: void wrModeReg(long *value);
VISUAL BASIC: wrModeReg (ByVal value As Long)
PARAMETER: bitcodierter value für ModeReg
NOTE: With flags (bits) in the ModeReg register different options can be activated and

monitored in RWMOS.ELF such as e.g. look-ahead, S profile etc. (see chapter
6.3.1.4).

4.4.155 wrmpe, write maximum position error

DESCRIPTION: This command can be used to alter, during the run time, the position error limit
{mpe} specified with the aid of the TSW program mcfg.exe. The axis-specific
maximum permitted position error is reset to the value set in mpe. The value is
specified in the axis-specific position unit.

BORLAND DELPHI: procedure wrmpe(var tsrp:TSRP);
C: void wrmpe(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrmpe(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].mpe
NOTE: Position error monitoring is performed only if a value greater than 0.0 has been

specified and the control loop is closed.
(MCFG / Chapter 1.7.2.1.9)
PCAP command rdmpe()

86 PM / PROGRAMMING AND REFERENCE MANUAL

4.4.156 wrnfax, write No-Feed-Rate-Axis

DESCRIPTION: With this command on the NFRAX register of the RWMOS operating system
software is written.

BORLAND DELPHI: wrnfax (var value: integer);
C: void wrnfax (long *value);
VISUAL BASIC: Sub wrnfax (VyVal value As Long)
PARAMETER: Bit coded value for NFRAX
NOTE: In the register NFRAX so-called No-Feed-Rate axex can be defined bit coded.

These axes are not used for the calculation of the velocity at interpolation
commands; in spite of taking part in the interpolation. In this way the influence of
other axes for the velocity in interpolation profiles can be prevented.
See also rdnfrax function in chapter 4.4.91.

4.4.157 wrrp, write real position

DESCRIPTION: This command sets the axis-specific current position register to the value set in rp
and is operative only in open-loop mode (no position control). The value is
specified in the axis-specific position unit.

BORLAND DELPHI: procedure wrmpe(var tsrp:TSRP);
C: void wrmpe(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrmpe(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].mpe
NOTE: This command will cause the machine zero to be shifted automatically!

4.4.158 wrsdec, write stop deceleration

DESCRIPTION: This command is used to set the axis-specific stop deceleration sdec for the
following: the PCAP command js() [chapter 4.4.24], SAP command JS() [chapter
6.6.26], the software end positions (MCFG / Chapters 1.7.2.1.10 and 1.7.2.2.3)
planned with SMD and the digital inputs planned with LSL_SMD or LSR_SMD
projected digital inputs (MCFG / Chapter 1.7.2.5). If wrsdec() is not executed, the
system will work with the system parameter specified in the TOOLSET program
mcfg.exe. The system parameter can be overwritten any time you want.

BORLAND DELPHI: procedure wrsdec(var tsrp:TSRP);
C: void wrsdec(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrsdec(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].sdec
NOTE: The value currently set for sdec can be read with the PCAP command rdsdec()

(see chapter 4.4.96).

4.4.159 wrsll, write software limit left

DESCRIPTION: This command can be used to alter, during the run time, the axis-specific left
software limit position {sll} defined with the aid of the TSW program mcfg.exe. The
left software limit is reset to the value set in sll. The value is specified in the axis-
specific position unit.

BORLAND DELPHI: procedure wrsll(var tsrp:TSRP);
C: void wrsll(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrsll(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].sll

87 PM / PROGRAMMING AND REFERENCE MANUAL

NOTE: The software limit set is taken into account only if the home position of the axis
channel involved has already been defined or is set after execution of this
command.
(MCFG / Chapter 1.7.2.1.10)
PCAP commands rdsll(), shp(), SAP command SHP()

4.4.160 wrslr, write software limit right

DESCRIPTION: This command is identical to the PCAP command wrsll(), but the right software limit
is redefined with the value set in the slr parameter.

BORLAND DELPHI: procedure wrslr(var tsrp:TSRP);
C: void wrslr(struct TSRP far *tsrp);
VISUAL BASIC: Sub wrslr(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].slr

4.4.161 wrslsp, write Slits / Stepperpulses

DESCRIPTION: This command sets the axis-specific resolution per motor turn {slsp}. The default
value is determined with the TOOLSET program mcfg.exe.

BORLAND DELPHI: procedure wrslsp (an: integer; var value: double);
C: void wrslsp (long an, double *value);
VISUAL BASIC: Sub wrslsp (ByVal an As Long, value As Double)
TSRP COMPONENTS: None
NOTE: slsp can be read with the PCAP commaand rdslsp(). See also axis qualifier slsp.

For slsp only numeric values > 0.0 are allowed.

4.4.162 wrtp – write target position

DESCRIPTION: With this command you can write the axis-specific target position (tp). This
command is usually only necessary and used in special cases.

BORLAND DELPHI: procedure wrtp(var tsrp:TSRP);
C: void wrtp(struct TSRP far *tsrp) ;
VISUAL BASIC: Sub wrtp(DTSRP As TSRP)
TSRP COMPONENTS: TSRP[n].tp
NOTE: By writing the target position (tp) when motion commands are executed an

uncontrolled process course can occur in certain cases. This is why it must be
avoided. See also PCAP command rdtp().

4.4.163 wrtrovr, write trajectory override

DESCRIPTION: This command sets the trajectory velocity correction value for all interpolation
commands (move commands). The value parameter must have a value greater
than 0.0. All values smaller than 1.0 result in a reduction in the trajectory velocity. If
value has a value greater than 1.0, this will be manifested in an increase in
trajectory velocity.
The correction value specified in value is placed in intermediate storage on the
xPCI-800x board in a system variable and does not become operative until after
execution of the PCAP command utrovr(), or the SAP command UTROVR(). The
axis channels selected there will be decelerated or accelerated even during
trajectory travel, depending on the value correction factor.

BORLAND DELPHI: procedure wrtrovr(var value:double);
C: void wrtrovr(double *value);

88 PM / PROGRAMMING AND REFERENCE MANUAL

VISUAL BASIC: Sub wrtrovr(value As Double)
NOTE: Remember that the specified correction value acts equally on the current trajectory

acceleration. If the correction value is increased or decreased too quickly, this may
be manifested in an abrupt acceleration (jerk) of the axes. The correction factor
should therefore be incremented or decremented over time-delay loops in linear
mode until the final value you want has been reached. When the PCAP command
rs() or the SAP command RS is executed, the override factor is initialized to the
default value of 1.0.
PCAP commands wrtrovr(), wrjovr(), rdtrovr() and rdjovr()

4.4.164 wrtrovrst, write trajectory override settling time

DESCRIPTION: With this command a „soft“ adaptation of the override value TROVR can be done
after the calling of utrovr() realisieren. In the parameter „value“ before the calling of
utrover() a time in seconds is indicated that is the adaptation time between the
values 0 and 1. In this way velocity jumps, which are caused by programming, can
be avoided. Indicated times that are smaller than the sampling interval are not
taken into consideration. The value 0 disables the function.

BORLAND DELPHI: function wrtrovr(var value:double) : integer;
C: int wrtrovr(double *value);
VISUAL BASIC: Function wrtrovr(value As Double) as long
RETURN VALUE: 0 for success

-1: command is not available in RWMOS version
-4: time-out, reason unknown

NOTE: Please also see the commands rdtrovrst, wrtrovr, rdtrovr, utrovr and rw_SymPas
system parameter TROVRST
Setting the Jog-Override using wrjovr is not affected by this function. See also Bit
25 in the MODEREG register (Section 6.3.1.4). Reading the TROVR parameter
always returns the programmed target value, even during the adaptation phase. If
the current effective override value is to be read during the adaptation phase, the
current Jog-Override of one of the axes involved can be used.

89 PM / PROGRAMMING AND REFERENCE MANUAL

5 The rw_SymPas programming language
for stand-alone application programming

5.1 Introduction

rw_SymPas is a programming language for creating autonomously running CNC programs (stand-alone
application programs) for the xPCI-800x positioning control system. The lexical and semantic grammar of
rw_SymPas is very similar to that of the Pascal programming language.

5.2 Lexical grammar

This chapter contains a formal definition of the lexical grammar used in rw_SymPas. This deals with the
word-like units of a language, referred to as »symbols« or »tokens«. The semantic grammar determines the
rules by which symbols can be combined to form expressions, statements or other units.
In rw_SymPas, the symbols are obtained as a result of the operations performed by the NCC compiler with
the user program. An rw_SymPas program is a sequence of ASCII characters representing the source code
and written with a text editor (e.g. CNC-Edit). The basic program unit in rw_SymPas is the file, which
corresponds to a named DOS file in the memory or on the disk and has the extension ".SRC".

5.2.1 White space

In the lexical analytical phase of compiling, the source code file is parsed (broken down) into symbols and
»white space«. White space is the collective term for characters categorized as separators: blanks, tabs, line
breaks and comments. White space is used for marking the beginning and end of a symbol, but apart from
this white space is ignored.

5.2.2 Comments

Comments are text lines containing explanations on the program. They are removed from the source text
prior to parsing.
An rw_SymPas comment is a character string located after the character "{". The comment ends at the first
occurrence of the "}" character following the start symbol "{". Comments cannot be nested.
There is also an option for creating a one-line comment with two slashes "//". The comment can begin at any
point and extends up to the next line.

90 PM / PROGRAMMING AND REFERENCE MANUAL

5.2.3 Symbols

rw_SymPas recognizes the following kinds of symbol

 Symbol:
 Keyword
 Designator
 Qualified designator
 Labels
 Constant
 Operator
 Punctuation character (including separators)

5.2.3.1 Keywords

Keywords are words reserved for special purposes, which may not be used as normal designator names.
The table below lists all the rw_SymPas keywords.

Table 21: All rw_SymPas keywords
and begin boolean const
do double downto else
end for goto if
integer label mod module
not or procedure repeat
shl shr single then
timer to until var
while xor

5.2.3.2 Designators

Designators can consist of the following elements:

 Designator
 Non-figure
 Designator non-figure
 Designator figure

Non-figure: one of the following characters

a b c d e f g h i j k l m n o p q r s t u v w x y z _
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Figure: one of the following characters

0 1 2 3 4 5 6 7 8 9

Examples:

 A, AA, AB, A1, A2, _A // valid
 1A, ?B // invalid

91 PM / PROGRAMMING AND REFERENCE MANUAL

a) Name and length restrictions

Designators can be any names of any length for variables, procedures, label names, etc. Designators may
contain the letters A to Z, a to z, the underscore and the figures 0 to 9. However, the following restrictions apply:

• The first character must be a letter or an underscore.
• Only the first 32 characters are significant. If the designator contains more than 32 characters, the

remaining characters are ignored. In the case of large rw_SymPas programs, you should keep to short
names, so as not to overload the PC's main memory.

b) Designator upper and lower case

rw_SymPas distinguishes between upper and lower-case letters, so that Position, position and positioN are
different designators.

c) Unambiguity and validity of designators

Designators can be any names which conform to the applicable rules. Errors may, however, occur if the
same name is used inside the same range of application for several different designators having the same
name range. Identical names are permissible for different name ranges, irrespective of the range of
application involved. The definition of a designator range of application is explained in chapter 5.3.2.2.

5.2.3.3 Standard designators

rw_SymPas already has a series of predefined designators, which are accordingly referred to as "standard
designators". All rw_SymPas standard designators are listed in the table below.

Table 22: All standard designators predefined rw_SymPas
abort Cl contcnct disev
enev Ja jaw jhi
jhiw Jhl jhlw jhr
jhrw Jr jrw js
jsw Mca mcaw mcr
mcrw Mha mhaw mhr
mhrw Mla mlaw mlr
mlrw Ms msw ol
ra Rs shp smca
smcr Smha smhr smla
smlr Ssms ssmsw startcnct
stop Stopcnct uf wt
utrovr

5.2.3.4 Axis designators

Each axis channel is referenced using a symbolic name. This name can be freely chosen by the user, with
up to 8 characters. These axis designators are likewise incorporated in the standard designator list by
rw_SymPas.

Note: Automatic declaration of the axis designators deviates from Standard Pascal.

92 PM / PROGRAMMING AND REFERENCE MANUAL

5.2.3.5 Qualified designators

Referencing to designators of the same name which have been declared for different axis systems (by
rw_SymPas) is handled in a qualifying routine by prefixing the axis designator.
Examples:

A1.digo := 0; // Reset all outputs of xPCI-800x
A2.digo := $FFFFFFFF; // Set all outputs of xPCI-800x

Note: Variable referencing to qualified designators deviates from Standard Pascal.

5.2.3.6 Labels

The same rules apply for the structure of a label as for the designators. Labels are used solely in connection
with the goto statement.

5.2.3.7 Constants

Constants are symbols which stand for fixed numerical values. rw_SymPas knows two classes of constants:
floating-point and integer. A constant's data type is derived by the NCC compiler on the basis of its numerical
value and its format in the source text. Table 23 shows the formal definition of a constant

Table 23: Formal definition of a constant.
Constant:
 Floating-point constant

 Integer constant
Floating-point constant:
 Fractional constant<exponent>

 Digit string exponent
Fractional constant:
 <Digit string>.Digit string

 Digit string.
Exponent:
 e<sign>Digit string

 E<sign>Digit string
Sign: one of the following characters

+ -
Digit string:
 Digit

 Digit string digit
Integer constant:
 <sign>Decimal constant

 Hexadecimal constant
Decimal constant:
 Digit

 Decimal constant digit
Hexadecimal constant:
 $ Hex digit

 Hexadecimal constant hex digit
Digit:
 0 1 2 3 4 5 6 7 8 9
Hex digit:
 0 1 2 3 4 5 6 7 8 9
 a b c d e f
 A B C D E F

93 PM / PROGRAMMING AND REFERENCE MANUAL

a) Integer constants

Integer constants can be decimal (base 10) or hexadecimal (base 16) numbers. Remember that different
rules apply for decimal and non-decimal constants.

b) Decimal constants

Decimal constants of -2147483648 to 2147483647 are permitted. Constants outside this range will
automatically be limited to the appropriate minimum or maximum value.

c) Hexadecimal constants

All constants which begin with the dollar sign ($) are interpreted as hexadecimal constants. Hexadecimal
constants of $80000000 to $7FFFFFFF are permitted. Constants outside this range will be limited to the
appropriate minimum or maximum value.

d) Floating-point constants

A floating-point constant is made up of 4 constituents:
 Places before the decimal point
 Decimal point
 Decimal places

 e or E and a signed integer exponent (optional))

You can omit either the places before the point or after it (but not both). The decimal point or the letter e (E)
can be omitted (but not both). These rules enable you to use both the conventional and the scientific notation
(with exponents).

e) The type of floating-point constants

Floating-point constants are always handled as double values. They are filed in a double word (8 bytes) in
accordance with IEE. The range is 1.7*10-308 to 1.7*10308.

f) Declaration of constants

A constant declaration agrees a designator, which inside the block concerned stands for a constant value.
An example of a constant declaration is:

Const one = 1;

Signed constants stand for an integer or floating-point value. Computation of constants is not possible.

g) Punctuation characters

Punctuation characters (also referred to as separators) are defined in rw_SymPas as follows:

 Punctuation characters: one of the following symbols
 () , ; : =

94 PM / PROGRAMMING AND REFERENCE MANUAL

h) Parentheses

Parentheses () group expressions together, isolate conditional expressions and represent procedure calls
and procedure parameters:

d := c * (a + b); // Alter the normal sequence
if (d = z) then ... // Required with a conditional
 // statement
proc() // Procedure call without arguments

i) Comma

The comma (,) separates the elements in a procedure argument list:

mlr (A1, A2);

j) Semi-colon

The semi-colon (;) is used as the end criterion for a statement. Every valid rw_SymPas expression (including
an empty expression) with a semi-colon at its end will be interpreted as a statement (expression statement).

k) Equals sign

The equals sign (=) separates constant declarations from the initialization values:

Const one = 1.0;

5.3 Semantic grammar

This chapter will explain the formal definition of the rw_SymPas language structure. This semantic grammar
determines the rules by which symbols can be combined to form expressions, statements or other
meaningful units.

5.3.1 Declarations

The following section provides a brief summary of subjects involving declarations: objects, types, blocks,
locality and range of application. Locality and range of application define those parts of the program from
which the object linked to the designator can permissibly be accessed.

5.3.1.1 Objects

An object is an identifiable memory area in which a fixed or variable value (or a quantity of values) is located.
Each object has a name and a type (referred to as the "data type"). An object is accessed over its name.
This name can be a simple designator or a complex expression which unambiguously indicates an object.
The type is used in order to:

• specify the correct memory reservation required at the beginning
• check the types so as to ensure that correct assignments are made

95 PM / PROGRAMMING AND REFERENCE MANUAL

The predefined types of rw_SymPas include the Boolean data type, integer numbers with sign and floating-
point numbers with differing accuracy.
Declarations establish the link between designators and objects. Each declaration links a designator to a
data type. In addition, most declarations (referred to as the "definition declarations") also determine the
generation of the object (where and when) and handle assignment of the memory location.

5.3.1.2 Types

Every declaration of a variable has to specify the type of this variable. The type specifies the value range of
the variable concerned and determines the operations which can be performed with it. Thus a type definition
agrees a designator, which in turn stands for a particular type.

Type declaration:
 Designator = Type;

Type:
 Boolean type
 Integer type
 Floating-point type

a) Boolean type

The Boolean data type can assume only one of the predefined values FALSE or TRUE. Note that the
following relations apply:

 • FALSE < TRUE
 • Ordinal number of FALSE = 0
 • Ordinal number of TRUE = 1

b) Integer type

rw_SymPas provides the integer types Integer and Timer.

Table 24: The integer type and its value range
Type Range Format
Integer -2147483648 .. 2147483647 32 bits with sign
Timer 0 .. 4294967295 32 bits without sign

c) Floating-point types (real types)

rw_SymPas knows two different kinds of floating-point types: Single and Double. These types differ from
each other both in their value ranges and in the accuracy of operations performed with them.

Note: Occasionally the term "real type" is also used for "floating-point type".

Table 25: The floating-point types and their accuracy
Type Range Format
Single -1.2e-38.. 3.4e38 7 to 8 places
Double -2.2e-308 .. 1.8e308 15 to 16 places

96 PM / PROGRAMMING AND REFERENCE MANUAL

d) Assignment compatibility of types

Assignment compatibility is essential if a value is to be assigned. The value of a type T2 can be assigned to a
value T1 (i.e. T1:=T2), if one of the following conditions is satisfied:

 • T1 and T2 are of the same type.
 • T1 has the type double, T2 the value integer or single.
 • T1 has the type single, T2 the value integer.

If none of these conditions is satisfied, but assignment compatibility is required, the NCC compiler will report
an error.

5.3.1.3 Variables

a) Automatic type conversion

rw_SymPas executes an automatic type conversion function if there are different types in one expression.
Conversion is performed as follows: integer to single or integer and single to double. For example:

...
Var
 i : Integer;
 s : Single;
 d : Double;
...

d := s * i; // s and i are automatically converted to double

s := i; // i is automatically converted to single

5.3.2 Blocks, locality and range of application

A block consists of declarations and statements arranged at will. Each block is part of a procedure
declaration or of a program. All designators and labels in the block's declaration section are restricted in their
effect to this block - they are local to this block.

5.3.2.1 Syntax

The syntactic structure of each block can be represented as follows:

Block:

Declaration section
Command section

97 PM / PROGRAMMING AND REFERENCE MANUAL

a) Declaration section

Declaration section:
Label declaration section
Constant declaration section
Variable declaration section
Declaration section label declaration section
Declaration section constant declaration section
Declaration section variable declaration section

♦ Label declaration section

In the Label declaration section, all labels are agreed which are to represent goto jump destinations in the
command section of the block involved. Each label may be defined once only inside the command section
(i.e. each goto must have an unambiguous destination).

Structure of the label declaration section:

 label Labels;

Labels:

LabelName
Labels, LabelName

♦ Constant declaration section

The declaration section for constants contains all agreements for constants which are local to the block
involved.

Structure of the constant declaration section:

const constant declarations

Constant declarations:
Constant declaration
Constant declarations constant declaration

♦ Variable declaration section

The declaration section for variables contains all variable declarations which are local to the block involved.

Structure of the variable declaration section:

var variable declarations

Variable declarations:
Variable declaration
Variable declarations variable declaration

b) Command section

It is in the command section that all operations are defined which are executed at block activation.

Command section:

Compound statement

98 PM / PROGRAMMING AND REFERENCE MANUAL

Permissible compound statements are explained in chapter 5.3.5.5.

The command section of the main program block is structured as follows:

begin
 Statement list;
end.

5.3.2.2 Range of application

Each designator and each label of a declaration agrees precisely one object or jump destination. This is why
a designator, like a label, must always be in its declaration's range of application when it appears in the
program. The range of application for designators and labels lies between the actual declaration as such and
the end of the block involved, with all those blocks being included which this block encloses. There are,
however, a few exceptions to this, which are explained in the paragraphs below.

a) Redeclaration in a subordinate block

With the assumption that a block »outside« encloses a block i.e. is of a higher order, every redeclaration of a
designator from »outside« in the block »inside« restricts this designator's range of application to the »inside«
block. Or to put it another way: if a variable x is declared »outside« and a variable of the same name is
declared »inside«, then statements in the block »inside« cannot access the variable x declared »outside«.

b) The location of a declaration in a block

Designators and labels must be declared before they can be used in a block. The NCC compiler will react to
access attempts before such declaration with Error Number 3.

c) Redeclarations inside a block

Designators and labels can each be declared only once on the topmost level of a block, unless they are
redeclared inside a subordinate block.

d) Standard designators

rw_SymPas offers a whole series of predefined constants, types and procedures, which work as if they had
been declared inside a block covering the whole program. Consequently their range of application also
covers the entire program.

5.3.3 Variables

5.3.3.1 The declaration of variables

The variable declaration contains a list of designators, which in their turn stand for new variables and their
types.

Variable declaration:

Designator list: type;

Designator list:
Variable names
Variable names, variable name

99 PM / PROGRAMMING AND REFERENCE MANUAL

Type:

BOOLEAN
INTEGER
SINGLE
TIMER
DOUBLE

Examples of valid variable declarations are:

var
 on, off: BOOLEAN;
 one: INTEGER;
 dvalue: DOUBLE;
 ticks: TIMER;

When a designator is located in the designator list of a declaration section, it applies inside the entire block
for which it has been declared. Reference can be made to this variable throughout the block, provided the
same designator is not being used for a different variable in a subordinate block ("redeclaration"). A
redeclared variable uses the name of an already-existing designator, but otherwise represents an
autonomous unit. The value of the original variable is not affected by the redeclaration. Variables declared
outside procedures are referred to as global. Variables declared inside procedures are local.

a) Axis-type declaration

You can define variable axes with the AXIS type declaration. It is particularly useful for the design of sub-
programmes (procedures) used several times and in which recurrent actions are to be executed for several
axes.

Example:
 var
 VA : AXIS; // variable axis with name VA
 VA.an := 0; // Assign axis number 0 to VA (important!)
 ol(VA); // open loop of axis 0
 for VA.an := 0 to 5 do cl(VA); // close loop axes 0 .. 5

Note: The axes numbers of the predefined axes specifiers (A1 .. An) that are defined by the system
parameters can also be assigned anew in this way. This can yet cause a confused and incorrect
programming. Should you operate with variable axes, the use of the corresponding variables with
corresponding symbol character is recommended.

b) Timer declaration

An entry with the aid of the predefined system variable CLOCK supplies a value of the timer type, which
represents the time. This value is supplied by the control's internal clock, which alters its value at regular
intervals. This value continues cyclically, i.e. after the largest positive value the next value supplied is the
smallest negative value. The time interval in which this internal clock is incremented is 64 µs.
CLOCK can be used at any time to assign the counter reading of this clock to an integer or timer variable. If
different times have to be compared with each other, this comparison should be carried out only by means of
timer variables, since here a timer overflow will automatically be taken into account at the comparison
operator >. Likewise, addition and subtraction with timer variables is performed in modulo technique, i.e.
without signs. With integer variables, conversely, there may be an overflow or underflow, which in turn will
cause the internal error flag to be set and in certain situations will trigger an abort of the rw_MOS operating
system.

100 PM / PROGRAMMING AND REFERENCE MANUAL

A practical timer application might look like this:
Const
 s := 15625; // 15,625 ticks = 1s
Var
 t: timer

t := CLOCK + 5*s; // Compute time-delay of 5 s from now
...
repeat
 ...
until CLOCK > t; // wait until 5 s have passed
...

In this example, you can see that the addition of CLOCK and the time-delay results in an overflow at large
values for CLOCK. We therefore recommend using the timer instead of the integer type for declaration of the
variable t. Another reason is the interrogation of whether the computed time-delay has been reached. In the
event of an overflow in computing the time-delay, you see, the content of t is smaller than CLOCK. This
circumstance is likewise handled properly by the declaration as a timer variable.
The value range of a timer variable lies between 0 and 4294967295. Time-delays of up to 38h can be
implemented.

5.3.3.2 Conversion of variable types

The reference to a variable of a particular type can be converted into a reference to a variable of a different
type.

Type conversion:

Type designator (variable reference)

Type designator:

BOOLEAN
INTEGER
SINGLE
DOUBLE

A few examples for the conversion of variable types:

var
 B : BOOLEAN;
 I : INTEGER;
 D : DOUBLE;

 B := BOOLEAN (I);
 B := BOOLEAN (D);
 D := B;
 I := INTEGER (D);
 I := B;

5.3.4 Expressions

Expressions consist of operators and operands. Most operators of rw_SymPas link two operands and are
therefore referred to as binary. The remaining operators work with only one operand and are therefore
referred to as unary. Binary operators utilize the conventional algebraic form like a+b. A unary operator is
always positioned immediately before its operand, as with -b. In the case of extensive expressions, the order
of precedence shown in Table 26 governs the sequence of computation. Three basic rules apply:

101 PM / PROGRAMMING AND REFERENCE MANUAL

• An operand between two operators of different precedence rankings is always linked to the higher-
ranking operator.

• An operand between equal-ranking operators is always linked to the operator located to the left of it.
• Expressions in brackets are regarded as a single operand and always evaluated first.

Table 26: Operator precedence
Operators Precedence Category
-, +, not 1 (highest) unary
*, /, mod, shl, shr and 2 multiplying
+, -, or, xor 3 adding
=, <>, <, >, <=, >= 4 relational

Operations of the same precedence ranking are normally performed from left to right.

5.3.4.1 Syntax of expressions

The order of precedence for operators follows the syntax for expressions composed of factors, terms and
simple expressions. Factors can be represented by the following syntax:

Factor:

variable reference
unsigned constant
(expression)
not factor
type conversion (values)

unsigned constant:

unsigned numerical value
character string
constant designator

The following particulars represent valid factors:

Dummy variable reference
15 unsigned constant

5.3.4.2 Operators

We distinguish between four groups of operators: arithmetical, logic, boolean and relational operators.

5.3.4.3 Arithmetical operators

The tables below show the types of operand and result involved in binary and unary arithmetical operations.

Table 27: Binary arithmetical operators
Operator Operation Operand type Result type
+ Addition Integer, Real Integer, Real
- Subtraction Integer, Real Integer, Real
* Multiplication Integer, Real Integer, Real
/ Division Integer, Real Integer, Real
mod Modulo Integer Integer

Note: If one of the operands is of the Timer type, addition and subtraction are performed using the modulo
technique. No overflow check is made, since the Timer values are cyclical. You will find more details on the
Timer type in Chapter 5.3.3.1(b)

102 PM / PROGRAMMING AND REFERENCE MANUAL

Table 28: Unary arithmetical operators
Operator Operation Operand type Result type
+ Identity Integer, Real Integer, Real
- Negation Integer, Real Integer, Real
If both of an operator's operands +, -, *, /, or mod have an integer type, the result will likewise be of the
integer type. If one of an operator's operands is +, -, *, or / is of the Real type, then the result will likewise be
of the Real type.
The mod operator returns the rest of the division of its operands as follows:

i mod j = i - (i/j)*j;

5.3.4.4 Logic operators

Table 29 shows the types of operand involved and the results of logic operations.

Table 29: Logic operations
Operator Operation Operand type Result type
Not bitwise negation Integer Integer
And bitwise AND Integer Integer
Or bitwise OR Integer Integer
Xor bitwise exclusive OR Integer Integer
Shl Shift left Integer Integer
Shr Shift right Integer Integer

Note: not is a unary operator.
The i shl j and i shr j operations shift the value of i by j bit positions to the left or the right and thus correspond
to a multiplication or division by 2j.

5.3.4.5 Boolean operators

Table 30 shows the types of operand involved and the results of Boolean operations.

Table 30: Boolean operators
Operator Operation Operand type Result type
not logic negation Boolean Boolean
and logic AND Boolean Boolean
or logic OR Boolean Boolean
xor logic exclusive OR Boolean Boolean

Note: the operator not is unary here as well.
In the case of operands of the Boolean type, normal Boolean logic determines the result of these operations.
For example, a and b will only give TRUE when a and b are both true

5.3.4.6 Relational operators

Table 31 shows the operand types involved and the results of relational operations.

Table 31: Relational operators
Operator Operation Operand type Result type
= equal Integer, Real Boolean
<> unequal Integer, Real Boolean
< smaller than Integer, Real Boolean
> greater than Integer, Real Boolean
<= smaller than/equal Integer, Real Boolean
>= greater than/equal Integer, Real Boolean

103 PM / PROGRAMMING AND REFERENCE MANUAL

Note: If one of the operands is of the Timer type, the greater than (>) operation is performed using the
modulo technique. No overflow check is made, since the Timer values are cyclical. You will find more details
on the Timer type in chapter 5.3.3.1(b).

5.3.5 Statements

This term “statement” stands for all constructs which agree an action which can be executed by the xPCI-
800x board. In this manual, the term »statement« is used as a generic term for statements (like begin, end or
for) and commands (like goto, assignments, procedure calls, etc.).
Each statement (i.e. each agreement for an executable action) can be preceded by a label, which in its turn
can be referenced with goto: a goto this label causes a direct jump to this statement and its execution.

Structure of a statement:

 Label: statement

Statement:
 Assignment
 Procedure statement
 Goto statement

5.3.5.1 Assignments

Assignments replace the instantaneous value of a variable with a new value, which is specified by mean of
an expression.

Structure of an assignment:

Variable reference := expression

5.3.5.2 Procedure calls

A procedure is called by specifying a procedure designator with which the procedure concerned has been
declared. Parameter transfer to the procedure is not supported.

5.3.5.3 The goto statement

executes a jump to the label specified: the program is continued at a point immediately following the label
concerned. The syntax of goto is:

 goto Label

When goto is used, the following rules must be observed:

• The label to which goto is referenced must be located in the same block as the goto statement itself. It is

not possible to jump back and forth at will between procedures with goto.
• Referencing to a structured statement block from a program section outside this block (i.e. a jump to a

deeper nesting level) may have unforeseeable consequences. rw_SymPas cannot detect errors of this
sort.

104 PM / PROGRAMMING AND REFERENCE MANUAL

5.3.5.4 Structured instructions

consist of several interested levels, which in their turn contain statements. They are executed either in the
order of their appearance (compound statements), conditionally (conditional statements) or repeatedly
(repeat statements or loops).

Structured statement:

block command
conditional statement
repeat statement

5.3.5.5 Compound statements

Compound statements specify that the individual components they contain are to be executed in the order in
which they appear in the source text concerned. All statements contained in the compound are handled as
one single block and thus satisfy the requirements at points where the syntax of rw_SymPas permits only a
single statement. Beginning and end of a compound are indicated by begin and end, with the individual
components separated from each other by semi-colons.

A compound statement can be represented as follows:

begin statement list end;

Statement list:
 statement;
 statement list statement;

Example:
 // ...
 var
 i: Integer;
 j: Integer;
 temp: Integer;
 // ...
 begin
 if (i > 0) then i := 0;
 else begin
 // interchange j and i
 temp := i;
 i := j;
 j := temp;
 end;
 end.

5.3.5.6 Conditional statements

Conditional statements offer one or more options and select one of their components (or none) for an
instruction.

105 PM / PROGRAMMING AND REFERENCE MANUAL

a) The if statement

can be represented as follows:

 if (conditional expression) then w-statement <else f-statement>

The brackets around Conditional expression are not absolutely necessary. The result of Conditional
expression must be of the standard Boolean type. If Conditional expression is TRUE, then w-statement will
be executed; otherwise w-statement will be ignored.
If the optional else f-statement is present and Conditional expression is true, then w-statement will be
executed; otherwise w-statement will be ignored and f-statement executed.
The statements f-statement and w-statement may themselves be if-statements, thus enabling a nested
conditional test to be implemented in almost any depth you want. You have to be very cautious in using
nested if. else constructs - make absolutely sure that the correct statements are chosen. Else ambiguities
are resolved by assigning an else to the last if-without-else occurring on the same nesting depth. Compound
statements are also permissible for w-statement and f-statement.

5.3.5.7 Loops

Loops (or repeat statements) specify the repeated execution of defined program sections.

Loop:
 while statement
 repeat statement
 for statement

a) The while statement

The format for a while statement is:

while (conditional expression) do w-statement;

The brackets around Conditional expression are not absolutely necessary. The loop statement w-statement
will be executed as long as the Conditional expression gives the value FALSE. The Conditional expression is
evaluated and tested beforehand. If the value obtained is TRUE, then w-statement will be executed. If the
program does not encounter any jump statements, causing it to leave the loop, the Conditional expression
will be evaluated anew. This operation is repeated until Conditional expression gives the value FALSE. If
there are no jump statements, then w-statement must influence the value of Conditional expression, or
Conditional expression itself must alter during evaluation, so as to avoid endless loops. Compound
statements are also permissible for w-statement.

b) The repeat statement

The format for a repeat statement reads:

repeat r-statement until (conditional expression);

The brackets around Conditional expression are not absolutely necessary. The r-statement is executed as
long as Conditional expression has the value FALSE. In contrast to the while statement, Conditional
expression is tested not before, but after every execution of the loop statement. r-statement will accordingly
be executed at least once.
Compound statements are also permissible for r-statement.

106 PM / PROGRAMMING AND REFERENCE MANUAL

c) The for statement

The format for a for statement reads:

for controlled variable := Start value to/downto final value do f-statement;

The controlled variable must be the designator of an integer-type variable, which has been declared either
inside the same block locally like the for statement, or globally for the entire program. The definition of a loop
with for includes the specification of a start and final value as well. Both these values must likewise be of the
integer type, which is assignment-compatible to that of the controlled variable.
When the loop is started, the controlled variable is set to the start value and increased or reduced by one
each time the loop is run - until the final value is reached. In each run, the f-statement or compound
statement contained in the rump of the loop is executed once. If the final condition of the loop is already
given before the first run (i.e. final value < start value or final value > start value when downto is being used),
then the loop and its rump will be skipped completely.

5.3.6 Procedures and functions

In formal terms, procedures and functions represent additional levels inside the main program block, i.e. a
nesting feature. A procedure is activated by a procedure call (i.e. specification of a designator) and does not
return a direct value. A function is activated during the computation of an expression in which its designator
appears and normally has a result which can for this call be equated with the function designator.

5.3.6.1 Procedure declarations

A declaration initiated with the reserved word procedure links a designator and a block of statements for a
procedure. Procedures declared in this manner can be activated (i.e. called) by specifying their designator. A
procedure declaration has the following formal structure:

Procedure header; procedure block;

The procedure header names the procedure (i.e. assigns a designator to it). Under Pascal standard, the
declaration of formal parameters would be permitted at this point. This is not supported in rw_SymPas.
However, data can be exchanged between the main program and a procedure can be performed over global
variables. A procedure is activated by specifying its designator: the actions defined in the command section
of the procedure declaration involved are executed.
A procedure which contains its own statement as part of its command section is executed recursively, i.e. it
calls itself repeatedly. In this context, a suitable criterion must be found for aborting the recursion before the
internal CNC task stack overflows.
It is not possible to nest procedures in rw_SymPas.

5.3.6.2 Function declarations

Note: The function declaration implemented to Pascal standard is not possible in rw_SymPas, but there are
various predefined system functions.

These functions are activated during the computation of expressions in which their designator appears and
stand there for the value they return. A function designator can be inserted anywhere in an expression in
place of an operand, provided the type of the function result concerned is compatible with that of the operand
replaced.
Assignments to a function designator are not permitted.
A function is called by specifying its designator, followed by a list of current parameters, which in type and
sequence must conform to the formal parameters of the correspondingly predefined function.

107 PM / PROGRAMMING AND REFERENCE MANUAL

5.3.7 The syntax of an rw_SymPas program

An rw_SymPas program is similar in form to a procedure declaration. The differences are merely in the
program descriptor.

rw_SymPas program:

Program descriptor; program block

5.3.7.1 The program descriptor

The program descriptor specifies the name of a program, but has no special significance of its own.

Program descriptor:

program designator

Example:

program Test;

5.3.7.2 The program block

Program block:
Implementation section
Procedure command section
Initialization section

Implementation section:

Constant declaration
Variable declaration
Implementation section constant declaration
Implementation section variable declaration

Initialization section:
begin
Command section
end

The initialization section is the final constituent part of an rw_SymPas program and represents the main
program. It consists of a block initiated with begin, which contains statements and is concluded by a
terminating end. The entire program block is concluded with the (.) character.

108 PM / PROGRAMMING AND REFERENCE MANUAL

6 Stand-alone application programming

6.1 Introduction

The rw_SymPas programming language incorporates a comprehensive set of commands, which you can
use for flexible, efficient program creation. The procedure calls are performed in accordance with Pascal
convention, apart from a few exceptions.
Since the procedure names and also the functioning of the individual procedures are identical for the two
programming methods involved - stand-alone application programming [SAP] and PC application
programming [PCAP], a detailed description is provided here only for the commands involved in PCAP
programming.
The individual commands are listed in alphabetical order.

6.2 rw_SymPas example programs

The rw_SymPas example programs included in the xPCI-800x TOOLSET software show how simple it is to
use the functions described below. The source texts for the example programs incorporate comments to
make them self-explanatory. So there is no need to go into a detailed description of these example programs
here. They all have the file extension .SRC and can be found in the SAP subdirectory of the xPCI-800x
TOOLSET software floppy.

6.3 Abbreviations, system parameters, axis specifiers and axis
qualifiers

For the SAP function reference list printed below, we will start off by explaining the various abbreviations and
types involved, some of which are used as parameters for the different functions in question.

6.3.1 System parameters

The system parameters predefined by the rw_SymPas programming language are listed in tabular form, with
an explanation of how they function. Remember that the NCC compiler distinguishes between upper and
lower case for these parameters.

109 PM / PROGRAMMING AND REFERENCE MANUAL

Table 32: rw_SymPas predefined system parameters
Name Type Abbr. meaning Function
BOARD
TYPE

integer Board-Typ Hardware version of the control type
(see chapter 4.4.18)

CI0..CI99 integer Common Integer 0..999 100 predefined integer variables for data exchange or
for synchronization with a PC application program
running in parallel. Further information at the PCAP
commands rdci() and wrci().

CD0..
CD99

double Common Double 0..999 100 predefined double variables. Otherwise as for
CI0..CI999. Further information at the PCAP
commands rdcd() and wrcd().

DTCA1 double Distance-to-Center A1 Indication of medium point for helical profiles and 3 D
circles for the X circle axis

DTCA2 double Distance-to-Center A2 Indication of medium point for helical profile and 3 D
circles for the Y circle axis

DTCA3 double Distance-to-Center A3 Indication of medium point for 3 D circles for tze Z circle
axis

ERROR
REG

integer error register Bit coded error register in which internal error states of
RWMOS.ELF are indicated.

IRQPC boolean Interrupt Request PC PC interrupt request, active when TRUE
LEDGN boolean Led green Green LED on xPCI-800x, switched on when TRUE
LEDRD boolean Led red Red LED, otherwise as for LEDGN
LEDYL boolean Led yellow Yellow LED, otherwise as for LEDGN
LET double Latch End Time Time for the recording of the graphical system analysis

in seconds from the moment LST. See the commands
LPR and LPRS. Basically 1000 values are always
recorded. The value entered in LET is always rounded
up in integral multiples of 1000 * TA. TA is set to 1.28ms
as a standard.

LST double Latch Start Time Moment for the begining of the recording the graphical
system analysis in seconds from the moment of the
calling up. See the commands LPR and LPRS.

MODEREG integer Mode Register Bit coded register to control the operating system
functionality (see chapter 6.3.1.4)

NFRAX integer No-Feed-Rate-Axis In this variable the axes ca be defined as bit coded.
They are not utilized for the calculation of the trajectory
velocity by interpolation movements.

NOA integer Number of Axis This system variable includes the number of the axes
actually available in the system and cannot be written.

OSVERSION integer Operating system
– version information

The predefined system parameter OSVERSION (Type)
returns the current operating system version number of
the rwmo.elf file while the SAP program is running. The
version number contains a primary number and
secondary number. Yet the primary number is
incremented in 1000 steps and the secondary in 1
steps. The version number 253042 e.g. means that the
primary number is 2.5.3 and the secondary is 042.

PHI double Traverse angle for circular and helical profiles
DTCA1 double Distance-to-Center A1 Center point for helical profile with target point for the X

axis
DTCA2 double Distance-to-Center A2 Center point for helical profile with target point for the Y

axis
NFRAX integer No-Feed-Rate-Axis Axes can be coded in bits, which are not utilized by

interpolation for the calculation of the trajectory velocity.
PN1 double Plane-Normal Surface normals for MCA3D command. Additional

Information at the command MCA3D.

110 PM / PROGRAMMING AND REFERENCE MANUAL

Name Type Abbr. meaning Function
PN2 double Plane-Normal Surface normals for MCA3D command. Additional

Information at the command MCA3D.
PN3 double Plane-Normal Surface normals for MCA3D command. Additional

Information at the command MCA3D.
PU integer Position Unit Index for position unit
SSFP integer Spool-Special-Function-

Parameter
Function parameter for specific functions in the spool
operating mode. Additional information at the SAP
command SSF

TRAC double Trajectory Acceleration Trajectory acceleration for linear, circular and helical
profiles

TROVR double Trajectory Override Trajectory velocity correction value
TROVRST double Trajectory Override

Settling Time
Time for the settling of the trajectory velocity correction
value

TRTVL double Trajectory Target Velocity Trajectory target velocity for linear, circular and helical
profiles

TRVL double Trajectory Velocity Trajectory velocity for linear, circular and helical profiles
TU integer Time Unit Index for time unit

6.3.1.1 PC interrupt generation

You can use the IRQPC system parameter to trigger a hardware interrupt on the PC. This option offers an
efficient approach for using the two programming methods: PC application and stand-alone application
programming. A stand-alone program can be used for largely autonomous process sequence, which needs
to interrupt the parallel-running PC program only if necessary, or in the event of an error. The program is
then interrupted with the aid of this interrupt generation feature. After the PC program has detected the
hardware interrupt, the common variables listed above can be used for exchanging data between the two
parallel-running programs.

Note: The hardware configuration for PC interrupt generation (PCI-Interrupt) is automatically given with the
aid of the Plug & Play properties integrated on the xPCI-800x board and manage through the system driver
mcug3.dll. The user has only to define a PCAP user routine with predefined structure and to inform the
driver. Once the xPCI-800x board has generated a hardware interrupt, the corresponding user routine is
called up automatically. The mcug3.dll driver is structured in such a way that other PCI interrupts, which use
the same interrupt sources can be called up as well.
The driver software that is contained in the scope of delivery, supplies functions in order to easily install an
interrupt service routine and, if required, to uninstall it (see chapters 0 and 4.4.34).

6.3.1.2 System parameters for unit processing

All move commands of the rw_SymPas programming language require specification of the acceleration
(TRAC), velocity (TRTVL, TRVL) and position parameters, each in selected distance and time units. You can
use the two system parameters listed below to switch over the path unit (PU) and time unit (TU) parameters
any time you want.

Table 33: System parameter PU
Value Unit Abbr. meaning
0 Mm Millimeter
1 Inch Inch
2 M Meter
3 Rev Revolution
4 Deg Degree
5 Rad Radiant
6 Counts Counts
7 Steps Steps

111 PM / PROGRAMMING AND REFERENCE MANUAL

Table 34: System-Parameter TU
Value Unit Abbr. meaning
0 Sec Seconds
1 Min Minutes
2 Tsample Sampling time

Note: The default values for TU and PU are specified in the [Setup][Set CNC-specific parameters] menu in
the CNC Editor environment.
The units selected are used only for interpolation commands (all move commands)! If the commands
concerned are axis-specific motion ones (all jog commands), the axis units specified in mcfg.exe are taken
into account. There is no option here for switching over during the run time.

6.3.1.3 ERRORREG

In this bit-coded register, runtime errors of the RWMOS operating system software are specified. The bit
assignment can be found in Table 15 in Chapter 4.4.62.1.

The ERRORREG register is only reset if it is written on with 0 or by a system boot.

6.3.1.4 MODEREG

With the bit coded register different options of the operating system software RWMOS.ELF can be set. As a
standard all bits are set to 0.

Note: When a bit is to be set or reset in this register, you must pay attention that the other bits are not
modified. For this it is necessary to read MODEREG before writing, to process the content with boolean
operations and then to write again. Bits are set with boolean Or connection, and reset with And connection.
Bits which are currently not assigned must not be used as they are reserved for future extensions.

Table 36: Bit coding MODEREG

Bit # / Hex Name Description
0 / 0001H LookAhead With this bit the look-ahead functionality of the RWMOS operating

system software is activated. The given target velocity of interpolation
profiles is limited so that the maximum axis-specific velocity jump
MDVEL is exceeded by no axis and that all axes are at rest by the end
of the interpolation travel. This mode is only valid for the commands
SMLA, SMLR, SMCA, SMCR, SMHA, SMHR.
In addition, the mode limits the trajectory velocity in circle commands so
that the axis-specific Jog acceleration (jac) in not exceeded for no axis
involved. The maximum velocity is calculated as follows:
√(Kreisradius * jac).

1 / 0002H S-Profil By setting this bit the acceleration and braking ramp are run with S-fom
velocity rise/drop. This option can be paraeterised with the axis qualifier
JERKREL.

2 / 0004H Not assigned
3 / 0008H WkzRadKorr Tool-Radius-correction (only by optionTC)

The Tool-Radius-correction i described in a separate manual. Ask for it
if you need it.

4 / 0010H Not assigned
5 / 0020H AutoSpool When travel profiles are spooled in SAP programs, the spooler is

checked by activated option. Once the spooler is full, the spooler
prcoessing is automatically started by the axes selected in the current
axes. Further profiles are only entered when memory is available. This
option can be used for the following travel commands:

112 PM / PROGRAMMING AND REFERENCE MANUAL

Bit # / Hex Name Description
SMLA, SMLR, SMCR, SMCA, SMHA, SMHR and G01 by DIN66025

6 / 0040H NoTriangle Triangular profiles in look-ahead mode are disabled. In case a sub-
profile cannot reach the programmed trajectory velocity, the current
start velocity remains. This enable a correcter running for short travel
profile parts without continuous acceleration and braking phases.

7 / 0080H ChkMaxVel In this mode, the trajectory velocity and the trajectory acceleration of all
axes are limited by spooled linear interpolation commands so that no
axis exceeds the maximum values set in MAXVEL and MAXACC.

8 / 0100H ExactTargetPos Usually at the end of an travel profile which has a target velocity of 0,
the setpoint position is rounded up in integral value of the system
resolution. It is for example by stepper motor systems a step or by
encoder systems an encoder counting pulse. It can cause an error by
connecting relative profiles with each other. This rounding up can be
switched off by setting this bit.

9 / 0200H ShortestRotatoric
Distance

When this bit is set by rotary axes, Jog absolute commands (JA) are
run in the direction in which the shortest traverse distance is required.

10 / 0400H RotatoricUnit When this bit is set, the target position / the traverse distance are given
in the axis-specific rotatory unit for rotatory axes which must be
travelled with translatory axes per interpolation command.

11 / 0800H ForbidTargetVel If this bit is set, a system reset (rs) is executed, if the traverse profiles
are terminated with a target speed <> 0.
In this case in the system variable ErrorReg Bit 1 is set.

12 / 1000H CenterAlwaysRel Circle centers at G-Codes G02 and G03 are to be interpeted always a
relative coordinates.

13 / 2000H

NoLsmCheck By setting this flag, the automatic spooler monitoring at G01 of the G-
Code interpreter (McuWIN) can be switched off.

14 / 4000H
to

23 / 80000H

 Currently not assigned.

24 /
0100 0000H

SimulationMode With this bit, the control can be set into the simulation mode. In this
mode no position sizes are given to the dirve systems, the profile of the
actual position is simulated.
Caution: A drift of the axes must be avoided from the user, as in this
mode, the bearing controller is disabled.

25 /
0200 0000H

OverMode When this bit is set, the Jog-Override of the selected axes will not be
influenced when calling the commando ctru.

26 /
0400 0000H

StopAtWriteln When this bit is set, the SAP command writeln causes to stop the
corresponding task. In this case in the register “running” of the data
structure CNCTS (Section 4.3.2.10) additionally Bit 2 is set. This mode
can be used for the complete processing of output strings in an
overlapping program.

27 /
0800 0000H

ClearZeroPosition When this bit is set, the zero offset set with szpa / szpr is deleted.
However, the current position values remain the same. When the bit is
set, the reference position can thus be moved at any time, for example.

28 /
1000 0000H

JSatSAF JOG Stop at Spooler-Asynchronous Flag: When this bit is set in the
event that an SAP flag appears in the AXST register, all axes
programmed with the stop deceleration will be stopped.

29 /
2000 0000H

InhibitProfile
Refuse

Usually, interpolation positioning profiles without traverse distance or
with velocity/acceleration = 0 are automatically rejected and an error
message in the fwsetup monitor screen is generated. Using this bit, the
output of an error message during the rejection of positioning profiles
can be disabled.

Following
bits

 Currently not assigned, reserved for future use

113 PM / PROGRAMMING AND REFERENCE MANUAL

6.3.2 Axis specifiers

The various axis channels are referenced with a symbolic name. You can choose these names quite freely in
the mcfg.exe program. In the rw_SymPas programming language, these names are predefined automatically
and serve in the user program as parameters for various commands. Remember that the NCC compiler
distinguishes between upper and lower case for the axis specifiers.

6.3.3 Axis qualifiers

The system parameters listed below are used as axis qualifiers and are therefore available for all the axis
channels in the system and thus for all axis specifiers. You can use these parameters to interrogate or set
various axis-specific data. Remember that the NCC compiler distinguishes between upper and lower case for
these parameters. An axis qualifier is referenced by stating an axis specifier, the character "." and the axis
qualifier. The example below illustrates this.

...
var
 input: integer;
...
input := A2.digi; // Read in digital inputs from
 // axis channel 2
...

114 PM / PROGRAMMING AND REFERENCE MANUAL

Table 37: Axis qualifiers
Name Type Abbr. meaning Function
an integer axis number The axis qualifier an contains the axis number of the axis

designator involved. The qualifier can be used in relation with
„variable“ axis name. [Chapter 5.3.3.1]

aux double Auxiliary Register The content of this register is dependent from the option. If the
system includes the optionEV (Encoder Verification), the
encoder count by stepper motor systems can be accessed
through this variable. In this case the unit of the register is
Counts.

axst integer axis status Error, state and profile flags (wordwise)
digi integer digital inputs Digital inputs of the xPCI-800x (wordwise)

Various flags of this register can be erased by assigning any
desired value to this register [chapter 4.4.51.1].

digo integer digital outputs Digital outputs of the xPCI-800x (wordwise)
dp double desired position Setpoint position of the axis channel
dpoffset double desired position

offset
In this register, a position offset for the position controller can
be entered in the axis-specific user unit. This register can be
used for a cascade control e.g. by steppers with encoder
verification.
This register is available for stepper systems from the version
2.5.2.23 of RWMOS, for servo systems from the version
2.5.2.29 of RWMOS.

dv double desired velocity Setpoint velocity of the axis channel
dvoffset double desired velocity

offset
In this register, a velocity offset of the position offset (dpoffset)
for the position controller can be entered in the axis-specific
user unit.

effradius double Effektiv Radius When rotary axes are involved in translatory interpolation
travels:
axis-specific parameter for conversion of rotatory values in
tanslatory ones, (Surface area processing) [Chapter 2.3.4]

epc integer EEPROM
programming cycles

Number of programming cycles

gcr integer gear configuration
register

With this register, the Gear functionality of the APCI-8001 can
be controlled.
This register is also described in the manual “Resource
Interface”.

gf double gear factor The axis-specific gear factor can be accessed using this
variable.
An assignment to this value may only be made in special
cases.

ifs integer interface status Interface status flags of the xPCI-800x (wordwise)
Various flags of this register can be erased by assigning any
desired value to this register [see chapter 4.4.69.1].

hac double home acceleration Acceleration for home commands
hvl double home velocity Velocity for home commands
ipw double In position window Position-dependent target window
jac double jog acceleration Acceleration for jog commands
jerkrel double Jerk Relativ Parameter for S velocity profile
jovr double jog override Velocity factor
jtvl double jog target velocity Target velocity for jog commands
jvl double jog velocity Velocity for jog commands
kd double PIDF filter coefficient for differentiation
kfca double PIDF filter coefficient for forward compensation for acceleration
kfcv double PIDF filter coefficient for forward compensation for velocity
ki double PIDF filter coefficient for integration

115 PM / PROGRAMMING AND REFERENCE MANUAL

Name Type Abbr. meaning Function
kp double PIDF filter coefficient for amplification
kpl double PIDF filter coefficient for add. phase lead
lp double latched position latched position value
lpndx double latched position

index
latched position value with index signal (zero track)

lsm integer left spool memory free spool area [Bytes]
maxacc double maximum

acceleration
Axis-specific maximum acceleration in ChkMaxVel mode

maxvel double maximum velocity Axis-specific maximum velocity in ChkMaxVel mode
mcis integer Move Commands in

Spooler
This register shows how many traverse commands are
currently included in the spooler. Thus the processing state of
the spooler is checked. This information can be used, when
the current process must be continued after interruption (see
also PCAP command rdMCiS).

mcp integer Motor Command
Port

Servomotors: Setpoint value for anologue port stepper motors:
Stepper signal for stepper motor perfomance end levels.
Additional description of the commands: wrmcp
(chapter 4.4.152) and rdmcp (chapter 4.4.87).

mdvel double maximum velocity
skip

Axis-specific maximum velocity jump in Look-ahead mode

mpe double maximum position
error

Maximum permitted position error

poserr double position error The current axis-specific position error in the user unit is
shown in this register. This is the value dp – rp calculated in
real-time.

pprev double Pulses Per
Revolution

The number of encoder pulses per revolution (drive side) can
be read in this register. On linear axes or stepper motor axes,
0 is returned here.

rp double real position Actual position of the axis channel
rv double real velocity Actual velocity of the axis channel [Chapter 4.4.95],

can only be read not assigned
sdec double stop deceleration Stop deceleration of the axis channel
sf integer special function Application-specific register.
sll double Software limit left Left software limit
slr double Software limit right Right software limit
slsp double Slits or stepper

Pulses
In this register the number of encoder slits per turn (drive side)
or the number of steps per turn at stepper motors an be read
or set. Quadruplication and units correspond with the values
set in mcfg.

tp double target position Target position of axis channel
zerooffset double Zero-Offset Lately set zero point switch

The function of these qualifiers can be found at the relevant rdxxxx() and wrxxxx() commands in the function
reference list for PCAP programming. The significance of the qualifier digo, for example, is explained under
the wrdigo() command.

Exception: The PIDF filter coefficients become operative together with the SAP command UF(). These
coefficients are read and written on PCAP level using the rdf() and uf() commands.

116 PM / PROGRAMMING AND REFERENCE MANUAL

6.3.4 Structured axis qualifiers

The system parameters listed below are used as structured axis qualifiers and are therefore available for all
the axis channels in the system and thus for all axis specifiers. You can use these parameters for bitwise
interrogation and setting of various axis-specific data. Remember that the NCC compiler distinguishes
between upper and lower case for these parameters. Referencing to a structured axis qualifier is illustrated
by the example below:

...
const
 enable = 1;
var
 input: boolean;
...
input := A2.digib.enable; // read digital input 1 of axis
 // channel 2 (I1)
A1.digob.7 := TRUE; // Set digital output 7 (O7)
...

Table 38: Structured axis qualifiers
Name Type Abbr. meaning Function
digib boolean digital-input-bit Digital inputs of the xPCI-800x (bitwise)
digob boolean digital-output-bit Digital outputs of the xPCI-800x (bitwise)
ifsb boolean interface-status-bit Status flags of the xPCI-800x (bitwise)
axstb boolean axis status-bit Error, status and profile flags (bitwise)

The function of these qualifiers can be found at the relevant rdxxxxb() and wrxxxxb() commands in the
function reference list for PCAP programming. The significance of the qualifier digib, for example, is
explained in the rddigib() command.

Note: Bit counting for the structured axis qualifiers begins at 1!

6.3.5 Abbreviations

Some of the abbreviations used in the function reference list will be explained to start with:

Table 39: Abbreviations
Name Description
A1 Symbolic name for the first axis channel. This name can be freely
 selected in mcfg.exe. Is mainly used for examples
A2 Symbolic name for the second axis channel. Otherwise as for A1.
Spec Axis specifier, such as A1 or A2
Qual Axis qualifier, such as digi, digib, digo, digob, axst etc.
Pos Position setpoint value (data type: double)
Event Procedure with function as event handler

117 PM / PROGRAMMING AND REFERENCE MANUAL

6.4 Reserved procedure names with event function

rw_SymPas incorporates a series of predefined procedure names with event function. If there are procedure
definitions with these procedure names in the user program, the CNC task can be made by means of an
enable command to call these procedures automatically if a procedure-specific event occurs. These
procedures are accordingly also referred to as "event handlers".

Note: The events are checked after every execution of an rw_SymPas statement. Here it must be observed
that the respective events are not checke anymore, if a task is terminated. If a continuous event monitoring is
necessary, the respective task must stay in a an endless loop.

6.4.1 Event procedure EVEO

The EVEO event procedure is processed automatically after the definition of the procedure EVEO and the
release of the corresponding event. The EO (Emergency Out) event occurs when a digital input planned with
EO function is activated (see MCFG / Chapter 1.7.2.5). If the system includes more than one EO inputs, the
axst status register can be used to check which EO input is causing the error concerned. A simple example
program for implementing an EO-handler is listed below:

 ...
 procedure EVEO; // predefined name for
 // Timeout EVENT hHandler
 begin
 CI0 := 999; // Common Variable
 // signals program abort
 abort; // Abort application program
 end;

 ...
 begin
 ...
 CI0 := 0; // Delete common
 // Variable
 enev(EVEO); // Enable timeout handler
 ...
 end.

6.4.2 Event procedure EVDNR

The EVDNR event procedure also operates like EVEO, except that this procedure is processed automatically
when the Drive Not Ready event occurs. The DNR event occurs when a digital input planned with DR
function becomes inactive (MCFG / Chapter 1.7.2.5).

6.4.3 Event procedure EVLSH

The EVLSH event procedure also operates like EO, except that this procedure is processed automatically
when the Limit Switch Hardware event occurs. The LSH event occurs when a digital input planned with
LSL_SMD, LSL_TOM, LSL_SMA, LSL_SMD, LSR_TOM, LSR_SMA or LSR_SMD function is activated
(MCFG / Chapter 1.7.2.5).

118 PM / PROGRAMMING AND REFERENCE MANUAL

6.4.4 Event procedure EVLSS

The EVLSS event procedure also operates like EVEO, except that this procedure is processed automatically
when the Limit Switch Software (software limit) event occurs. The LSS event occurs when the current
position of an axis system exceeds a limit value specified in the TOOLSET program mcfg.exe and the limit
value concerned has been planned with the TOM, SMA or SMD function (MCFG / Chapter 1.7.2.5).

6.4.5 Event procedure EVMPE

The EVMPE event procedure also operates like EVEO, except that this procedure is processed automatically
when the Maximum Position Error event occurs. The MPE event occurs when the control loop is closed and
the difference between setpoint and actual positions of an axis system exceeds the limit value specified in
the TOOLSET program mcfg.exe (MCFG / Chapter 1.7.2.1.9)

6.4.6 Event procedure EVUI

The EVUI event procedure also operates like EVEO, except that this procedure is processed automatically
when the User Input event occurs. The UI event occurs when a digital input planned with UI is activated
(MCFG / Chapter 1.7.2.5). You have an option for building up user-specific special functions with UI-planned
digital inputs in the SAP program. Alternative cyclical polling can be dispensed with.

6.4.7 Priority and processing sequence for the event procedures

It is possible that different events will occur at the same point in time. In this case, the following priorities
apply:

Procedure
name

Priority

EVEO highest priority
EVDNR
EVLSH
EVLSS
EVMPE
EVUI lowest priority

If one event procedure (Event 1) is currently being processed, the occurrence of another event (Event 2) with
lower or higher priority will be ignored; this event will not be executed until the current event handler (Event
1) has been processed. But Event 2 must still be active then!

Note: After the STOP and ABORT SAP commands and during execution of the WT() SAP command, no
event handlers will be processed!

119 PM / PROGRAMMING AND REFERENCE MANUAL

6.5 SAP block commands

The command reference list provided below contains a series of commands which can be used to achieve a
block-oriented program structure. All these commands have names which end with the character "W".
Examples include the SAP commands MLAW(), JAW() or SSMSW(). These commands automatically wait
for the profile end of all axes involved, i.e. the next statement will not be processed until the target positions
of the selected axes have been reached. For this purpose, the CNC task polls the profile end flags of these
axes and continues the program at the next statement when appropriate. This check routine takes the
above-enabled EVENT handlers into account and processes them automatically when and as required.

Note: Another option for profile end checking is to evaluate the axst axis qualifier.

6.6 rw_SymPas SAP command reference list

6.6.1 Structure of the reference list

The reference list is structured as follows:

ABBREVIATION MEANING,
DESCRIPTION

This is the name which is used to call the function subsequently described.
Here you will find a detailed description of the function name concerned.

FUNCTION PARAMETERS: If the function demands a parameter transfer, these are listed here.
SYSTEM PARAMETERS: Various functions are executed by taking various system parameters into account.

These are listed here.
SIMULTANEOUS FUNCTION: With various functions, it is permitted to specify one or more axes for which the

function concerned is to be executed.
REFERENCES: Refers to other functions and chapters.
DECLARATION: The formal declaration of predefined system functions; user-defined elements are

shown in italics.
RESULT TYPE: The type of the value returned (with system functions only).
DESCRIPTION: Plaintext description of the command concerned.
NOTE: Recurrent notes and explanations here indicate the chapters you should consult.
EXAMPLE: An example of the function involved.

6.6.2 ABORT, abort

DESCRIPTION: This command causes a running SAP program to be aborted. In contrast to the
STOP statement, the program cannot be continued with the PCAP command
contcnct() or the SAP command CONTCNCT(). This is possible only with the
PCAP command startcnct() or the PCAP command STARTCNCT().

NOTE: After the command has been executed, the enabled EVENT handler procedures
will no longer be processed.

EXAMPLE: ABORT;

120 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.3 ABS, absolute function

DESCRIPTION: The function returns the absolute value of value.
DECLARATION: abs(value:double)
RESULT TYPE: double
EXAMPLE: ...

var
 d1, d2: double;
...
d1 := -5.0;
d2 := ABS(d1); // d2 := 5.0

6.6.4 ACOS, arc cosine function

DESCRIPTION: The function returns the arc cosine of value. The argument Value must lie within
the range [-1..+1]. The return value has the unit rad and lies within the limits [0..pi].

DECLARATION: acos(value:double)
RESULT TYPE: double

6.6.5 ASIN, arc sine function

DESCRIPTION: The function returns the arc sine of value. The argument Value must lie within the
range [-1..+1]. The return value has the unit rad and lies within the limits [-
pi/2..+pi/2].

DECLARATION: asin(value:double)
RESULT TYPE: Double

6.6.6 ATAN, arc tangent function

DESCRIPTION: The function returns the arc tangent of value. The return value has the unit rad and
lies within the limits [-pi/2..+pi/2].

DECLARATION: atan(value:double)
RESULT TYPE: Double

6.6.7 AZO, activate zero offsets

DESCRIPTION: PCAP command azo()
FUNCTION PARAMETERS: Integer constant in the value range of 0..4
EXAMPLE: const Offsets1 = 1;

azo(Offsets1); // Activate zero offsets Set 1

121 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.8 CL, close loop

DESCRIPTION: PCAP command cl() [chapter 4.4.6]
FUNCTION PARAMETERS: Spec
SIMULTANEOUS
FUNCTION:

Yes

EXAMPLE: CL(A1, A2); // Bring Axis Channels 1 and 2 into position control

6.6.9 CLV

DESCRIPTION: PCAP command clv() [Kapitel 4.4.9]
FUNCTION PARAMETERS: Spec
SIMULTANEOUS
FUNCTION:

Ja

EXAMPLE: clv (A1, A2); // Bring axis channels 1 and 2 into position contro
js (A1, A2); // then stop the axes immediately

6.6.10 CONTCNCT, continue CNC-Task

DESCRIPTION: This command continues the CNC task transferred in the parameter.
FUNCTION PARAMETERS: Integer constant in the range of 0..3
NOTE: The command can be used to continue a stopped SAP program.

An SAP program which has been stopped with the SAP command ABORT can
only be restarted (i.e. not continued) with the SAP command STARTCNCT() or the
PCAP command startcnct(). Automatic continuation of stopped tasks is not
possible either.

EXAMPLE: ...
const
 TASK0 = 0;
...
CONTCNCT(TASK0); // continue Task 0
CONTCNCT(1); // continue Task 1

6.6.11 COS, cosine function

DESCRIPTION: The function returns the cosine of value. The argument Value is interpreted as an
angle in the unit rad (0..2Pi = 0..360) degrees.

DECLARATION: cos(value:double)
RESULT TYPE: Double
NOTE: Sin(), Tan()-function
EXAMPLE: ...

var
 d1, d2: double;
...
d1 := 3.1415;
d2 := COS(d1); // d2 := -1.0 (rounded)

122 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.12 COSH, hyperbolic cosine function

DESCRIPTION: The function returns the hyperbolic cosine of value.
DECLARATION: cos(value:double)
RESULT TYPE: Double

6.6.13 DISEV, disable event

DESCRIPTION: disables the event handler specified
FUNCTION PARAMETERS: Event
REFERENCES: Chapter 6.4 and SAP command ENEV()
EXAMPLE: DISEV(EVEO); // ignore emergency out handler

6.6.14 ENEV, enable event

DESCRIPTION: enables the event handler specified.
FUNCTION PARAMETERS: Event
REFERENCES: Chapter 6.4 and SAP command DISEV()
EXAMPLE: ENEV(EVEO); // enable emergency out handler
NOTE: The released event-handler is not active anymore if the task is terminated or

stopped.

6.6.15 EXP, exponential function

DESCRIPTION: The function returns the value evalue, where e is the base of the natural logarithm
(2.718281...).

DECLARATION: exp(value:double)
RESULT TYPE: Double
NOTE: Function Ln()

6.6.16 JA, jog absolute

DESCRIPTION: The axis channel(s) selected is/are moved absolutely to the position setpoints
specified. For this purpose, the motor is accelerated with the axis-specific
acceleration jac to the velocity jvl and moved to the specified target position Pos. In
addition, you can use the jtl parameter to specify a target velocity. The trajectory
parameters are specified in the axis-specific units.

FUNCTION PARAMETERS: Spec and Pos
SYSTEM PARAMETERS: Qualifier: jac, jvl and jtvl
SIMULTANEOUS FUNCTION: Yes
REFERENCES: PCAP command ja(), SAP command JAW()
NOTE: PCAP command ja()
EXAMPLE: JA(A1:=100.0); // Move Axis 1 absolutely to position 100

JA(A1:=100.0, A2:=100.0);

123 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.17 JAW, jog absolute waiting

DESCRIPTION: This command is identical to the SAP command JA() and PCAP command ja(),
except that the system also waits for the profile end of all axes involved. The use of
this command gives the SAP program a block-like form of the kind found in
commercially available CNC controls.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: Qualifiers: jac, jvl and jtvl
SIMULTANEOUS FUNCTION: Yes
REFERENCES: JA
NOTE: You should use EVENT handlers to ensure that the drive is operated properly even

in exceptional situations, since the CNC program dwells concomitantly long on this
command, particularly when very time-consuming positioning operations are
involved.

EXAMPLE: JAW(A2:=-1000.0); // Move Axis 1 absolutely to Position -1000.0 and
 // wait until the profile end is reached
JAW(A1:=1e3, A2 := 1.3e4);

6.6.18 JHI, jog home index

DESCRIPTION: The reference search run for the zero track (index) of the rotary transducer or the
linear scale for all selected axis channels is started. The search run will be aborted
if the traverse distance or angle specified in Pos is exceeded.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: Qualifiers: hac and hvl
SIMULTANEOUS
FUNCTION:

Yes

REFERENCES: PCAP command jhi(), SAP command JHIW()
EXAMPLE: JHI(A1 := 1.0, A2 := 1.5); // Start reference search run for axes 1 and 2.

6.6.19 JHIW, jog home index waiting

DESCRIPTION: This command is identical to PCAP command jhi() and SAP command JHI(). In
addition, the system waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: hac and hvl
SIMULTANEOUS FUNCTION: Yes
NOTE: SAP command JA()
EXAMPLE: JHIW(A1 := 5.0);

6.6.20 JHL, jog home left

DESCRIPTION: The reference search run on a digital input planned with REF for all selected axis
channels is started towards the left traversing direction.

FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: hac and hvl
SIMULTANEOUS
FUNCTION:

Yes

REFERENCES: PCAP command jhl(), SAP command JHLW()
EXAMPLE: JHL(A1);

124 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.21 JHLW, jog home left waiting

DESCRIPTION: This command is identical to the PCAP command jhl() and SAP command JHL().
In addition, the system waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: hac and hvl
SIMULTANEOUS FUNCTION: Yes
REFERENCES: PCAP command jhl(), SAP command JHL()
NOTE: SAP command JA()
EXAMPLE: JHLW(A2);

6.6.22 JHR, jog home right

DESCRIPTION: The reference search run on a digital input planned with REF for all selected axis
channels is started towards the right traversing direction.

FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: hac and hvl
SIMULTANEOUS FUNCTION: Yes
REFERENCES: PCAP command jhr(), SAP command JHRW()
EXAMPLE: JHR(A2);

6.6.23 JHRW, jog home right waiting

DESCRIPTION: This command is identical to the PCAP command jhr() and SAP command JHR().
In addition, the system waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: hac and hvl
SIMULTANEOUS FUNCTION: Yes
NOTE: SAP command JA()
EXAMPLE: JHRW(A1);

6.6.24 JR, jog relative

DESCRIPTION: For description, please consult PCAP command jr().
FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: Qualifiers: jac, jvl and jtvl
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: JR(A1 := 100);

6.6.25 JRW, jog relative waiting

DESCRIPTION: This command is identical to the PCAP command jr() and the SAP command JR().
In addition, the system waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: Qualifiers: jac, jvl and jtvl
SIMULTANEOUS FUNCTION: Yes
REFERENCES: JR

125 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.26 JS, jog stop

DESCRIPTION: For description, please consult PCAP command js().
FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: sdec
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: JS(A1);

6.6.27 JSW, jog stop waiting

DESCRIPTION: This command is identical to the PCAP command js() and the SAP command JS().
In addition, the system waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: sdec
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: JSW(A1);

6.6.28 LN, natural logarithm function

DESCRIPTION: The function returns the natural logarithm of value, i.e. the power by which the
constant 2.71828... must be raised to obtain value.

DECLARATION: ln(value:double)
RESULT TYPE: Double
NOTE: Values smaller than/equal to 0.0 for value are not defined mathematically. In this

case the function has no valid return value.
Function Exp()

6.6.29 LPR, latch position registers

DESCRIPTION: Start the data recording of an motion process for one axis (see graphical system
analysis in mcfg).

FUNCTION PARAMETERS: Spec
SYSTEMPARAMETER: PU, TU, LST, LET
SIMULTANEOUS
FUNCTION:

No

EXAMPLE: LPR (A1);

6.6.30 LPRS, latch position registers synchronous

DESCRIPTION: Start the synchronous data recording of an motion process for several axes (see
graphical system analysis in mcfg).

FUNCTION PARAMETERS: Spec
SYSTEMPARAMETER: PU, TU, LST, LET
SIMULTANEOUS
FUNCTION:

Yes

EXAMPLE: LPRS (A1, A2, A3);

126 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.31 MCA, move circular absolute - SMCA, spool motion circular absolute

DESCRIPTION: PCAP command mca(), smca()
FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI
EXAMPLE: MCA(A1 := 50.0, A2 := 0.0, PHI := 720.0);

SMCA(A1 := 0.0, A2 := 10.0, PHI := 0.1);

6.6.32 MCAW, move circular absolute waiting

DESCRIPTION: This command is identical to the SAP command MCA(), except that here the
system also waits for the profile end of the two axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI
REFERENCES: PCAP command mca()

6.6.33 MCA3D, move circular absolute three-dimensional
SMCA3D, spool move circular absolute three-dimensional

DESCRIPTION: PCAP command mca3d(), smca3d()
FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, PN1, PN2, PN3
EXAMPLE: MCA3D(A1 := 50.0, A2 := 0.0, A3 := 0.0, PN1 = 1.0, PN2 =0. 0, PN3 = 1.0, PHI :=

720.0); // Circle rotated by 45 degrees around A2

6.6.34 MCA3DW, move circular absolute three-dimensional waiting

DESCRIPTION: This command is identical to the SAP command MCA3D(),except that here the
system also waits for the profile end of the two axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, PN1, PN2, PN3
REFERENCES: SAP command mca3d()

6.6.35 MCR3D, move circular relative three-dimensional
SMCR3D, spool move circular relative three-dimensional

DESCRIPTION: PCAP command mcr3d(), smcr3d()
FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, PN1, PN2, PN3
EXAMPLE: MCR3D(A1 := 50.0, A2 := 0.0, A3 := 0.0, PN1 = 1.0, PN2 =0. 0, PN3 = 1.0, PHI :=

720.0); // Circle rotated by 45 degrees around A2

127 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.36 MCR3DW, move circular relative three-dimensional waiting

DESCRIPTION: This command is identical to the SAP command MCR3D(),except that here the
system also waits for the profile end of the two axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, PN1, PN2, PN3
REFERENCES: SAP command mcr3d()

6.6.37 MCR, move circular relative - SMCR, spool motion circular relative

DESCRIPTION: PCAP command mcr(), smcr()
FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI
EXAMPLE: MCR(A1 := 50.0, A2 := 0.0, PHI := 360.0);

SMCR(A1 := 0.0, A2 := 10.0, PHI := 45.0);

6.6.38 MCRW, move circular relative waiting

DESCRIPTION: This command is identical to the SAP command MCR(), except that here the
system also waits for the profile end of the two axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI

6.6.39 MHA, move helical absolute - SMHA, spool motion helical absolute

DESCRIPTION: PCAP command mha(), smha()
If the circle is to be defined by the target point, the target coordinates are to be
allocated to the axis specifiers and the center point coordinates to the system
parameters DTCA1 and DTCA2. If the circle is specified by the traverse angle, the
center point coordinates are allocated to the axis specifiers of the circle axes.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, (ggf. DTCA1, DTCA2)
EXAMPLE: MHA(A1 := 50.0, A2 := 0.0, PHI := 720.0, A3 := 10);

SMHA(A1 := 0.0, A2 := 10.0, PHI := 0.1, A3 := 10);
// Circle in anticlockwise direction with Radius 10
MHR(A1 := 0.0, A2 := 0.0, PHI := 0.0, A3 := 10, DTCA1 :=-10, DTCA2 := 0);
// Semi-circle in clockwise direction with Radius 10
SMHR(A1 := 20.0, A2 := 0.0, PHI := -1e-100, A3 := 10, DTCA1 := 10, DTCA2 := 0);

6.6.40 MHAW, move helical absolute waiting

DESCRIPTION: This command is identical to the SAP command MHA(), except that here the
system also waits for the profile end of all axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, (ggf. DTCA1, DTCA2)

128 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.41 MHR, move helical relative - SMHR, spool motion helical relative

DESCRIPTION: PCAP command mhr(), smhr()
Here the target point cannot be specified to run the circle.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, (ggf. DTCA1, DTCA2)

6.6.42 MHRW, move helical relative waiting

DESCRIPTION: This command is identical to the SAP command SAP command MHR(), except that
here the system also waits for the profile end of all axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL, PHI, (if necessary DTCA1, DTCA2)

6.6.43 MLA, move linear absolute - SMLA, spool motion linear absolute

DESCRIPTION: description is provided at the PCAP commands mla() or smla().
FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: MLA(A1:=1000.0, A2:=3.2e2);

SMLA(A1:=100.0, A2:=-335.0);

6.6.44 MLAW, move linear absolute waiting

DESCRIPTION: This command is identical to the SAP command MLA(), except that here the
system also waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: MLAW(A1:=-0.3e3, A2:=100.4);

6.6.45 MLR, move linear relative - SMLR, spool motion linear relative

DESCRIPTION: The description is provided at the PCAP commands mlr() or smlr().
FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: MLR(A1:=2000.0, A2:=3.2e2);

SMLR(A1:=300.0, A2:=-35.3);

129 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.46 MLRW, move linear relative waiting

DESCRIPTION: This command is identical to the SAP command MLRW(), except that here the
system also waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec, Pos
SYSTEM PARAMETERS: TRAC, TRVL, TRTVL
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: MLRW(A1:=-3.45e3, A2:=100.4e-1);

6.6.47 MS, motion stop

DESCRIPTION: The description is provided at the PCAP command ms() [Chapter 4.4.39].
FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: None
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: MS(A1, A2);

6.6.48 MSW, motion stop waiting

DESCRIPTION: This command is identical to the PCAP command ms() and SAP command
MS(),except that here the system also waits for the profile end of the axes involved.

FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: None
SIMULTANEOUS
FUNCTION:

Yes

EXAMPLE: MSW(A1, A2);

6.6.49 OL, open loop

DESCRIPTION: PCAP command ol() [Chapter 4.4.41]
FUNCTION PARAMETERS: Spec
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: OL(A1, A2); // Open position control loop of A1 and A2

6.6.50 POWER

DESCRIPTION: The function returns the value of base to the exponent.
DECLARATION: sqrt(base, exponent : double)
RESULT TYPE: double
NOTE: Function is available from RWMOS.ELF V2.5.3.93
EXAMPLE: ...

var
 d1, d2: double;
...
d1 := 2.0;
d2 := 3.0;
d2 := POWER(d1, d2); // d2 := 8.0

130 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.51 RA, reset axis

DESCRIPTION: PCAP command ra()
FUNCTION PARAMETERS: Spec
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: RA(A1, A2); // Reset axes A1 and A2

6.6.52 RDCBD, read COMMON BUFFER double function

DESCRIPTION: The function returns a floating-point value with double accuracy from the CNC-
task-specific COMMON BUFFER. The offset parameter is a byte offset referenced
to the first element (Element 0) of the COMMON BUFFER.
The double data type occupies 8 bytes in the COMMON BUFFER.
To enable the xPCI-800x board CPU system to access this correctly, offset must
always be word-oriented, i.e. have a value which is divisible by 8.

DECLARATION: RDCBD(offset:integer)
RESULT TYPE: double
NOTE: The CNC-task-specific buffer size is 1,000 bytes.

PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx()

EXAMPLE: ...
var
 cbd: double;
...
cbd := RDCBD(500); // Read in double variable from offset 500

6.6.53 RDCBI, read COMMON BUFFER integer function

DESCRIPTION: The function returns an integer value from the CNC-task-specific COMMON
BUFFER. The offset parameter is a byte offset referenced to the first element
(Element 0) of the COMMON BUFFER.
The integer data type occupies 4 bytes in the COMMON BUFFER.
To enable the xPCI-800x board CPU system to access this correctly, offset must
always be word-oriented, i.e. have a value which is divisible by 4.

DECLARATION: RDCBI(offset:integer)
RESULT TYPE: integer
NOTE: The CNC-task-specific buffer size is 1,000 bytes.

PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx().

EXAMPLE: ...
var
 cbi: integer;
...
cbi := RDCBI(500); // Read in integer variable from offset 500

131 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.54 RDCBS, read COMMON BUFFER single function

DESCRIPTION: The function returns a floating-point value with single accuracy from the CNC-task-
specific COMMON BUFFER. The offset parameter is a byte offset referenced to
the first element (Element 0) of the COMMON BUFFER.
The single data type occupies 4 bytes in the COMMON BUFFER.
To enable the xPCI-800x board CPU system to access this correctly, offset must
always be word-oriented, i.e. have a value which is divisible by 4.

DECLARATION: RDCBS(offset:integer)
RESULT TYPE: single
NOTE: The CNC-task-specific buffer size is 1,000 bytes.

PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx()

EXAMPLE: ...
var
 cbs: single;
...
cbs := RDCBS(500); // Read in single variable from offset 500

6.6.55 RPTODP, Real-Position to Desired-Position

DESCRIPTION: PCAP command RPtoDP()
NOTE: The relevant axes must not be in a positioning profile, i.e. the profile end flag in the

axis status register must be set.
EXAMPLE: RPTODP (X, Z);

6.6.56 RS, reset system

DESCRIPTION: PCAP command rs()
NOTE: Once this command has been executed, no more monitoring can be performed by

the stand-alone application program, since the CNC task is halted by this
command.

EXAMPLE: RS; // reset complete axis system

6.6.57 SHP, set home position

DESCRIPTION: PCAP command shp()
FUNCTION PARAMETERS: Spec, Pos
SIMULTANEOUS FUNCTION: Yes
EXAMPLE: SHP(A2:=1000.0);

132 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.58 SIN, sine function

DESCRIPTION: The function returns the sine of value. The argument Value is interpreted as an
angle in the unit rad (0..2Pi = 0..360) degrees.

DECLARATION: sin(value:double)
RESULT TYPE: double
NOTE: Cos(), Tan() function
EXAMPLE: ...

var
 d1, d2: double;
...
d1 := 3.1415;
d2 := SIN(d1); // d2 := 0.0 (rounded)

6.6.59 SINH, hyperbolic sine function

DESCRIPTION: The function returns the hyperbolic sine of value.
DECLARATION: Cos(value:double)
RESULT TYPE: double

6.6.60 SQR, square function

DESCRIPTION: This function returns the square of value.
DEKLARATION: sqr(value:double)
RESULT TYPE: double
NOTE: Available only in RWMOS and compiler versions from 05.10.2007
EXAMPLE: ...

var
 d1, d2: double;
...
d1 := 9.0;
d2 := SQR(d1); // d2 := 81.0

6.6.61 SQRT, square root function

DESCRIPTION: The function returns the square root of value.
DECLARATION: sqrt(value:double)
RESULT TYPE: double
NOTE: Negative values of value are not defined mathematically. In this case, the function

does not have a valid return value.
EXAMPLE: ...

var
 d1, d2: double;
...
d1 := 9.0;
d2 := SQRT(d1); // d2 := 3.0

133 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.62 SSF, Spool-Special-Function

DESCRIPTION: This commands allows to enter other commands as traverse commands in the
spooler. The command you want to execute is entered in the system variable
SSFP. The value Value is entered as a parameter in the axis concerned.

FUNCTION PARAMETERS: Spec, Value
SYSTEM PARAMETERS: SSFP
SIMULTANEOUS
FUNCTION:

Yes

COMMANDS: See PCAP-command ssf in chapter 4.4.114.1.

EXAMPLE: SSF(A1:=999, SSFP = 1); // Write CI1 with 999
SSF(A1:=1, A4:=2, SSFP := 1001); // Set O1 at axis 1 and O2 at axis 4
 //
SSF(A1:=0, A2:=0, A3:=0, SSFP:=1000); // Spooler halts at A1, A2 and A3

6.6.63 SSMS, start spooled motions synchronous

DESCRIPTION: Spool commands can be used to transfer commands to the individual axis
channels of the xPCI-800x; they are entered in a queue. The SSMS() command
causes a synchronized start for spooler command processing at all the axes
specified in AS.

FUNCTION PARAMETERS: Spec
SIMULTANEOUS FUNCTION: Yes
REFERENCES: PCAP command ssms(), SAP command SSMSW()
EXAMPLE: ...

SMLA(A1:=1000.0, A2:=1000.0); // Spool traversing command
SMLR(A1:=200.0, A2:=500.0); // Spool traversing command
...
SSMS(A1, A2); // Start spooler

6.6.64 SSMSW, start spooled motions synchronous waiting

DESCRIPTION: Synchronized start of all axes selected and wait until all spooled motion profiles of
these axes have been run completely and the profile end of all axes involved has
been reached.

FUNCTION PARAMETERS: Spec
SIMULTANEOUS FUNCTION: Yes
REFERENCES: SAP command SSMS()
NOTE: SPOOL mode
EXAMPLE: ...

SMLR(A1:=1000.0, A2:=1000.0); // Spool traversing command
SMLR(A1:=200.0; A2:=500.0); // Spool traversing command
...
SSMSW(A1, A2); // Start spooler

134 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.65 STARTCNCT, start CNC-Task

DESCRIPTION: This command starts the CNC task transferred in the parameter and executes the
SAP program stored there from its beginning.

FUNCTION PARAMETERS: Integer-constant in range 0..3
NOTE: An SAP program can also start itself automatically from the beginning with this

command.
EXAMPLE: ...

const
 Task1 = 1;
...
STARTCNCT(Task1);

6.6.66 STOP, stop

DESCRIPTION: This command causes the currently running stand-alone application program to
stop. In addition, the corresponding CNC task (Task 0, 1, 2, or 3) is put into idle
state.
The application program can be resumed by means of the contcnct()-PCAP
command, the CONTCNCT()-SAP command or in the TOOLSET program
mcfg.exe.

NOTE: Any EVENT handling procedures enabled will no longer be processed after
execution of the Stop command. The drive should therefore be put into a safe
operating state before this command is executed.

EXAMPLE: STOP; // Stops the SAP program

6.6.67 STEPCNCT, stop CNC-Task

DESCRIPTION: This command exectutes a programm line in the indicated CNC task.
FUNCTION PARAMETER: Integer constant in the range 0..3
NOTE: EVENT handling procedures that were possibly released, will not be processed

anymore after executing the program line. Before the execution of the command, a
valid program must be loaded. See also PCAP command stepcnct (chapter
4.4.116).

EXAMPLE: ...
const
 Task3 = 3;
...

STEPCNCT(Task3);

135 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.68 STOPCNCT, stop CNC-Task

DESCRIPTION: This command halts the CNC task transferred in the parameter and thus halts the
SAP program stored in it as well.

FUNCTION PARAMETERS: Integer constant in the range 0..3
NOTE: Any EVENT handling procedures enabled will no longer be processed by the

correspondingly selected task after executing STOPCNCT().
See also chapter 6.6.66.

EXAMPLE: ...
const
 Task3 = 3;
...

STOPCNCT(Task3);

6.6.69 STOPTOSS,

DESCRIPTION: This command transfers the CNC-task, which has been transferred in the
parameter, from the stop-state to the step-state, however without executing a
program line in the indicated task.

FUNCTION PARAMETERS: Integer constant in the range 0..3
NOTE: If the indicated task is not in the stop-mode, the command has no influence. This

command is required especially for the single-step processing by using several
SAP programming tasks.

EXAMPLE: ...
const
 Task3 = 3;
...

STOPTOSS(Task3);

6.6.70 SZPA – Set Zero Position Absolut

DESCRIPTION: Set a virtual zero position. The command is described at the PCAP command szpa
(Chapter 4.4.118). You can use SZPA for stepper motor systems only from the
version 2.5.2.32 of RWMOS.ELF.

FUNCTION PARAMETERS: Spec, Pos
SIMULTANEOUS
FUNCTION:

Yes

REFERENCES: PCAP command szpa(), szpr(), SAP command SZPR
EXAMPLE: SZPA (X := 100, Y := -20);

136 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.71 SZPR – Set Zero Position Relativ

DESCRIPTION: Set the virtual zero position in a relative position. This command described at the
PCAP command szpr (Chapter 4.4.119). You can use SZPR bei
Schrittmotorsystemen for stepper motor systems only from the 2.5.2.32 of
RWMOS.ELF.

FUNCTION PARAMETERS: Spec, Pos
SIMULTANEOUS
FUNCTION:

Yes

REFERENCES: PCAP command szpa(), szpr(), SAP command SZPA
EXAMPLE: SZPR (X := 100, Y := -20);

6.6.72 TAN, tangent function

DESCRIPTION: The function returns the tangent of value. The argument Value is interpreted as an
angle in the unit rad (0..2Pi = 0..360) degrees.

DECLARATION: tan(value:double)
RESULT TYPE: Double
NOTE: Sin(), Cos() function
EXAMPLE: ...

var
 d1, d2: double;
...
d1 := 0.5;
d2 := TAN(d1); // d2 := 0.5463 (rounded)

6.6.73 TANH, hyperbolic tangent function

DESCRIPTION: The function returns the hyperbolic tangent of value.
DECLARATION: tan(value:double)
RESULT TYPE: Double

6.6.74 UF, update filter

DESCRIPTION: PCAP command uf()
FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: Qualifiers: kp, ki, kd, kpl, kfca, kfcv
SIMULTANEOUS FUNCTION: Yes
NOTE: For updating the PIDF filter coefficients, all the qualifiers listed above must be

initialized before executing the command.
EXAMPLE: ...

A1.kp := 5.0; // Alter proportional amplification
A1.ki := 0.0;
A1.kd := 0.0;
A1.kpl := 0.0;
A1.kfca := 0.0;
A1.kfcv := 0.0;
UF(A1);
...

137 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.75 UTROVR, update trajectory override

DESCRIPTION: PCAP command utrovr()
FUNCTION PARAMETERS: Spec
SYSTEM PARAMETERS: TROVR
SIMULTANEOUS
FUNCTION:

Yes

EXAMPLE: ...
TROVR := 0.9; // Trajectory velocity override = -10%
UTROVR(A1, A2); // Reduced trajectory velocity for axes A1 and A2
...

6.6.76 WRCBI, write COMMON BUFFER integer procedure

DESCRIPTION: The procedure describes a memory location of the integer type with the value of
value in the CNC-task-specific COMMON BUFFER. The offset parameter is a byte
offset referenced to the first element (Element 0) of the COMMON BUFFER.
The integer data type occupies 4 bytes in the COMMON BUFFER.
To enable the xPCI-800x board CPU system to access this correctly, offset must
always be word-oriented, i.e. have a value which is divisible by 4.

DECLARATION: WRCBI(offset:integer; value:integer)
NOTE: The CNC-task-specific buffer size is 1,000 bytes.

PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx()

EXAMPLE: WRCBI(500, -1000); // Write integer variable from offset 500
 // with value -1000

6.6.77 WRCBS, write COMMON BUFFER single procedure

DESCRIPTION: The procedure describes a memory location of the single type (floating-point
number with single accuracy) with the value of value in the CNC-task-specific
COMMON BUFFER. The offset parameter is a byte offset referenced to the first
element (Element 0) of the COMMON BUFFER.
The single data type occupies 4 bytes in the COMMON BUFFER.
To enable the xPCI-800x board CPU system to access this correctly, offset must
always be word-oriented, i.e. have a value which is divisible by 4.

DECLARATION: WRCBS(offset:integer; value:single)
NOTE: The CNC-task-specific buffer size is 1,000 bytes.

PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx().

EXAMPLE: WRCBS(500, 3.99); // Write single variable from offset 500
 // with value 3.99

138 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.78 WRCBD, write COMMON BUFFER double procedure

DESCRIPTION: The procedure describes a memory location of the "double" type (floating-point
number with double accuracy) with the value of value in the CNC-task-specific
COMMON BUFFER. The offset parameter is a byte offset referenced to the first
element (Element 0) of the COMMON BUFFER.

The double data type occupies 8 bytes in the COMMON BUFFER.
To enable the xPCI-800x board CPU system to access this correctly, offset must
always be word-oriented, i.e. have a value which is divisible by 8.

DECLARATION: WRCBD(offset:integer; value:double)
NOTE: The CNC-task-specific buffer size is 1,000 bytes.

PCAP commands rdcbcnct() and wrcbcnct(), SAP commands RDCBx() and
WRCBx()

EXAMPLE: WRCBD(500, 100.2e-128); // Write double variable from offset 500
 // with value 100.2e-128

6.6.79 WRITE

DESCRIPTION: Adding a partial string to the current task specific string output.
FUNCTION PARAMETER: Diverse
NOTES: The function can be called with an undefined number of parameters, which can be

of the type string constant, integer, double or boolean. String constants are
strings that are limited in rw_SymPas by superior commas and in the G-Code
proramming by inverted commas. The single parameters are separated by
commas. Numeric or boolean parameters can be also expressions.
 The call of this function sets Bit 0 in the system variable tskinfo.
Information about the state of the string output see Chapter 4.4.13. The reading of
the task specific output string is done with the PCAP function gettskstr(), see
chapter 4.4.14.

EXAMPLE RW_SYMPAS: write (ۥThis is a string: ۥ, CI0);
write (ۥIstposition: ۥ, A1.rp);

EXAMPLE G-CODES: N0100 write “This a string“, CI0

6.6.80 WRITELN

DESCRIPTION: Adding a partial string to the current task specific string output and concluding the
output string.

FUNCTION PARAMETER: Diverse
NOTE: The function can be called with an undefined number of parameters, which can be

of the type string constant, integer, double or boolean. String constants are strings
that are limited in rw_SymPas by superior commas and in the G-Code proramming
by inverted commas. The single parameters are separated by commas. Numeric or
boolean parameters can be also expressions. If after this command write or writeln
is called again, the previous output string will be overwritten.
The call of this function sets Bit 1 in the system variable tskinfo.
For information about the state of the string output, see chapter 4.4.13.
The reading of the task specific output string is done with the PCAP function
gettskstr(), see chapter 4.4.14. If Bit 26 is set in the MODEREG register
(chapter 6.3.1.4), the respective CNC task will be stopped by this command.

EXAMPLE RW_SYMPAS: writeln (ۥThis is a string: ۥ, CI0);
writeln (ۥIstposition: ۥ, A1.rp);

EXAMPLE G-CODES: N0100 writeln “This is a string“, CI0

139 PM / PROGRAMMING AND REFERENCE MANUAL

6.6.81 WT, wait timer

DESCRIPTION: Wait for the wait time transferred as a parameter before continuing the SAP
program again. This command de-activates the CNC task and therefore does not
need any CPU time. To reduce the workload on the master CPU system, this
command may be used in queues, etc.

FUNCTION PARAMETERS: Integer values with a unit of 64 µs
NOTE: The EVENT handling procedures are not processed while this command is being

executed. But if you want these to be monitored, this can, for example, be achieved
by means of several WT() calls with shorter wait times (perhaps in a loop).

EXAMPLE: ...
CONST sec = 15625;
...
WT(5*sec); // Wait 5s
...

6.7 Compiler commands

As the name implies, a compiler command instructs the compiler, while it is compiling a source text, to
execute (or not to execute) certain operations. In rw_SymPas, a compiler command is activated as follows:

Inside the SAP source text program, a special syntax is formulated inside a comment: The opening bracket
({) is followed directly by a dollar sign ($) and the name of the command, which consists of one or more
letters. These "comments" can (apart from a few exceptions) appear at any position in the source text at
which a normal comment would also be permissible.

6.7.1 Include file

DESCRIPTION: This compiler command instructs the compiler to read in the file designated by
filename. Basically, the compiler behaves as if the text read is in place of the {$I}
command. rw_SymPas permits include files to be nested up to 15 levels. A file
inserted by means of {$I} can thus itself insert further files, which in turn contain {$I}
commands.
Note: If in the mcfg.exe NCC editor environment an include file has already been
opened in one of the three editor windows, the SAP source text of this editor will be
incorporated and not the content of the file concerned.

SYNTAX: {$I Filename }

140 PM / PROGRAMMING AND REFERENCE MANUAL

6.7.2 Task selection

DESCRIPTION: You can use this compiler command to specify the task (TaskNr, values 0..3) in
which the SAP program involved is to be run. The information is stored in the
autocode file "filename.cnc". The PCAP command txbf() is used to transfer this file
automatically into the right task.

SYNTAX: {$TASK TaskNr}
NOTE: If the SAP program concerned does not contain this statement, the task number

currently selected will be utilized for compiling. But if the ($TASK) command is
given, the correspondingly selected task number also becomes the default task
number for all subsequent display, start and stop commands.
chapter 3.2

EXAMPLE: ...
const
 Task1 = 1;
...

{$TASK Task1}; // or
{$TASK 1}

6.7.3 Full system compiling

DESCRIPTION: The command selects the compiler option FULLSYSTEM.
SYNTAX: {$FULLSYSTEM}
NOTE: If the SAP program concerned does not contain this statement, the option currently

selected will be utilized for compiling.
This statement is to be entered at the beginning of the source text file.
This command is available for mcfg from the version V2.5.2.13 and for ncc from the
version V2.5.2.9.

141 PM / PROGRAMMING AND REFERENCE MANUAL

6.8 SAP run time errors

When operating Stand Alone programs, differents errors may occur. In this case the running taks is stopped.
The error number and the number of the ligne where the error occurred are then entered in the data structure
CNCTS (See chapter 4.3.2.10). The error numbers and possible causes of error are listed below.

Table 40: SAP run time errors

Error # Description
1 / 0001 The arithmetic operation is not correct for the used data typ
2 / 0002 Uncorrect data type.
4 / 0004 Uncorrect internal operation code. This can be caused by a compatibility

problem between mcfg/ncc and RWMOS.ELF.
8 / 0008 Stack overflow. Program too big or internal problem for the RWMOS

operating system software.
16 / 0010 Stack underflow. This error can be an internal problem for the RWMOS

operating system software.
32 / 0020 Unknown event handler. It can be be caused by a compatibility problem

between mcfg/ncc and RWMOS.ELF.
64 / 0040 Uncorrect NC command. This can be caused by a compatibility problem

between mcfg/ncc and RWMOS.ELF
128 / 0080 Addess injury in NC program. This error can be caused by an internal

problem by the RWMOS operating systemsoftware.
256 / 0100 Addess injury in NC program through wrong parameter settings
512 / 0200 Error by using the AT interface.

1024 / 0400 A common variable has been addressed outside the correct range.
2048 / 0800 Uncorrect index by double access to the common buffer (cannot be

divided by 8).
4096 / 1000 Incorrect SAP command. This error can be caused by a compatibility

problem with controllers of another generation.
8192 / 2000 Error in cutting speed interpolation

16384 /
4000

Use of non-permitted axes in interpolation with G-codes

32768 /
8000

Invalid parameter in arithmetic operation, e.g. mod 0

	1 Introduction
	2 Internal details of the rw_MOS operating system software
	2.1 The xPCI-800x position controller
	2.1.1 Control loop opened/closed
	2.1.1.1 PIDF filter
	2.1.1.2 The filter parameters KD, KI, KP
	2.1.1.3 Additional phase element
	2.1.1.4 Scan time

	2.2 The xPCI-800x profile generator
	2.2.1 Profile generation for JOG commands
	2.2.2 Profile generation for MOVE commands
	2.2.3 Acceleration
	2.2.4 Maximum velocity
	2.2.5 Target velocity
	2.2.6 Velocity correction
	2.2.7 Target position / Traverse distance
	2.2.8 Operating modes for command processing
	2.2.8.1 Direct mode
	2.2.8.2 Spool mode
	2.2.8.3 Additional notes on spooler operation

	2.3 Interpolation with xPCI-800x
	2.3.1 Linear interpolation
	2.3.1.1 Formal linear interpolation

	2.3.2 Circular interpolation
	2.3.3 Helical interpolation
	2.3.4 Surface area processing
	2.3.5 Synchronous and asynchronous interpolations

	2.4 xPCI-800x limit switch handling
	2.4.1 TOM limit switch function (Turn-Off-Motor)
	2.4.2 SMA limit switch function (Stop-Motor-Abruptly)
	2.4.3 SMD limit switch function (Stop-Motor-Decelerate)

	3 xPCI-800x Programming methods
	3.1 PC application programming (PCAP programming, or direct programming)
	3.2 Stand-alone application programming (SAP programming)
	3.2.1 SAP-Multitasking

	4 PC application programming
	4.1 Introduction
	4.2 Example programs for using the function libraries
	4.3 Definitions, structures and records
	4.3.1 Definitions
	4.3.2 Structures, records and types
	4.3.2.1 Structure/record type AS
	4.3.2.2 Structure/record type TSRP
	4.3.2.3 Structure/record type TRU (Trajectory Units)
	4.3.2.4 Structure/record type LMP (Linear Motion Parameters)
	4.3.2.5 Structure/record type CMP (Circular Motion Parameters)
	4.3.2.6 Structure/record type HMP (Helical Motion Parameters)
	4.3.2.7 Structure/record type HMP 3D (Helical Motion Parameters 3Dimensional)
	4.3.2.8 Structure/record type ROSI (Risc Operating System Information)
	4.3.2.9 Structure/record type CBCNT (Common Buffer CNC-Task)
	4.3.2.10 Structure/record type CNCTS (Computerized Numerical Control Task Status)

	4.4 PCAP high-level language function reference list
	4.4.1 Structure of the reference list
	4.4.2 General information
	4.4.3 azo, activate zero offsets
	4.4.4 BootErrorReport, initialisation error report
	4.4.5 BootFile, boot operating system file
	4.4.6 CardSelect
	4.4.7 ClearCI99
	4.4.8 cl, close loop
	4.4.9 clv, close loop velocity
	4.4.10 contcnct, continue numeric controller task
	4.4.11 ctru, change trajectory units
	4.4.12 getEnvStr, get Environment String
	4.4.13 gettskinfo, Get Task Informations
	4.4.14 gettskstr, Get Task Message String
	4.4.15 InitMcuErrorReport, initialisation error report
	4.4.16 InitMcuSystem, initialise mcu system
	4.4.17 InitMcuSystem2, initialise mcu system (2nd method)
	4.4.18 InitMcuSystem3, initialise mcu system (3rd method)
	4.4.19 ja, jog absolute
	4.4.20 jhi, jog home index
	4.4.21 jhl, jog home left
	4.4.22 jhr, jog home right
	4.4.23 jr, jog relative
	4.4.24 js, jog stop
	4.4.25 lpr – Latch Position Registers
	4.4.26 lprs – Latch Position Registers Synchronous
	4.4.27 lps, latch position synchronous
	4.4.28 mca, move circular absolute - smca, spool motion circular absolute
	4.4.29 mcr, move circular relative - smcr, spool motion circular relative
	4.4.30 mca3d, move circular absolute three dimensional - smca3d, spool motion circular absolute three dimensional
	4.4.31 mcr3d, move circular relative three dimensional - smcr3d, spool motion circular relative three dimensional
	4.4.32 mcuinit, motion control unit initialisation
	4.4.33 MCUG3_SetBoardIntRoutine
	4.4.34 MCUG3_ResetBoardIntRoutine
	4.4.35 mha, move helical absolute - smha, spool motion helical absolute
	4.4.36 mhr, move helical relative - smhr, spool motion helical relative
	4.4.37 mla, move linear absolute - smla, spool motion linear absolute
	4.4.38 mlr, move linear relative - smlr, spool motion linear relative
	4.4.39 ms, motion stop
	4.4.40 MsgToScreen, message to screen
	4.4.41 ol, open loop
	4.4.42 ra, reset axis
	4.4.43 rdap, read axis parameters
	4.4.44 rdaux, read auxiliary register
	4.4.45 rdaxst, read axis status
	4.4.46 rdaxstb, read axis status bit
	4.4.47 rdcbcnct, read common buffer CNC-Task
	4.4.48 rdcd, read common double
	4.4.49 rdci, read common integer
	4.4.50 rdcncts, read computerized numeric controller task status
	4.4.51 rddigi, read digital inputs
	4.4.51.1 Axis-qualifier digi

	4.4.52 rddigib, read digital input bit
	4.4.53 rddigo, read digital outputs
	4.4.54 rddigob, read digital output bit
	4.4.55 rddp, read desired position
	4.4.56 rddpoffset, read desired position offset
	4.4.57 rddpd – read desired position in display unit
	4.4.58 rddv, read desired velocity
	4.4.59 rddvoffset, read desired velocity offset
	4.4.60 rdEffRadius – Read Effective Radius
	4.4.61 rdepc, read EEPROM programming cycle
	4.4.62 rdErrorReg, read Error Register
	4.4.62.1 Register ErrorReg

	4.4.63 rdf, read filter
	4.4.64 rdGCR, read gear configuration register
	4.4.65 rdgf, read gear factor
	4.4.66 rdgfaux, read gear factor auxiliary channel
	4.4.67 rdhac, read home acceleration
	4.4.68 rdhvl, read home velocity
	4.4.69 rdifs, read interface status
	4.4.69.1 Axis qualifier ifs

	4.4.70 rdifsb, read interface status bit
	4.4.71 rdigi, reset digital inputs
	4.4.72 rdipw, read in position window
	4.4.73 rdirqpc, read interrupt request PC
	4.4.74 rdjac, read jog acceleration
	4.4.75 rdJerkRel, read jerkrel
	4.4.75.1 Axis qualifier jerkrel

	4.4.76 rdjtvl, read jog target velocity
	4.4.77 rdjvl, read jog velocity
	4.4.78 rdledgn, read led green
	4.4.79 rdledrd, read led red
	4.4.80 rdledyl, read led yellow
	4.4.81 rdlp, read latched position
	4.4.82 rdlpndx, read latched position index
	4.4.83 rdlsm, read left spool memory
	4.4.84 rdMaxAcc – Read Maximum Acceleration Check
	4.4.85 rdMaxVel – Read Maximum Velocity Check
	4.4.86 rdMCiS – Read Move Commands in Spooler
	4.4.87 rdmcp, read motor command port
	4.4.88 rdMDVel – Read Maximum Velocity Skip
	4.4.89 rdModeReg – Read MODEREG
	4.4.90 rdmpe, read maximum position error
	4.4.91 rdnfrax – read No-Feed-Rate-Axis
	4.4.92 rdPosErr, read Position Error
	4.4.93 rdrp, read real position
	4.4.94 rdrpd – read real position in display unit
	4.4.95 rdrv, read real velocity
	4.4.96 rdSampleTime – Read Sample Time
	4.4.97 rdsdec, read stop deceleration
	4.4.98 rdsll, read software limit left
	4.4.99 rdslr, read software limit right
	4.4.100 rdslsp, read Slits / Stepperpulses
	4.4.101 rdtp, read target position
	4.4.102 rdtpd – read target position in display unit
	4.4.103 rdtrovr, read trajectory override
	4.4.104 rdtrovrst, read trajectory override settling time
	4.4.105 rdzeroOffset, read zero offset
	4.4.106 rifs, reset interface status register
	4.4.107 RPtoDP, Real-Position to Desired-Position
	4.4.108 rs, reset system
	4.4.109 scp – set controller params
	4.4.110 sdels, spooler delete synchronous
	4.4.111 shp, set home position
	4.4.112 ssms, start spooled motions synchronous
	4.4.113 sstps, spooler stop synchronous
	4.4.114 ssf, Spool-Special-Function
	4.4.114.1 Notes on SSF wait commands

	4.4.115 startcnct, start numeric controller task
	4.4.116 stepcnct, step numeric controller task
	4.4.117 stopcnct, stop numeric controller task
	4.4.118 szpa, set zero position absolute
	4.4.119 szpr, set zero position relative
	4.4.120 txbf, transmit binary file
	4.4.121 txbfErrorReport, initialisation error report
	4.4.122 uf, update filter
	4.4.123 utrovr, update trajectory override
	4.4.124 wraux, write auxiliary register
	4.4.125 wrcbcnct, write common buffer CNC-Task
	4.4.126 wrcd, write common double
	4.4.127 wrci, write common integer
	4.4.128 wrdigo, write digital outputs
	4.4.129 wrdigob, write digital output bit
	4.4.130 wrdp, write desired position
	4.4.131 wrdp offset, write desired position offset
	4.4.132 wrdvoffset, write desired velocity offset
	4.4.133 wrEffRadius – Write Effective Radius
	4.4.134 wrGCR, write gear configuration register
	4.4.135 wrgf, write gear factor
	4.4.136 wrgfaux, write gear factor auxiliary channel
	4.4.137 wrhac, write home acceleration
	4.4.138 wrhvl, write home velocity
	4.4.139 wripw, write in position window
	4.4.140 wrjac, write jog acceleration
	4.4.141 wrJerkRel, write jerkrel
	4.4.142 wrjovr, write jog override
	4.4.143 wrjtvl, write jog target velocity
	4.4.144 wrjvl, write jog velocity
	4.4.145 wrledgn, write led green
	4.4.146 wrledrd, write led red
	4.4.147 wrledyl, write led yellow
	4.4.148 wrlp, write latched position
	4.4.149 wrlpndx, write latched position index
	4.4.150 wrMaxAcc – Write Maximum Acceleration Check
	4.4.151 wrMaxVel – Write Maximum Velocity Check
	4.4.152 wrmcp, write motor command port
	4.4.153 wrMDVel – Write Maximum Velocity Skip
	4.4.154 wrModeReg – Write MODEREG
	4.4.155 wrmpe, write maximum position error
	4.4.156 wrnfax, write No-Feed-Rate-Axis
	4.4.157 wrrp, write real position
	4.4.158 wrsdec, write stop deceleration
	4.4.159 wrsll, write software limit left
	4.4.160 wrslr, write software limit right
	4.4.161 wrslsp, write Slits / Stepperpulses
	4.4.162 wrtp – write target position
	4.4.163 wrtrovr, write trajectory override
	4.4.164 wrtrovrst, write trajectory override settling time

	5 The rw_SymPas programming languagefor stand-alone application programming
	5.1 Introduction
	5.2 Lexical grammar
	5.2.1 White space
	5.2.2 Comments
	5.2.3 Symbols
	5.2.3.1 Keywords
	5.2.3.2 Designators
	a) Name and length restrictions
	b) Designator upper and lower case
	c) Unambiguity and validity of designators

	5.2.3.3 Standard designators
	5.2.3.4 Axis designators
	5.2.3.5 Qualified designators
	5.2.3.6 Labels
	5.2.3.7 Constants
	a) Integer constants
	b) Decimal constants
	c) Hexadecimal constants
	d) Floating-point constants
	e) The type of floating-point constants
	f) Declaration of constants
	g) Punctuation characters
	h) Parentheses
	i) Comma
	j) Semi-colon
	k) Equals sign

	5.3 Semantic grammar
	5.3.1 Declarations
	5.3.1.1 Objects
	5.3.1.2 Types
	a) Boolean type
	b) Integer type
	c) Floating-point types (real types)
	d) Assignment compatibility of types

	5.3.1.3 Variables
	a) Automatic type conversion

	5.3.2 Blocks, locality and range of application
	5.3.2.1 Syntax
	a) Declaration section
	Label declaration section
	 Constant declaration section
	 Variable declaration section

	Command section

	5.3.2.2 Range of application
	a) Redeclaration in a subordinate block
	b) The location of a declaration in a block
	c) Redeclarations inside a block
	d) Standard designators

	5.3.3 Variables
	5.3.3.1 The declaration of variables
	a) Axis-type declaration
	b) Timer declaration

	5.3.3.2 Conversion of variable types

	5.3.4 Expressions
	5.3.4.1 Syntax of expressions
	5.3.4.2 Operators
	5.3.4.3 Arithmetical operators
	5.3.4.4 Logic operators
	5.3.4.5 Boolean operators
	5.3.4.6 Relational operators

	5.3.5 Statements
	5.3.5.1 Assignments
	5.3.5.2 Procedure calls
	5.3.5.3 The goto statement
	5.3.5.4 Structured instructions
	5.3.5.5 Compound statements
	5.3.5.6 Conditional statements
	a) The if statement

	5.3.5.7 Loops
	a) The while statement
	b) The repeat statement
	c) The for statement

	5.3.6 Procedures and functions
	5.3.6.1 Procedure declarations
	5.3.6.2 Function declarations

	5.3.7 The syntax of an rw_SymPas program
	5.3.7.1 The program descriptor
	5.3.7.2 The program block

	6 Stand-alone application programming
	6.1 Introduction
	6.2 rw_SymPas example programs
	6.3 Abbreviations, system parameters, axis specifiers and axis qualifiers
	6.3.1 System parameters
	6.3.1.1 PC interrupt generation
	6.3.1.2 System parameters for unit processing
	6.3.1.3 ERRORREG
	6.3.1.4 MODEREG

	6.3.2 Axis specifiers
	6.3.3 Axis qualifiers
	6.3.4 Structured axis qualifiers
	6.3.5 Abbreviations

	6.4 Reserved procedure names with event function
	6.4.1 Event procedure EVEO
	6.4.2 Event procedure EVDNR
	6.4.3 Event procedure EVLSH
	6.4.4 Event procedure EVLSS
	6.4.5 Event procedure EVMPE
	6.4.6 Event procedure EVUI
	6.4.7 Priority and processing sequence for the event procedures

	6.5 SAP block commands
	6.6 rw_SymPas SAP command reference list
	6.6.1 Structure of the reference list
	6.6.2 ABORT, abort
	6.6.3 ABS, absolute function
	6.6.4 ACOS, arc cosine function
	6.6.5 ASIN, arc sine function
	6.6.6 ATAN, arc tangent function
	6.6.7 AZO, activate zero offsets
	6.6.8 CL, close loop
	6.6.9 CLV
	6.6.10 CONTCNCT, continue CNC-Task
	6.6.11 COS, cosine function
	6.6.12 COSH, hyperbolic cosine function
	6.6.13 DISEV, disable event
	6.6.14 ENEV, enable event
	6.6.15 EXP, exponential function
	6.6.16 JA, jog absolute
	6.6.17 JAW, jog absolute waiting
	6.6.18 JHI, jog home index
	6.6.19 JHIW, jog home index waiting
	6.6.20 JHL, jog home left
	6.6.21 JHLW, jog home left waiting
	6.6.22 JHR, jog home right
	6.6.23 JHRW, jog home right waiting
	6.6.24 JR, jog relative
	6.6.25 JRW, jog relative waiting
	6.6.26 JS, jog stop
	6.6.27 JSW, jog stop waiting
	6.6.28 LN, natural logarithm function
	6.6.29 LPR, latch position registers
	6.6.30 LPRS, latch position registers synchronous
	6.6.31 MCA, move circular absolute - SMCA, spool motion circular absolute
	6.6.32 MCAW, move circular absolute waiting
	6.6.33 MCA3D, move circular absolute three-dimensionalSMCA3D, spool move circular absolute three-dimensional
	6.6.34 MCA3DW, move circular absolute three-dimensional waiting
	6.6.35 MCR3D, move circular relative three-dimensionalSMCR3D, spool move circular relative three-dimensional
	6.6.36 MCR3DW, move circular relative three-dimensional waiting
	6.6.37 MCR, move circular relative - SMCR, spool motion circular relative
	6.6.38 MCRW, move circular relative waiting
	6.6.39 MHA, move helical absolute - SMHA, spool motion helical absolute
	6.6.40 MHAW, move helical absolute waiting
	6.6.41 MHR, move helical relative - SMHR, spool motion helical relative
	6.6.42 MHRW, move helical relative waiting
	6.6.43 MLA, move linear absolute - SMLA, spool motion linear absolute
	6.6.44 MLAW, move linear absolute waiting
	6.6.45 MLR, move linear relative - SMLR, spool motion linear relative
	6.6.46 MLRW, move linear relative waiting
	6.6.47 MS, motion stop
	6.6.48 MSW, motion stop waiting
	6.6.49 OL, open loop
	6.6.50 POWER
	6.6.51 RA, reset axis
	6.6.52 RDCBD, read COMMON BUFFER double function
	6.6.53 RDCBI, read COMMON BUFFER integer function
	6.6.54 RDCBS, read COMMON BUFFER single function
	6.6.55 RPTODP, Real-Position to Desired-Position
	6.6.56 RS, reset system
	6.6.57 SHP, set home position
	6.6.58 SIN, sine function
	6.6.59 SINH, hyperbolic sine function
	6.6.60 SQR, square function
	6.6.61 SQRT, square root function
	6.6.62 SSF, Spool-Special-Function
	6.6.63 SSMS, start spooled motions synchronous
	6.6.64 SSMSW, start spooled motions synchronous waiting
	6.6.65 STARTCNCT, start CNC-Task
	6.6.66 STOP, stop
	6.6.67 STEPCNCT, stop CNC-Task
	6.6.68 STOPCNCT, stop CNC-Task
	6.6.69 STOPTOSS,
	6.6.70 SZPA – Set Zero Position Absolut
	6.6.71 SZPR – Set Zero Position Relativ
	6.6.72 TAN, tangent function
	6.6.73 TANH, hyperbolic tangent function
	6.6.74 UF, update filter
	6.6.75 UTROVR, update trajectory override
	6.6.76 WRCBI, write COMMON BUFFER integer procedure
	6.6.77 WRCBS, write COMMON BUFFER single procedure
	6.6.78 WRCBD, write COMMON BUFFER double procedure
	6.6.79 WRITE
	6.6.80 WRITELN
	6.6.81 WT, wait timer

	6.7 Compiler commands
	6.7.1 Include file
	6.7.2 Task selection
	6.7.3 Full system compiling

	6.8 SAP run time errors

