
Rev. 9/022014

www.addi-data.com

POSITIONING AND CONTOURING
CONTROL SYSTEM
APCI-8001, APCI-8008 and
CPCI-8004

Universal Object Interface

INTRODUCTION 3

1 Introduction ..5

1.1 The software interfaces for the UOI ..5
1.2 New functions using the UOI...5

2 Construction of the “Universal Object Interface”...6

2.1 PCAP programming ..6
2.1.1 Function access via OptionDescriptorObject ..6

a) Handle.. 6
b) AccessType ... 7
c) DataType.. 7
d) BusNumber .. 7
e) DeviceNumber, Index and SubIndex ... 8

2.1.2 Accesses via Object Descriptors...8
a) rdOptionInt ... 8
b) wrOptionInt... 8
c) rdOptionDbl.. 9
d) wrOptionDbl ... 9

2.1.3 Information about the handling per PCAP...9
2.2 SAP-programming...10

2.2.1 Access variable ...10
2.2.2 Information about the handling with SAP..11

UNIVERSAL OBJECT INTERFACE 5

1 Introduction

The “Universal Object Interface” [UOI] represents a universal and flexible software interface for programming
the APCI-8001 / APCI-8008 / CPCI-8004. This is a universal approach to the integration of various hardware
and software extensions for the APCI-8001, APCI-8008 and CPCI-8004 positioning and contouring control
systems.
The advantage for the user lies in the universal nature of the interface (SAP interface, DLL). User-specific
extensions simply require the update of the application programme, and the availability of the functionality in
the RWMOS.ELF operating system software.

1.1 The software interfaces for the UOI

The “Universal Object Interface” is supported equally by SAP and PCAP programming methods, and
represents a consistent extension of these programming methods that have been tried and tested for 10
years. Users to whom the terms SAP and PCAP are still new, should initially read through the programming
manual [PM] for the APCI-8001, APCI-8008 and CPCI-8004.

1.2 New functions using the UOI

At the moment, the “Universal Object Interface” enables you to make the following hardware and software
extensions:

Table 1-1: Possible function extensions to the APCI-8001 / APCI-8008 / CPCI-8004

Interface Description Document (PDF)
ELCAM Electronic Cam: Universal table interpolation ELCAM Interface
CANOPEN CANOPEN field bus master (in progress).

The OPCAN hardware option is required here.
CanBus Interface

Resources Access to the internal hardware or software register of the
APCI-8001 / APCI-8008 / CPCI-8004 controllers.

Resource Interface

INTERBUS INTERBUS field bus master.
The OPIBS hardware option is required here.

Options Manual

PCI I/O PCI bus master. The APCI-8001 / APCI-8008 / CPCI-8004
boards provide direct access to other PCI modules in the I/O
area, without requiring help from the operating system. This
access method provides very fast access, in compliance
with strict real-time conditions. Furthermore, it provides a
flexible extension to the CNC-I/O level.

PCI Interface

PCI Memory PCI bus master. Accesses take place via memory areas of
other PCI modules.

Resource Interface

Scanner Management of user-defined lists and scanning of data in
the internal memory of the APCI-8001 / APCI-8008 /
CPCI-8004 boards, in compliance with strict real-time
conditions.

Scanner Interface

TC Tool radius correction (Tool Compensation) TC Interface

6 UNIVERSAL OBJECT INTERFACE

2 Construction of the “Universal Object Interface”

2.1 PCAP programming

2.1.1 Function access via OptionDescriptorObject

The Universal Object Interface is accessed via the pre-defined data structures or OptionDescriptorObject
records.
For each function that should be used, an OptionDescriptorObject must be created and initialised, both for
read and write access. Then integer variables are handled by calling the wrOptionInt or rdOptionInt DLL
functions and floating point numbers are handled by calling the wrOptionDbl and rdOptionDbl functions.
For transferring 16- and 8-bit variables also wrOptionInt or rdOptionInt is used. In this case only the
respective part of the parameter val (see below) is considered.

Table 1: Object descriptor elements

Object descriptor
element

Description

Handle Must be initialised with 0 when starting the application or
after rebooting the control system, and is then
managed/used by the system.
For PCAP programming: After cleaning the respective
functionality, the handle must be reset to zero if
necessary. Please refer to the documentation for the
respective module.

AccessType Access type: The access type must be entered here
before the first use. The valid access types are defined in
ATAccessType
This variable defines whether this is a read or a write
operation, for example. For operators where both read
and write access are allowed, a separate
ObjectDescriptor must be created for each, with the
appropriate AccessType.

DataType Data type: The data type of the variable must be entered
here before the first use.

BusNumber The BusNumber of the respective module is entered here,
e.g. 1200 for the ELCAM module.

DeviceNumber Module-specific variable
Index Module-specific functions
SubIndex Module-specific sub-functions

a) Handle

The element Handle of the descriptor-Objects is initialised at the first use. The value is a variable of the
RWMOS operating system software that depends on the runtime. This means, that this value become
invalid, as soon as the control is rebooted. After the reboot of the control, all handles and object descriptor
elements must be nulled.

UNIVERSAL OBJECT INTERFACE 7

b) AccessType

This parameter describes the type of access with which the parameter is used.
Value Name Description

0 ATAccessNone Not used
1 ATAccessInput Read access
2 ATAccessOutput Write access
3 ATAccess

InputOutput
Configuration value,
e.g. for the definition of
the scanner module

c) DataType

This parameter defines the data format of the access parameter.

Value Name Description
0 ATDataNone Not used
1 ATDataByte Byte (8-bit)
2 ATDataWord Integer data word with

16-bit
3 ATData

DoubleWord
Integer data word with
32-bit (Integer)

4 ATDataReal 64-bit floating-point number
5 ATDataSingle 32-bit floating-point number
6 ATDataBlock User specific data

structure, e.g. at the
scanner module

d) BusNumber

With this parameter the function module is specified. To be able to access to a function module the
corresponding option must be contained in RWMOS.ELF (see also Table 1-1).

Value Module Option in RWMOS Description
100 PciBusIO optionPCI Busmaster accesses to the I/O range of

the PCI bus
200 PciBusMem optionPCI Busmaster accesses to the memory

range of the PCI bus
400 CanOpenBus optionMSM9225 Hardwareoption Can-Open
500 Interbus optionIBSUART Hardwareoption Interbus-S

1000 Resourcenbus optionRESOURCE Access to system variable (resources)
1100 Scannerbus optionSCANNER Real-Time scanner module
1200 ElCamBus optionELCAM ELCAM, Gear, spindle inclination error

and angle error compensation
1300 TcBus optionTC Tool radius and tool length correction

8 UNIVERSAL OBJECT INTERFACE

e) DeviceNumber, Index and SubIndex

In these parameters the access options are encoded. The documentation of the corresponding function
module describes these parameters.

2.1.2 Accesses via Object Descriptors

a) rdOptionInt

DESCRIPTION: This function reads an integer variable from the Universal Object Interface.
BORLAND DELPHI: function rdOptionInt (var odesc: OptionDescriptorObject; var val: integer): integer;
C: int rdOptionInt (struct OptionDescriptorObject *odesc, int *val);
VISUAL BASIC: function rdOptionInt (odesc As OptionDescriptorObject, val As Long)
RETURN VALUE: 4: function has been successfully executed

2: function is not ready (e.g. at reading WTLSTRB)
-1: the option Bus Number is not supported by RWMOS.ELF
1: An invalid element has been accessed or an invalid function number has been
used.
32 Device being accessed is not connected
64: Invalid data type was used (double)
128 Command is not permitted in current operating state

NOTE: The parameter to be read is returned in val.

b) wrOptionInt

DESCRIPTION: This function writes an integer variable via the Universal Object Interface.
BORLAND DELPHI: function wrOptionInt (var odesc: OptionDescriptorObject; var val: integer): integer;
C: int wrOptionInt (struct OptionDescriptorObject *odesc, int *val);
VISUAL BASIC: Function wrOptionInt (odesc As OptionDescriptorObject, val As Long)
RETURN VALUE: 4: function has been successfully executed

-1 the option Bus Number is not supported by RWMOS.ELF
1 An invalid element has been accessed or an invalid function number has been
used.
16 invalid transfer value (value)
32 Device being accessed is not connected
64: invalid data type was used (double)
128 Command is not permitted in current operating state
256 Time-out, return value is not useful

NOTE: The value to be written is returned in val (value).

UNIVERSAL OBJECT INTERFACE 9

c) rdOptionDbl

DESCRIPTION: This function reads a floating point number from the Universal Object Interface.
BORLAND DELPHI: function rdOptionDbl (var odesc: OptionDescriptorObject; var val: double): integer;
C: int rdOptionDbl (struct OptionDescriptorObject *odesc, double *val);
VISUAL BASIC: function rdOptionDbl (odesc As OptionDescriptorObject, val As Double)
RETURN VALUE: 4: function has been successfully executed

-1: the option (bus number) is not supported by RWMOS.ELF
1: An invalid element has been accessed or an invalid function number has been
used.
32 Device being accessed is not connected
64: invalid data type was used (no double)
128 Command is not permitted in current operating state

NOTE: The parameter to be read is returned in val.

d) wrOptionDbl

DESCRIPTION: This function writes a floating point number via the Universal Object Interface.
BORLAND DELPHI: function wrOptionDbl (var odesc: OptionDescriptorObject; var val: double): integer;
C: int wrOptionDbl (struct OptionDescriptorObject *odesc, double *val);
VISUAL BASIC: function wrOptionDbl (odesc As OptionDescriptorObject, val As Double)
RETURN VALUE: 4: function has been successfully completed.

-1: the option (bus number) is not supported by RWMOS.ELF
1: An invalid element has been accessed or an invalid function number has been
used.
32 Device being accessed is not connected
64: invalid data type was used (no double)
128 Command is not permitted in current operating state

NOTE: The parameter to be written is returned in val (value).

2.1.3 Information about the handling per PCAP

At each first access to an element of the universal object interface, after starting a PCAP program, a data
range is determined for this object in the memory of the control and a handle is returned. If a PCAP program
is started various times or even cyclically, more and more memory is used. Thus, right at the beginning of the
respecting PCAP programs, the clean function shall be called for the adequate bus number. With this
command, possibly present objects are taken out and the memory of the control is released. If in this case,
the respecting object interface is also access via other PCAP programs, then the “objects are taken away”
from other programs. Then a valid access to the object is not possible anymore because now the
optionDescriptorObject contains an invalid handle. Further access would lead to error functions, a program
crash or to a Exception in Windows or in the control. Therefore, in this case, it must be observed, that the
programs, which use the universal object interface, are not called various times. This can be avoided e.g. via
a mutex-handling.

10 UNIVERSAL OBJECT INTERFACE

2.2 SAP-programming

2.2.1 Access variable

The corresponding functions are accessed via variables that are declared via AT specifiers. Include files,
which contain all necessary declarations, are available for all existing modules.

The declarations are constructed as follows:

var name: DataType AT %XYBusNr.DeviceNumber.Index.SubIndex;

The individual characters of this line have the following meaning:

Table: Parameters in AT

Characters Description
Name Name of the variable, via which the object is accessed
DataType Data type, e.g. double, integer (as specified in the respective description)
X Access type

I = Input (read)
Q = Output (write)
M = Input/Output (e.g. for scanner function)

Y Data type of the internal variable
B = Byte (integer 8-bit)
D = Double Word (integer 32-bit)
W = Word (integer 16-bit)
R = Floating point number (64-bit)
S = Floating point number (32-bit)
M = Data block (format depends on the command, separately documented)
This data type must be compatible with DataType

BusNr BusNumber, as specified in the documentation for the respective module (e.g.
1200 for the ELCAM module).

DeviceNumber As specified in the documentation for the respective module
Index As specified in the documentation for the respective module
SubIndex As specified in the documentation for the respective module

Example:
const G3ResourceBus = 1000;

// Resource: rp (real position)
var G3R_rp_A1_r: double AT %IRG3ResourceBus.2.0.$0;

Include files, which contain all necessary declarations, are available for all existing modules. If an error
occurs when an AT specifier is being accessed, the SAP task is ended with runtime error 512.

UNIVERSAL OBJECT INTERFACE 11

2.2.2 Information about the handling with SAP

At each first access after the start of a SAP program to a variable of the universal object interface, a data
range will be constructed for this object. If a SAP program is started more fold or even cyclically, more and
more memory is needed. Thus, right at the beginning of the calling of respecting SAP programs, the Clean
function for the respecting bus number shall be called. With this command, the possibly present objects will
be ignored and the memory will be released. If, in this case, the respecting object interface is also accessed
in other programs, then the “objects are taken away” from the other programs. At the application they will be
constructed newly, but this requires additional execution time.

	1 Introduction
	1.1 The software interfaces for the UOI
	1.2 New functions using the UOI

	2 Construction of the “Universal Object Interface”
	2.1 PCAP programming
	2.1.1 Function access via OptionDescriptorObject
	a) Handle
	b) AccessType
	c) DataType
	d) BusNumber
	e) DeviceNumber, Index and SubIndex

	2.1.2 Accesses via Object Descriptors
	a) rdOptionInt
	b) wrOptionInt
	c) rdOptionDbl
	d) wrOptionDbl

	2.1.3 Information about the handling per PCAP

	2.2 SAP-programming
	2.2.1 Access variable
	2.2.2 Information about the handling with SAP

