
Rev. 8/022012

POSITIONING AND CONTOURING
CONTROL SYSTEM
APCI-8001, APCI-8008 and
CPCI-8004

Scanner Interface

G3-SCANNER-INTERFACE 3

1 Introduction ..5

2 Using the scanner functions...5

2.1 Boards already implemented... 5
2.2 Initialising the scanner ... 5
2.3 Functions of the scanner module .. 6
2.4 Scan control... 7
2.5 Scan trigger output .. 7
2.6 Definition of the scan records .. 8

2.6.1 PCAP programming.. 8
2.6.2 SAP programming... 8

2.7 Using the scanner functions .. 9
2.8 PCAP functions for scanner accesses .. 10

2.8.1 rdScannerBuffer, read scanner buffer .. 10
2.8.2 rdScannerBufferSize, read scanner buffer size.. 10
2.8.3 rdScannerLsm, read scanner left spool memory.. 10
2.8.4 rdScannerStatus, read scanner status ... 11

USING THE SCANNER FUNCTIONS 5

1 Introduction
The scanner functionality of the APCI-8001 / CPCI-8004 can be used to scan and temporarily store process
data in real-time. In doing this, the process data is stored cyclically in a scan record. These records can be
read out and processed as record arrays. The resource interface is necessary to use this functionality. It is
described in the manual „Resource Interface“.
This option can be used only if there is operating system version RwMos.ELF with the options
optionSCANNER and optionRESOURCE.

2 Using the scanner functions

2.1 Boards already implemented

APCI-3120: 16 analog inputs, 8 analog outputs
APCI-3701: 16 inductive transducers
APCI-3003: 4 analog inputs, simultaneous acquisition
APCI-3501: 8 analog outputs

2.2 Initialising the scanner

The following values for the universal object interface must be used when using the scanner module:

Table 1: Object descriptor elements

Object descriptor
element

Value

Handle Must be initialised with 0 when starting the application or
after rebooting the control system, and is then
managed/used by the system.
For PCAP programming: After the scanner functionality
is cleaned, the handles for all elements must be reset to
zero using the rdwr functionality.

BusNumber 1100
DeviceNumber 0
Index 0, 1, ...

Function number for configuring/operating the scanner,
according to table 2.

SubIndex No function

When the DeviceNumber > 0 and the index is 1, the scan objects are declared. The DeviceNumber must be
assigned consecutively.

6 G3 SCANNER INTERFACE

The parameters to be written are returned as second parameters (value) by calling the function wrOptionInt
or assigned directly at SAP programming.

For more information on the object descriptor elements, see the manual "Universal Object Interface".

2.3 Functions of the scanner module

Table 2: Functions of the scanner module for device No. 0

No.
(index

)

Name Type Explanation Return parameter
(value)

1 CLEAN integer w Reset scanner
The value 1 must be returned.
For PCAP programming: Immediately
after the reset, the handles for all objects
used must be reset to zero using the
rdwr functionality.

1

2 INIT integer w Initialise scanner before start-up.
This means, for example, that the
SizeOfRecord is calculated and the data
buffer is emptied.
Caution: By this calling also the variable
HW_SCAN_STROBE is reset.

1

3 STARTSTOP integer r/w Start or stop scanner, or request status. 1 = Start
0 = Stop

4 STATUS integer r Read the status of the scanner
The return value of this function is
described for the rdScannerStatus
function.

5 SIZEBUFFER integer r Request size of the total memory in the
scan buffer (in bytes).
Default: 100,000 bytes
This value can be set using the
SZSCANBUFFER environment variable
in fwsetup.

6 TIMEFACTOR integer r/w Read/write time factor in scanning time
for scanning data
Default value: 1

1, 2, ...

7 RECORDSTO
SCAN

integer w Read/write number of records that
should be scanned.
If 0 is entered here, scanning will be
endless. If more records are to be
scanned than fit into the data buffer, the
scanned data must be read out during
the scan process.
Default value: 1

0,1, ...

8 RECORDS
SCANNED

integer r Request number of scanned records.
By calling the function ScannerInit the
value is reset to 0.

9 SIZEOF
RECORD

integer r Request size of the record to be
scanned (in bytes). This value is only
available after calling the INIT function.

USING THE SCANNER FUNCTIONS 7

No.
(index

)

Name Type Explanation Return parameter
(value)

10 CHECK
BUFFER

integer r Request size of the free memory in the
scan buffer (in bytes).

11 HW_SCAN_
STROBE

integer r/w By setting of one or several bits in this
register, fast hardware inputs can be
defined as strobe inputs for the latch
process.
RWMOS.ELF must have the respecting
options that this option can be used.

Caution: This variable is reset by a
calling of INIT.

bits 0..7

22 FREE
BUFFER

integer w Internal function for the memory
administration, it is not considered for the
user.

Memory to be
released in bytes

64 SYNCPULSE
OUT

integer r/w Only available with special hardware
version: This register allows for a
scanner-synchronous pulse output to
trigger external components
(see Chapter 2.5)

bit-coded axis
specification for
pulse output

2.4 Scan control

By default, the scan is realised in a time-controlled and sampling-synchronous manner. However, it is also
possible to realise the scan in an event-controlled way. For this, as the last scan element, the resource
WTLSTRB (#101) is defined for a defined axis. In this case, the scan is recorded when a latch-strobe-signal
of the respecting axis has been recognised. Also here, the scan is realised sampling-synchronously. The
parameter TIMEFACTOR should always be set to 1.
The latch pulses must not be faster than the sampling times. The latch-strobe-signal is always reset during
the recording of the scan record.

2.5 Scan trigger output

In a special hardware version and with RWMOS from V2.5.3.78, it is possible to output a hardware trigger
signal synchronously to the scan. This signal can be used, for example, to synchronise external components
during data acquisition. Depending on the hardware version, this signal may be an RS422 output or a digital
24 V output.
For this, the scanner variable SYNCPULSEOUT (#64) has to be written on by a bit-coded value in which the
axes for the pulse output are flagged by set bits.

Example: 3rd axis = pulse output, the value 4 has to be written in the variable SYNCPULSEOUT

Normally, only one output will be prepared for such a purpose. In the corresponding axis, there is no zero-
trace signal and no hardware latch available. When using a 24 V digital output, this can be connected in the
usual way as well. The level actually output is the result of the disjunction (OR) of the indicated state
information.

8 G3 SCANNER INTERFACE

Through appropriate hardware preparation, it is also possible to have a fast pulse output from the software
environment via the resource #64 (see manual “Resource Interface”), e.g. by writing on the resource #64, an
RS422 output or, through appropriate hardware preparation, a digital output can be used at once.

Note: The output of the digital outputs is updated only once per sampling interval of the controller (usually
1.28 ms). A fast pulse output allows for a multiple output during the sampling interval.

2.6 Definition of the scan records

2.6.1 PCAP programming

The data to be scanned is defined by function calls with the following data. The elements to be scanned
must first be defined via the G3 Resource Interface. The scan record is constructed in the reverse order to
that in which the individual elements are defined. All the elements of the G3 resource interface can be
scanned.

Table 3: Definition of the scan record

Object descriptor
element

Value

BusNumber 1100
AccessType Input/Output
DateType (no function)
DeviceNumber 1, 2,
Index 0, 1, ...

TIMEFACTOR for this element
SubIndex Valid handle for an object descriptor from the G3

Resource Interface

Note: The DeviceNumber must not be equal to 0, and must be assigned uniquely. The initialisation of the
objects that shall be recorded, is realised with the access method ATAccessInputOutput (= 3).

The contents of the parameter DataType at the object descriptors of the data to be recorded is of no
importance. The variable TIMEFACTOR, which is entered into the index, allows scanning the data record
only to whole numbered multiples of the recording intervals. With the value 1 the measurement value is
recorded in each recording interval. With the value 0, the measurement value is never recorded. As
standard, here the value 1 must be entered.

2.6.2 SAP programming

An AT specifier is declared for each piece of data to be scanned.

Example:

var ScanListItem_rp: double AT %MRScannerBus.1.1.0;
var ScanListItem_axst: integer AT %MDScannerBus.2.1.0;
var ScanListItem_digi: integer AT %MDScannerBus.3.1.0;

The resource to be scanned must then be assigned once to this variable (each time the SAP programme is
started) with the help of the ptr operator. This assignment must be specified in the reverse order to that in
which the data is stored in the scan record.

USING THE SCANNER FUNCTIONS 9

Example:

 ScanListItem_rp := ptr(G3R_rp_A1_r); // real position of axis 1
 ScanListItem_digi := ptr(G3R_digi_A1_r); // digital inputs
 ScanListItem_ain_CH0 := ptr(G3R_ain_CH0_r); // analogue value channel 0

Please ensure that the data types used match.

2.7 Using the scanner functions

• Define the required ObjectDescriptor elements
• Define resources to be scanned,

execute at least one read operation, so that there is a valid handle.
• Call scanner CLEAN
• Define a list of scan objects
• Program the number of records to be recorded using the variable RECORDSTOSCAN
• Call scanner INIT
• The scan can now be started and stopped again using

scanner STARTSTOP
• The scanned data is read out using the PCAP command rdScannerBuffer (see below)

Here, the scanner status can be requested at any time, using rdScannerStatus, for example.

For PCAP programming: If the ResourceClean function is called repeatedly, all handles of the resource
object descriptor elements must be reset.
If the ScannerClean function is called repeatedly, all handles of the scanner object descriptor elements must
be reset using the rdwr functionality.

10 G3 SCANNER INTERFACE

2.8 PCAP functions for scanner accesses

2.8.1 rdScannerBuffer, read scanner buffer

DESCRIPTION: This function copies the current scanner buffer of the APCI-8001 / CPCI-8004 to a
storage area of the calling application. The size parameter specifies the number of
bytes to be read. The buffer parameter is an indicator of a storage area in the
application, which must be at least size bytes.

BORLAND DELPHI: function rdScannerBuffer (buffer: PChar; size: integer): integer;
C: int rdScannerBuffer (char *buffer, int size);
VISUAL BASIC: function rdScannerBuffer (buffer As String, ByVal size As Long)
PARAMETER: The parameter buffer is a pointer to a buffer of the application. The buffer must be

at least size bytes in size. The parameter size specifies the number of bytes to be
read.

RETURN VALUE: Number of bytes that were successfully copied into the buffer storage area.
0 – if there is no data in the scanner
-1 – ScannerBuffer is defined to large
-2 – System error in the scanner module

NOTE: The maximum number of bytes that can be read out can be calculated by
subtracting the rdScannerBufferSize() and rdScannerLsm() functions described
below. Less than the maximum can also be read out. For the subsequent data
analysis, it is reasonable to read out always a multiple of the specified record
length.
Specific rwmos.elf software is required to execute this command.
The data structure in which data is written must correspond to the selection of
scan objects. The returned data is not aligned with the word limit.

2.8.2 rdScannerBufferSize, read scanner buffer size

DESCRIPTION: This function returns the current size of the scanner buffer on the APCI-8001 /
CPCI-8004. The return value is given in bytes. By default, the buffer size is set to
100,000 bytes. The buffer size can be increased to a maximum of 13 MB, using a
flash environment variable.

BORLAND DELPHI: function rdScannerBufferSize: integer;
C: int rdScannerBufferSize(void);
VISUAL BASIC: Function rdScannerBufferSize() As Long
RETURN VALUE: Buffer size of the scanner buffer, in bytes.
NOTE: Specific rwmos.elf software is required to execute this command.

2.8.3 rdScannerLsm, read scanner left spool memory

DESCRIPTION: This function returns the currently free available working memory of the scanner
buffer. During entry in the scanner, this value counts down to 0.
During the scanner read-out, the value returns to the ScannerBufferSize.

BORLAND DELPHI: function rdScannerLsm: integer;
C: int rdScannerLsm(void);
VISUAL BASIC: Function rdScannerLsm() As Long
RETURN VALUE: Free available working memory of the scanner buffer, in bytes.
NOTE: Specific rwmos.elf software is required to execute this command.

USING THE SCANNER FUNCTIONS 11

2.8.4 rdScannerStatus, read scanner status

DESCRIPTION: This function returns the current status of the scanner buffer on the APCI-8001 /
CPCI-8004.

BORLAND DELPHI: Function rdScannerStatus: integer;
C: int rdScannerStatus(void);
VISUAL BASIC: Function rdScannerStatus() As Long
RETURN VALUE: Bit-coded scanner status.

Table: Bit-coded construction of the scanner status word
Bit No. Name Function
0 empty Status flag: scanner is completely empty
1 full Status flag: scanner is full. The specified number

of records has been entered.
2 inprocess Status flag: the scanner is currently processing

data.
3 endless Status flag: the ‘endless’ scan operating mode

has been selected.
8 norecords Error flag: no records have been defined. Error

during scan list generation.
9 overrun Error flag: scanner overrun. The scanner buffer is

full. For ‘endless’ scanning, the oldest, last
entered, record is rejected. If ‘endless’ scanning
has not been configured, the scan process is
stopped and no new records can be recorded
anymore

10 Config
error

Error flag: An error was detected at configuration.
- unknown data type

11 Scan
Ressource
Not
Valid

Error flag: A resource from the scan list is invalid.
Possibly, the content of the resource interface
was deleted.

NOTE: Specific rwmos.elf software is required to execute this command.

	1 Introduction
	2 Using the scanner functions
	2.1 Boards already implemented
	2.2 Initialising the scanner
	2.3 Functions of the scanner module
	2.4 Scan control
	2.5 Scan trigger output
	2.6 Definition of the scan records
	2.6.1 PCAP programming
	2.6.2 SAP programming

	2.7 Using the scanner functions
	2.8 PCAP functions for scanner accesses
	2.8.1 rdScannerBuffer, read scanner buffer
	2.8.2 rdScannerBufferSize, read scanner buffer size
	2.8.3 rdScannerLsm, read scanner left spool memory
	2.8.4 rdScannerStatus, read scanner status

