

 DIN EN ISO 9001:2000
 certified

2nd edition 03/2005

ADDI-DATA GmbH
Dieselstraße 3

D-77833 OTTERSWEIER

Technical support:
+49 (0)7223 / 9493 – 0

Function description

ADDICOUNT APCI-/CPCI-1710

Pulse Counter

Product information

This manual contains the technical installation and important instructions for correct commissioning
and usage, as well as production information according to the current status before printing.
The content of this manual and the technical product data may be changed without prior notice.
ADDI-DATA GmbH reserves the right to make changes to the technical data and the materials
included herein.

Warranty and liability

The user is not permitted to make changes to the product beyond the intended use, or to interfere with
the product in any other way.
ADDI-DATA shall not be liable for obvious printing and phrasing errors. In addition, ADDI DATA, if
legally permissible, shall not be liable for personal injury or damage to materials caused by improper
installation and/or commissioning of the board by the user or improper use, for example, if the board is
operated despite faulty safety and protection devices, or if notes in the operating instructions regarding
transport, storage, installation, commissioning, operation, thresholds, etc. are not taken into
consideration. Liability is further excluded if the operator changes the board or the source code files
without authorisation and/or if the operator is guilty of not monitoring the permanent operational
capability of working parts and this has led to damage.

Copyright

This manual, which is intended for the operator and its staff only, is protected by copyright.
Duplication of the information contained in the operating instructions and of any other product
information, or disclosure of this information for use by third parties, is not permitted, unless this right
has been granted by the product licence issued. Non-compliance with this could lead to civil and
criminal proceedings.

ADDI-DATA software product licence

Please read this licence carefully before using the standard software. The customer is only granted the
right to use this software if he/she agrees with the conditions of this licence.
The software must only be used to set up the ADDI-DATA boards.
Reproduction of the software is forbidden (except for back-up and for exchange of faulty data
carriers). Disassembly, decompilation, decryption and reverse engineering of the software are
forbidden. This licence and the software may be transferred to a third party if this party has acquired a
board by purchase, has agreed to all the conditions in this licence contract and the original owner does
not keep any copies of the software.

Trademarks
- ADDI-DATA is a registered trademark of ADDI-DATA GmbH.
- Turbo Pascal, Delphi, Borland C, Borland C++ are registered trademarks of Borland Insight

Company.
- Microsoft C, Visual C++, Windows XP, 98, Windows 2000, Windows 95, Windows NT,

EmbeddedNT and MS DOS are registered trademarks of Microsoft Corporation.
- LabVIEW, LabWindows/CVI, DasyLab, Diadem are registered trademarks of National Instruments

Corp.
- CompactPCI is a registered trademark of PCI Industrial Computer Manufacturers Group.
- VxWorks is a registered trademark of Wind River Systems Inc.

 3

WARNING

The following risks result from improper implementation
and from use of the board contrary to the regulations:

♦ Personal injury

 ♦ Damage to the board, PC and peripherals

 ♦ Pollution of the environment

♦ Protect yourself, the others and the environment!

♦ Read carefully the safety precautions
(yellow leaflet).

If this leaflet is not with the documentation, please contact us
and ask for it.

♦ Observe the instructions of the manual.

Make sure that you do not forget or skip any step. We are not
liable for damages resulting from a wrong use of the board.

♦ Used symbols:

i IMPORTANT!
designates hints and other useful information.

WARNING!
It designates a possibly dangerous situation.
If the instructions are ignored the board, PC and/or peripheral may
be destroyed.

Contents APCI-/CPCI-1710

4

1 DEFINITION OF APPLICATION 7

1.1 Intended use ..7

1.2 Usage restrictions...7

1.3 Technical description ..7

1.4 Function description ..8

1.5 Used abbreviations ..8

2 PULSE COUNTER... 9

2.1 General description ...9

2.1.1 Block diagram of the ETM function ..9
2.1.2 Typical applications .. 10

2.2 Used signals ...10

2.3 Pin assignment for all modules with pulse counter11

2.4 Connection example ...12

2.5 I/O mapping ...13

2.6 Description of the I/O functions......................................13

2.6.1 WRITE register... 13
2.6.2 LATCH Register .. 14
2.6.3 CTRL Register... 14
2.6.4 SET Register ... 14
2.6.5 STATUS-REGISTER .. 15
2.6.6 Filter Register (Base +60)... 15
2.6.7 Version Register (Base +60) .. 17

2.7 Working with pulse counter function..............................18

3 STANDARDSOFTWARE... 19

3.1 Define values..19

3.2 Interruptmask ...20

3.3 Initialisation..21

1) i_APCI1710_InitpulseEncoder (...) ... 21
2) i_APCI1710_EnablePulseEncoder (...) ... 23
3) i_APCI1710_DisablePulseEncoder (...) .. 25

3.3.2 Reading the pulse counter ... 26
4) i_APCI1710_ReadPulseEncoderStatus (...) 26
5) i_APCI1710_ReadPulseEncoderValue (...)................................... 27

3.3.3 Writing into the pulse counter.. 28
6) i_APCI1710_WritePulseEncoderValue (...).................................. 28

3.4 Interrupt kernel routine for Windows NT/9x29

3.4.1 Reading the pulse counter ... 29
1) i_APCI1710_KRNL_ReadPulseEncoderValue (...)...................... 29

Contents APCI-/CPCI-1710

 5

3.4.2 Reading into the pulse counter ...30
2) i_APCI1710_KRNL_WritePulseEncoderValue (...) 30

Contents APCI-/CPCI-1710

6

Figures

Fig. 2-1: Block diagram of the pulse counter9
Fig. 2-2: Pin assignment of the 50-pin SUB-D connector.................. 11
Fig. 2-3: Connection example .. 12
Fig. 3-1: Timing output H; Inv_out = 0... 22
Fig. 3-2: Timing output H; Inv_out = 1.. 22

Tables

Table 1-1: Delivered manuals...8
Table 2-1: Used signals .. 10
Table 2-2: I/O mapping of the pulse counter 13
Table 3-1Define value .. 19
Table 3-2: Interruptmask of the function „pulse counter” 20

APCI-/CPCI-1710 Definition of Application

 7

1 DEFINITION OF APPLICATION

1.1 Intended use

The board APCI-1710 must be inserted in a PC with PCI 5V/32-bit slots, which is
used as electrical equipment for measurement, control and laboratory pursuant to
the norm IEC 61010-1.

The board CPCI-1710 must be inserted in a CompactPCI system with PCI 5V/32-
bit slots, which is used as electrical equipment for measurement, control and
laboratory pursuant to the norm IEC 61010-1

1.2 Usage restrictions

The board APCI-/CPCI-1710 must not be used as safety related part for securing
emergency stop functions

The board APCI-/CPCI-1710 must not be used in potentially explosive
atmospheres.

1.3 Technical description

This manual refers to the APCI-1710 as well as to the CPCI-1710 board. Make
sure that you have received the following items:
- The CD 1 “Standard Software Drivers” with the ADDISET parameterizing

program and the required software drivers.
- The CD 2 “Technical Manuals”. This CD contains the following:

1) The technical description ADDICOUNT APCI-1710 / CPCI-1710:
Function-programmable counter board for the PCI bus (containing
general information on the operation of the board)
2) A function description for each function which you want to program on the
APCI-/CPCI-1710 board
3) The yellow leaflet "Safety precautions"

According to the used function you will find the required assignment and
programming functions in the different manuals for each function:

Definition of Application APCI-/CPCI-1710

8

Table 1-1: Delivered manuals

Function PDF file
(CD2 technical manuals)

Function description
in SET1710

CFG
file

 German English
Incremental
counter

Inkr_zähler_d.pdf Incr_counter_e.pdf Incremental counter inc_cpt.cfg

SSI SSI_d.pdf ssi_e.pdf SSI ssi.cfg
SSI monitor SSI-Monitor_d SSIMonitor_e.pdf SSI_Monitor ssi_mon.cfg
Chronos chronos_d.pdf chronos_e.pdf Chronos chronos.cfg
Counter/timer Zähler_timer_d.pdf Counter_timer_e.pdf counter/timer 82x54.cfg
TOR TOR_d.pdf TOR_e.pdf TOR tor.cfg
PWM PWM_d.pdf PWM_e.pdf Pulse width modulation PWM.cfg
TTL TTL_IO_d.pdf TTL_IO_e.pdf TTL I/O ttl_io.cfg
Digital I/O dig_EA_d.pdf dig_IO_e.pdf Digital I/O dig_IO.cfg
Pulse counter Impulszähler_d.pdf pulseCounter_e.pdf Pulse counter imp_cpt.cfg
ETM (Edge time
measurement)

ETM_d.pdf ETM_e.pf Edge time measurement etm.cfg

 Please note:
The board CPCI-1710 is compatible with the board APCI-1710 as far as the
installation of the software is concerned. The ADDIREG and SET1710 programs
make no difference between PCI and CompactPCI boards. The API functions of
the standard software are also identical.

1.4 Function description
Apart from a global description of the functions this manual contains:
 - the pin assignment of the front connector
- a list of the used signals
- the I/O mapping
- a chapter about the API software functions of the standardsoftware.

1.5 Used abbreviations

The signals on the 50 pin SUB-D connector refer always to one function module.
Please note the used abbreviations:
- UAS: Interference signal
- CLK: Clock
- REF: Reference point logic
- ENA: Enable

C1+ is a signal for function module 1.

APCI-/CPCI-1710 Pulse counter

 9

2 PULSE COUNTER

2.1 General description

The function "pulse counter" allows the counting of single pulses or pulse
sequences. Here fore the counter is programmed with a value that is defined by
the user. Each pulse decrements the counter with one counting value. At the
transition from 0 to -1 an interrupt can be generated. Up to 4 x 23-bit counters can
be used per function module. Through parameterization you can define whether
the counter stops at the transition from 0 to -1 or reloads automatically and
restarts.

Properties:
- Interrupt status at the transition of the counter from 0 to -1.
- Signals up to 5 MHz (TTL, diff.) can be processed
- Start of the counter after loading a new counting word and setting of the gate

bit
- At the transition of counter 0 from 1 to 0, the 24 V output H can be set (only

pulse counter 0)
- Single (counter stops at the transition from 0 to -1) or continuous mode

(counter loads starting value and counts newly downwards).

2.1.1 Block diagram of the ETM function

Fig. 2-1: Block diagram of the pulse counter

Pulse counter APCI-/CPCI-1710

10

2.1.2 Typical applications
- Simple pulse counting
- Pulse depending trigger

2.2 Used signals

The function “pulse counter” occupies 4 inputs (for 4 counters, channels A to
D) and 1 output (channel H) of the respecting function module of the
APCI-/CPCI-1710.
On one board you can connect max. 16 pulse counters.

Table 2-1: Used signals

SIGNALS AT THE
CONNECTOR

POLARITY FUNCTION

Counter 0 Ax +/- Diff./TTL/optional 24 V Input of counter 0

Counter 1 Bx +/- Diff./TTL/optional 24 V Input of counter 1

Counter 2 Cx +/- Diff./TTL/optional 24 V Input of counter 2

Counter 3 Dx +/- Diff./TTL/optional 24 V Input of counter 3

Trigger
output

Hx 24V / optional 5V Digital output of counter 0

x: Number of the function module.

APCI-/CPCI-1710 Pulse counter

 11

2.3 Pin assignment for all modules with pulse counter

i IMPORTANT!
The function modules are defined differently in the hardware and software
descriptions.

For the pin assignment (hardware) the modules from 1 to 4 are numbered. For the
SET1710 program or the software functions (software) the module numbering
BEGINS with 0.

The figure below is a connection example. The function “pulse counter” is
implemented on all function modules.

Fig. 2-2: Pin assignment of the 50-pin SUB-D connector

Pulse counter APCI-/CPCI-1710

12

2.4 Connection example

Fig. 2-3: Connection example

APCI-/CPCI-1710 Pulse counter

 13

2.5 I/O mapping

Table 2-2: I/O mapping of the pulse counter

 IORD IOWR

 D31.....D8 D7.......D0 D31.....D8 D7.......D0

BASEx + 0 LATCH Register 0 WRITE Register 0

BASEx + 4 LATCH Register 1 WRITE Register 1

BASEx + 8 LATCH Register 2 WRITE Register 2

BASEx + 12 LATCH Register 3 WRITE Register 3

BASEx + 16 - STATUS Register - CTRL Register

BASEx + 20 - SET Register

................ - -

FILTER Register BASEx + 60

VERSION Register

Filter Register

-: No function; y: Data of no importance, x: Number of the function module

The accesses are always read or written in 32-bit.

2.6 Description of the I/O functions

This function contains 4 independent 32-bit counters. Each counter is allocated to
an external line. The counter is decremented through this line when the signal
indicates an edge change from 0 to 1 or from 1 to 0.

The counter can be initialised on a fix value through software, from which it
counts downwards. At the transition from value 0 to -1 an interrupt can be
generated and the output can be set. At this event the respecting counter is
stopped. The counter is enabled again when it is loaded with a new value and the
respecting GATE bit is set on “1”.

2.6.1 WRITE register

By writing on this register the counters are loaded and enabled. The registers are
32-bit and cannot be reread. After reset they are to zero.
- Base + 0 Counter 0
- Base + 4 Counter 1
- Base + 8 Counter 2
- Base + 12 Counter 3

Pulse counter APCI-/CPCI-1710

14

2.6.2 LATCH Register

With reading on these addresses the 32-bit values of the counters are read out.
- Base + 0 Counter 0
- Base + 4 Counter 1
- Base + 8 Counter 2
- Base + 12 Counter 3
-

2.6.3 CTRL Register

On base address + 16 is the "Control Register". It is written in 32-bit, but is not
rereadable. After the reset all bits are set to zero.

Bits D31..
D8

D7 D6 D5 D4 D3 D2 D1 D0

Description - CYCL3 CYCL2 CYCL1 CYCL0 GATE3 GATE2 GATE1 GATE0

Per counter one bit is available:
GATEy = "0" the counter is locked
 "1" the counter is released
CYCLy = "0" single mode
 "1" continuous mode
y= counter number (0 to 3)

2.6.4 SET Register

On the base address + 20 is the "SET Register"; it is written in 32-bit – not
rereadable.

After reset all bits are set to zero. No interrupt can be generated. The digital inputs
are not inverted. The counter is decremented with the rising edge. The digital
ouput is switched off.

Bits D31..D5 D12 D11 D10 D9 D8 D7...D5 D4 D3 D2 D1 D0

Description - INV_
OUT

INV_
IN3

INV_
IN2

INV_
IN1

INV_
IN0

- OUT_
ENA0

INT_
ENA3

INT_
ENA2

INT_
ENA1

INT_
ENA0

For each counter are two bits available in order to start an activity at zero cross
INT_ENAy = "0" no interrupt at zero cross (status after reset)
 "1" interrupt at zero cross
OUT_ENA0 = "0" the output of counter 0 will not be set (status after reset)
 "1" the output will be set at zero cross of counter 0
INV_INy "0" the input of counter y will not be inverted.
 The counter will be decremented with rising edge (status
 after reset)
 "1" the input will be inverted. The counter with the falling edge
 will be decremented.
INV_OUT "0" the output will be not inverted (status after reset)
 At the zero cross of counter 0, the output will be switched

APCI-/CPCI-1710 Pulse counter

 15

from 1 to 0.
 "1" At the zero cross the output will be switched from 0 to 1.

The zero cross of counter 0 only affects output H when the OUT_ENA0 bit is set.

y= counter number (0 to 3)

The interrupt request is a common interupt of the 4 counters ("ODER"
connection).

2.6.5 STATUS-REGISTER

Reading the base address + 16 gives information about the current counter status.
Indicated is the counter with one zero cross.

Bits D31..D5 D4 D3 D2 D1 D0
Description - CB3 CB2 CB1 CB0 G_CB

G_CB : "0" Global zero cross bit, no zero cross on one of the 4 counters
 "1" zero cross
CB 0 : "0" no zero cross on counter 0
 "1" zero cross on counter 0
CB 1 : "0" no zero cross on counter 1
 "1" zero cross on counter 1
CB 2 : "0" no zero cross on counter 2
 "1" zero cross on counter 2
CB 3 : "0" no zero cross on counter 3
 "1" zero cross on counter 3

After loading the counter/s with a new value, the respecting bits are reset.
This information reflects the interrupt request and of the digital output.

2.6.6 Filter Register (Base +60)

By a simple reading access to Register 60 the Version Register described in
chapter 2.6.7 can be read. By a writing access to Register 60, a digital filter can be
parameterized for the inputs A, B, C, D. The set filter values refer to positive and
negative pulses. All pulses that are smaller than the set time are filtered. For
reading back this range, the Bit DQ15 must be set. Then the filter status can be
read through reading access. to the register

Through the filter value „0000“, the filter is disabled. Bit DQ8 indicates if a 40
MHz quartz is available on the used board. Through DQ9, the filter clock to used
can be set.

DQ3..0 : Filter values fort he inputs A, B, C, D base 40 MHz
0 0000 = Filter disabled
1 0001 = Filter of 100 ns
2 0010 = Filter of 150 ns
3 0011 = Filter of 200 ns

Pulse counter APCI-/CPCI-1710

16

4 0100 = Filter of 250 ns
5 0101 = Filter of 300 ns
6 0110 = Filter of 350 ns
7 0111 = Filter of 400 ns
8 1000 = Filter of 450 ns
9 1001 = Filter of 500 ns
10 1010 = Filter of 550 ns
11 1011 = Filter of 600 ns
12 1100 = Filter of 650 ns
13 1101 = Filter of 700 ns
14 1110 = Filter of 750 ns
15 1111 = Filter of 800 ns

DQ3..0 : Filter values for the inputs A, B, C, D base 33 MHz
0 0000 = Filter disabled
1 0001 = Filter of 121 ns
2 0010 = Filter of 182 ns

 3 0011 = Filter of 242 ns
 4 0100 = Filter of 303 ns
 5 0101 = Filter of 364 ns
 6 0110 = Filter of 424 ns

7 0111 = Filter of 485 ns
 8 1000 = Filter of 545 ns
 9 1001 = Filter of 606 ns
 10 1010 = Filter of 667 ns
 11 1011 = Filter of 727 ns
 12 1100 = Filter of 788 ns
 13 1101 = Filter of 848 ns
 14 1110 = Filter of 909 ns
 15 1111 = Filter of 970 ns

DQ3..0 : Filter values for the inputs A, B, C, D base 30 MHz
0 0000 = Filter disabled
1 0001 = Filter of 133 ns
2 0010 = Filter of 200 ns

 3 0011 = Filter of 267 ns
 4 0100 = Filter of 333 ns
 5 0101 = Filter of 400 ns
 6 0110 = Filter of 467 ns

7 0111 = Filter of 533 ns
 8 1000 = Filter of 600 ns
 9 1001 = Filter of 667 ns
 10 1010 = Filter of 733 ns
 11 1011 = Filter of 800 ns
 12 1100 = Filter of 867 ns
 13 1101 = Filter of 933 ns
 14 1110 = Filter of 1000 ns
 15 1111 = Filter of 1067 ns

APCI-/CPCI-1710 Pulse counter

 17

DQ8 : 40 MHz status (can only be read)
 1: 40 MHz available
 0: 40 MHz not available

DQ9 : Filter clock
 1: 40 MHz
 0: 33 MHz (or 30 MHz with former mainboards)

DQ15 : Enable to read the filter status
 1: next RD access to Register 60 reads the filter status
 0: next RD access to Register 60 reads the Version
 Register

2.6.7 Version Register (Base +60)

The function and revision are recognised (reading command, ASCI format)

Bits D31... D17 D16...D0
Description Function Revision

Example:

BASE + 60 "I" "Z" "1" "1"

Meaning: Pulse counter 1.1

Pulse counter APCI-/CPCI-1710

18

2.7 Working with pulse counter function
1. Loading the counting value

2. Defining the input signal of the counter (rising or falling edge)

3. Defining the action of the counter at zero cross (activating the output or
generating an interrupt).

4. Releasing the counter over the gate bit.

5. Selecting the counter mode (continuous or single)

APCI-/CPCI-1710 Standardsoftware

 19

3 STANDARDSOFTWARE

3.1 Define values

i IMPORTANT!
Note the following style conventions in the text:

Function: "i_APCI1710_SetBoardInformation"

Variable ui_Address

Table 3-1Define value

Define name Decimal value Hexadecimal value
DLL_COMPILER_C 0 0

DLL_COMPILER_VB 1 1

DLL_COMPILER_PASCAL 2 2

DLL_LABVIEW 3 3

DLL_COMPILER_VB_5 4 4

APCI1710_DISABLE 0 0

APCI1710_ENABLE 1 1

Standardsoftware APCI-/CPCI-1710

20

3.2 Interruptmask

Each pulse counter can generate an interrupt. In order to obtain this interrupt, you
shall enable the interrupt and the interrupt routine with the function
"i_APCI1710_SetBoardIntRoutineX"

Table 3-2: Interruptmask of the function „pulse counter”

b_ModuleMask ul_InterruptMask Meaning

0000 0001 0000 0001 0000 0000 Zero cross of pulse counter 0 – module 0

0000 0001 0000 0010 0000 0000 Zero cross of pulse counter 1 - module 0

0000 0001 0000 0100 0000 0000 Zero cross of pulse counter 2 - module 0

0000 0001 0000 1000 0000 0000 Zero cross of pulse counter 3 - module 0

0000 0010 0000 0001 0000 0000 Zero cross of pulse counter 0 - module 1

0000 0010 0000 0010 0000 0000 Zero cross of pulse counter 1 - module 1

0000 0010 0000 0100 0000 0000 Zero cross of pulse counter 2 - module 1

0000 0010 0000 1000 0000 0000 Zero cross of pulse counter 3 - module 1

0000 0100 0000 0001 0000 0000 Zero cross of pulse counter 0 - module 2

0000 0100 0000 0010 0000 0000 Zero cross of pulse counter 1 - module 2

0000 0100 0000 0100 0000 0000 Zero cross of pulse counter 2 - module 2

0000 0100 0000 1000 0000 0000 Zero cross of pulse counter 3 - module 2

0000 1000 0000 0001 0000 0000 Zero cross of pulse counter 0 -module 3

0000 1000 0000 0010 0000 0000 Zero cross of pulse counter 1 - module 3

0000 1000 0000 0100 0000 0000 Zero cross of pulse counter 2 - module 3

0000 1000 0000 1000 0000 0000 Zero cross of pulse counter 3 - module 3

APCI-/CPCI-1710 Standardsoftware

 21

3.3 Initialisation

1) i_APCI1710_InitpulseEncoder (...)

Syntax:
<Return Wert> = i_APCI1710_InitpulseEncoder
 (BYTE b_BoardHandle,
 BYTE b_ModulNbr,
 BYTE b_PulseEncoderNbr,
 BYTE b_InputLevelSelection,
 BYTE b_TriggerOutputAction,
 ULONG ul_StartValue)

Parameter:
- Eingabe:
 BYTE b_BoardHandle Handle of the xPCI-1710 board
 BYTE b_ModulNbr Number of the module to be configured

(0 to 3)
 BYTE b_PulseEncoderNbr Selection of the pulse counter (0 to 3)
 BYTE b_InputLevelSelection Selection of the pulse level (0 or 1)
 0: Pulse counter counts the pulse at Low.
 1: Pulse counter counts the pulse at High
 BYTE b_TriggerOutputAction Action of the digital trigger output.

Only for pulse counter 0
0: Not enabled
1: Sets the trigger output to "1" (high) after the
pulse counter have decremented from 1 to 0.
See Fig. 3-1

 2: Sets the trigger output to "0" (low) after the
pulse counter has decremented from 1 to 0.
See Fig. 3-1.

 ULONG ul_StartValue Start value of the pulse counter
(1 to 4294967295)

-Output:
 There is no output.

Task:
Configures the operating mode of the pulse counter through b_ModulNbr and
b_PulseEncoderNbr. The pulse counter decrements the counterwith 1 value after
each pulse. Call this function before calling other functions that access the pulse
counter.

Standardsoftware APCI-/CPCI-1710

22

Fig. 3-1: Timing output H; Inv_out = 0

Fig. 3-2: Timing output H; Inv_out = 1

Calling convention:
ANSI C :
int i_ReturnValue;
unsigned char b_BoardHandle;

i_ReturnValue = i_APCI1710_InitPulseEncoder
 (b_BoardHandle,
 0,
 0,
 1,
 0);

Return value:
0: No error
-1: Handle parameter of the board is wrong
-2: The selected module is no "pulse counter" module.
-3: The selected pulse counter is wrong.
-4: Selection of the input level is wrong
-5: The action selection of the digital trigger is wrong.
-6: The start value of the pulse counter is wrong.

APCI-/CPCI-1710 Standardsoftware

 23

2) i_APCI1710_EnablePulseEncoder (...)

Syntax:
<Return Wert> = i_APCI1710_EnablePulseEncoder

(BYTE b_BoardHandle,
 BYTE b_ModulNbr,
 BYTE b_PulseEncoderNbr,
 BYTE b_CycleSelection,
 BYTE b_InterruptHandling)

Parameter:
- Input
 BYTE b_BoardHandle Handle of the xPCI-1710 board
 BYTE b_ModulNbr Number of the module to be configured

(0 to 3)
 BYTE b_PulseEncoderNbr Selection of the pulse counter (0 to 3)
 BYTE b_CycleSelection APCI1710_CONTINUOUS: At the transition

of the counter value to "0", the pulse counter
loads the start value after the next pulse
automatically new.

 APCI1710_SINGLE: At the transition of the
counter to "0", the pulse counter is stopped.

 BYTE b_InterruptHandling Interrupts can be generated when the pulse
counter run out. The user decides if he uses an
interrupt or not.
APCI1710_ENABLE: Interrupts enabled

 APCI1710_DISABLE: Interrupts disabled
- Output
 There is no output.

Task:
Enables the selected pulse counter (b_PulseEncoderNbr) of the indicated module
(b_ModulNbr). At each input pulse the counting value of the pulse counter is
decremented with 1. If the interrupt function is released (b_InterruptHandling), an
interrupt will be generated as soon as the pulse counter has run out.

Calling convention:
ANSI C :
int i_ReturnValue;

i_ReturnValue = i_APCI1710_EnablePulseEncoder
 (b_BoardHandle,
 0,
 0,
 APCI1710_CONTINUOUS,
 APCI1710_DISABLE);

Standardsoftware APCI-/CPCI-1710

24

Return value:
0: No error
-1: Handle parameter of the board is wrong.
-2: Selected module number is wrong.
-3: Selected pulse counter is wrong.
-4: Pulse counter not initialised. See function "i_APCI1710_InitPulseEncoder"
-5: Selected cycle mode is wrong
-6: Mode of the interrupt management is wrong.

-7: Interruptroutine not installed.
 See function "i_APCI1710_SetBoardIntRoutineX"

APCI-/CPCI-1710 Standardsoftware

 25

3) i_APCI1710_DisablePulseEncoder (...)

Syntax:
<Return Wert> = i_APCI1710_DisablePulseEncoder
 (BYTE b_BoardHandle,
 BYTE b_ModulNbr,
 BYTE b_PulseEncoderNbr)

Parameter:
- Input
 BYTE b_BoardHandle Handle of the xPCI-1710 board
 BYTE b_ModulNbr Number of the module to be configured

(0 to 3)
 BYTE b_PulseEncoderNbr Selection of the pulse counter (0 to 3)
- Output
 There is no output.

Task:
Disables the selected pulse counter (b_PulseEncoderNbr) of the indicated module
(b_ModulNbr).

Calling convention:
ANSI C :
int i_ReturnValue;

i_ReturnValue = i_APCI1710_DisablePulseEncoder
 (b_BoardHandle,

 0,
 0);

Return value
0: No error
-1: Handle parameter of the board is wrong.
-2: Selected module number is wrong.
-3: Selected pulse counter is wrong.
-4: Pulse counter not initialised. See function "i_APCI1710_InitPulseEncoder"

Standardsoftware APCI-/CPCI-1710

26

3.3.2 Reading the pulse counter

4) i_APCI1710_ReadPulseEncoderStatus (...)

Syntax:
<Return Wert> = i_APCI1710_ReadPulseEncoderStatus

(BYTE b_BoardHandle,
 BYTE b_ModulNbr,
 BYTE b_PulseEncoderNbr,
 PBYTE pb_Status)

Parameter:
- Input
 BYTE b_BoardHandle Handle of the xPCI-1710 board
 BYTE b_ModulNbr Number of the module to be configured

(0 to 3)
 BYTE b_PulseEncoderNbr Selection of the pulse counter (0 to 3)
- Output
 PBYTE pb_Status Status of the pulse counter

0 : No zero cross occurred.
1 : Zero cross occurred.

Task:
Reads the status of the selected pulse counter (b_PulseEncoderNbr) of the
selected module (b_ModulNbr).

Calling convention:
ANSI C :
int i_ReturnValue;
unsigned char b_BoardHandle;
unsigned char b_Status;

i_ReturnValue = i_APCI1710_ReadPulseEncoderStatus
 (b_BoardHandle, 0, 0,
 &b_Status);

Return value:
 0: No error
-1: Handle parameter of the board is wrong.
-2: Selected module number is wrong.
-3: Selected pulse counter is wrong
-4: Pulse counter not initialised. See function "i_APCI1710_InitPulseEncoder"

APCI-/CPCI-1710 Standardsoftware

 27

5) i_APCI1710_ReadPulseEncoderValue (...)

Syntax:
<Return Wert> = i_APCI1710_ReadPulseEncoderValue

(BYTE b_BoardHandle,
 BYTE b_ModulNbr,
 BYTE b_PulseEncoderNbr,
 PULONG pul_ReadValue)

Parameter:
- Input
 BYTE b_BoardHandle Handle of the xPCI-1710 board
 BYTE b_ModulNbr Number of the module to be configured

(0 to 3)
 BYTE b_PulseEncoderNbr Selection of the pulse counter (0 to 3)
- Output
 PULONG pul_ReadValue Pulse encoder value

Task:
Reads the pulse counter value from the selected pulse counter
(b_PulseEncoderNbr) from the selected module (b_ModulNbr).

Calling convention:
ANSI C :
int i_ReturnValue;
unsigned char b_BoardHandle;
unsigned long ul_ReadValue;

i_ReturnValue = i_APCI1710_ReadPulseEncoderValue
 (b_BoardHandle,
 0,
 0,
 &ul_ReadValue);

Return value:
 0: No error
-1: Handle parameter of the board is wrong.
-2: Selected module number is wrong.
-3: Selected pulse counter is wrong
-4: Pulse counter not initialised. See function "i_APCI1710_InitPulseEncoder"

Standardsoftware APCI-/CPCI-1710

28

3.3.3 Writing into the pulse counter

6) i_APCI1710_WritePulseEncoderValue (...)

Syntax:
< Return Wert > = i_APCI1710_WritePulseEncoderValue

(BYTE b_BoardHandle
 BYTE b_ModulNbr,
 BYTE b_PulseEncoderNbr,
 ULONG ul_WriteValue)

Parameter:
- Input
 BYTE b_BoardHandle Handle of the xPCI-1710 board
 BYTE b_ModulNbr Number of the module to be configured

(0 to 3)
 BYTE b_PulseEncoderNbr Selection of the pulse counter (0 to 3)
 ULONG ul_WriteValue Write the 32-bit value
- Output
 There is no output.

Task:
Writes the 32-bit value (ul_WriteValue) into the selected pulse counter
(b_PulseEncoderNbr) of the indicated module (b_ModulNbr).
This process sets the pulse counter value new.

Calling convention:
ANSI C :
int i_ReturnValue;
unsigned char b_BoardHandle;
i_ReturnValue = i_APCI1710_WritePulseEncoderValue
 (b_BoardHandle,
 0, 0, 2000);

Return value:
0: No error
-1: Handle pararameter of the board is wrong.
-2: Selected module number is wrong.
-3: Selected pulse counter is wrong.
-4: Pulse counter not initialised. See function "i_APCI1710_InitPulseEncoder"

APCI-/CPCI-1710 Standardsoftware

 29

3.4 Interrupt kernel routine for Windows NT/9x

IMPORTANT!
These functions are only available for the user interruptroutine under
Windows NT and Windows 95/98 in the synchronous mode. See function
"i_APCI1710_SetBoardIntRoutineWin32"

3.4.1 Reading the pulse counter

1) i_APCI1710_KRNL_ReadPulseEncoderValue (...)

Syntax:
<Return Wert> = i_APCI1710_KRNL_ReadPulseEncoderValue

(UINT ui_BaseAddress,
 BYTE b_ModulNbr,
 BYTE b_PulseEncoderNbr,
 PULONG pul_ReadValue)

Parameter:
- Input
 UINT ui_BaseAddress Base address of the xPCI-1710. See

"i_APCI1710_GetHardwareInformation"
 BYTE b_ModulNbr Number of the module to be configured

(0 to 3)
 BYTE b_PulseEncoderNbr Selection of the pulse counter (0 to 3)
- Output
 PULONG pul_ReadValue Value of the pulse counter

Task:
Reads the counter value of the selected pulse counter (b_PulseEncoderNbr) of the
indicated module (b_ModulNbr).

Calling convention:
ANSI C :
int i_ReturnValue;
unsigned int ui_BaseAddress;
unsigned long ul_ReadValue;

i_ReturnValue = i_APCI1710_KRNL_ReadPulseEncoderValue
 (ui_BaseAddress,
 0, 0,
 &ul_ReadValue);

Return value:
 0: No error
-1: Selected module number is wrong
-2: Selected module is no "pulse counter" module
-3: Selected pulse counter is wrong.

Standardsoftware APCI-/CPCI-1710

30

3.4.2 Reading into the pulse counter

2) i_APCI1710_KRNL_WritePulseEncoderValue (...)

Syntax:
< Return Wert > = i_APCI1710_KRNL_WritePulseEncoderValue

(UINT ui_BaseAddress,
 BYTE b_ModulNbr,
 BYTE b_PulseEncoderNbr,
 ULONG ul_WriteValue)

Parameter:
- Input
 UINT ui_BaseAddress Base address of the xPCI-1710. See

"i_APCI1710_GetHardwareInformation"
 BYTE b_ModulNbr Number of the module to be configured

(0 to 3)
 BYTE b_PulseEncoderNbr Selection of the pulse counter (0 to 3)
 ULONG ul_WriteValue 32-bit value to write
- Output
 There is no output.

Task:
Writes the 32-bit value (ul_WriteValue) into the selected pulse counter
(b_PulseEncoderNbr) of the indicated module (b_ModulNbr).
This process sets the pulse counter value new.

Calling convention:
ANSI C :
int i_ReturnValue;
unsigned int ui_BaseAddress;

i_ReturnValue = i_APCI1710_KRNL_WritePulseEncoderValue
 (ui_BaseAddress,
 0, 0, 2000);

Return value:
0: No error
-1: Selected module number is wrong.
-2: The selected module is no "pulse counter" module.
-3: The selected pulse counter is wrong.

	Contents
	Figures and tables

	1 DEFINITION OF APPLICATION
	1.1 Intended use
	1.2 Usage restrictions
	1.3 Technical description
	1.4 Function description
	1.5 Used abbreviations
	2 PULSE COUNTER
	2.1 General description
	2.1.1 Block diagram of the ETM function
	2.1.2 Typical applications

	2.2 Used signals
	2.3 Pin assignment for all modules with pulse counter
	2.4 Connection example
	2.5 I/O mapping
	2.6 Description of the I/O functions
	2.6.1 WRITE register
	2.6.2 LATCH Register
	2.6.3 CTRL Register
	2.6.4 SET Register
	2.6.5 STATUS-REGISTER
	2.6.6 Filter Register (Base +60)
	2.6.7 Version Register (Base +60)

	2.7 Working with pulse counter function

	3 STANDARDSOFTWARE
	3.1 Define values
	3.2 Interruptmask
	3.3 Initialisation
	1) i_APCI1710_InitpulseEncoder (...)
	2) i_APCI1710_EnablePulseEncoder (...)
	3) i_APCI1710_DisablePulseEncoder (...)
	3.3.2 Reading the pulse counter
	4) i_APCI1710_ReadPulseEncoderStatus (...)
	5) i_APCI1710_ReadPulseEncoderValue (...)

	3.3.3 Writing into the pulse counter
	6) i_APCI1710_WritePulseEncoderValue (...)

	3.4 Interrupt kernel routine for Windows NT/9x
	3.4.1 Reading the pulse counter
	1) i_APCI1710_KRNL_ReadPulseEncoderValue (...)

	3.4.2 Reading into the pulse counter
	2) i_APCI1710_KRNL_WritePulseEncoderValue (...)

