

 DIN EN ISO 9001:2000
 certified

ADDI-DATA GmbH
Dieselstraße 3

 D-77833 OTTERSWEIER

Technical support:

+49 (0)7223 / 9493 – 0

Function description

ADDICOUNT APCI-/CPCI-1710

BiSS-Master

Edition: 01.02-09/2005

Product information

This manual contains the technical installation and important instructions for correct commissioning
and usage, as well as production information according to the current status before printing.
The content of this manual and the technical product data may be changed without prior notice.
ADDI-DATA GmbH reserves the right to make changes to the technical data and the materials
included herein.

Warranty and liability

The user is not permitted to make changes to the product beyond the intended use, or to interfere with
the product in any other way.
ADDI-DATA shall not be liable for obvious printing and phrasing errors. In addition, ADDI DATA, if
legally permissible, shall not be liable for personal injury or damage to materials caused by improper
installation and/or commissioning of the board by the user or improper use, for example, if the board is
operated despite faulty safety and protection devices, or if notes in the operating instructions regarding
transport, storage, installation, commissioning, operation, thresholds, etc. are not taken into
consideration. Liability is further excluded if the operator changes the board or the source code files
without authorisation and/or if the operator is guilty of not monitoring the permanent operational
capability of working parts and this has led to damage.

Copyright

This manual, which is intended for the operator and its staff only, is protected by copyright.
Duplication of the information contained in the operating instructions and of any other product
information, or disclosure of this information for use by third parties, is not permitted, unless this right
has been granted by the product licence issued. Non-compliance with this could lead to civil and
criminal proceedings.

ADDI-DATA software product licence

Please read this licence carefully before using the standard software. The customer is only granted the
right to use this software if he/she agrees with the conditions of this licence.
The software must only be used to set up the ADDI-DATA boards.
Reproduction of the software is forbidden (except for back-up and for exchange of faulty data
carriers). Disassembly, decompilation, decryption and reverse engineering of the software are
forbidden. This licence and the software may be transferred to a third party if this party has acquired a
board by purchase, has agreed to all the conditions in this licence contract and the original owner does
not keep any copies of the software.

Trademarks
- ADDI-DATA is a registered trademark of ADDI-DATA GmbH.
- Turbo Pascal, Delphi, Borland C, Borland C++ are registered trademarks of Borland Insight

Company.
- Microsoft C, Visual C++, Windows XP, 98, Windows 2000, Windows 95, Windows NT,

EmbeddedNT and MS DOS are registered trademarks of Microsoft Corporation.
- LabVIEW, LabWindows/CVI, DasyLab, Diadem are registered trademarks of National Instruments

Corp.
- CompactPCI is a registered trademark of PCI Industrial Computer Manufacturers Group.
- VxWorks is a registered trademark of Wind River Systems Inc.

WARNING

The following risks result from improper implementation
and from use of the board contrary to the regulations:

♦ Personal injury

♦ Damage to the MSX-Box, PC and peripherals

♦ Pollution of the environment

♦ Protect yourself, the others and the environment!

♦ Read carefully the safety precautions
(yellow leaflet).

If this leaflet is not with the documentation, please contact us
and ask for it.

♦ Observe the instructions of the manual.

Make sure that you do not forget or skip any step. We are not
liable for damages resulting from a wrong use of the board.

♦ Used symbols:

i IMPORTANT!
designates hints and other useful information.

WARNING!
It designates a possibly dangerous situation.
If the instructions are ignored the board, PC and/or peripheral may
be destroyed.

 3

Contents APCI-/CPCI-1710

1 DEFINITION OF APPLICATION 7

1.1 Intended use ..7

1.2 Usage restrictions...7

1.3 Technical description ..7

1.4 Function description ..8

1.5 Used abbreviations ..8

2 BISS-MASTER .. 9

2.1 BISS protocol ..9

2.2 Technical data ...9

2.2.1 Limit values ..9
2.2.2 Limits ..9

2.3 Function description ..10

2.3.1 Block diagram .. 10
2.3.2 Common functions... 10
2.3.3 Types of communication.. 10
2.3.4 Relations between the functionalities 11

2.4 Used signals ...14

2.5 Connector pin assignment for all modules with BISS-Master
 14

2.6 Connection example ...15

2.7 I/O mapping of the BiSS-Master interface......................15

2.8 Description of the I/O functions......................................16

2.8.1 READ-REGISTER .. 16
2.8.2 WRITE-REGISTER.. 19

3 STANDARDSOFTWARE... 23

3.1 Define values..23

3.2 BiSS initialisation ..24

3.3 BiSS commands..31

3.4 BiSS status ..33

3.5 Read BiSS data...37

3.6 BiSS – register communication.......................................39

4 TUTORIAL ... 41

4.1 Example: Calculation of important parameters42

4.1.1 Datasheet of the BiSS encoder ... 42
4.1.2 Calculation of the parameters for initialising the slave........ 43

4

Contents APCI-/CPCI-1710

4.1.3 Calculation of the parameters for initialising the multicycle
communication ...45
4.1.4 Calculation of the angle position from the sensor data47

4.2 Reading the angle position of a BiSS encoder48

4.2.1 Step 1: Initialising the board ...49
4.2.2 Step 2: Finishing the current activities49
4.2.3 Step 3: Initialising the Master...49
4.2.4 Step 4: Initialising the slave ...50
4.2.5 Step 5: Concluding the initialisation50
4.2.6 Step 6: Requesting the sensor data....................................50
4.2.7 Step 7: Reading validity messages.....................................50
4.2.8 Step 8: Reading the sensor data..51
4.2.9 Step 9: Releasing the handle of the board51

4.3 Reading multicycle data of a BiSS encoder52

4.3.1 Step 1: Initialising the board ...54
4.3.2 Step 2: Finishing the current activities54
4.3.3 Step 3: Initialising the Master...54
4.3.4 Step 4: Initialising the slave ...55
4.3.5 Step 5: Initialising the multicycle data55
4.3.6 Step 6: Concluding the initialisation55
4.3.7 Step 7: Requesting multicycle data55
4.3.8 Step 8: Requesting the sensor data and reading the validity
messages ..56
4.3.9 Step 9: Reading multicycle data..56
4.3.10 Step 10: Releasing the handle of the board56

4.4 Reading register values of a BiSS encoder....................57

Step 1: Initialising the board ...58
Step 1: Initialising the board ...59
4.4.1 Step 2: Finishing the current activities59
4.4.2 Step 3: Initialising the Master...59
4.4.3 Step 4: Concluding the initialisation60
4.4.4 Step 5: Initialising the register communication60
4.4.5 Step 6: Requesting the register data60
4.4.6 Step 7: Reading register data...61
4.4.7 Step 8: Releasing the handle of the board61

4.5 Writing register values of a BiSS encoder62

4.5.1 Step 1: Initialisation of the board ..64
4.5.2 Step 2: Finishing the current activities64
4.5.3 Step 3: Initialisation of the master64
4.5.4 Step 4: Concluding the initialisation65
4.5.5 Step 5: Initialisation of the register communication65
4.5.6 Step 6: Filing register data ..65
4.5.7 Step 7: Starting the register communication66
4.5.8 Step 8: Releasing the handle of the board66

 5

Contents APCI-/CPCI-1710

Figures

... 10 Fig. 2-1: Block diagram
Fig. 2-2: Connector pin assignment of the 50-pin SUB-D connector X1

... 14
... 15 Fig. 2-3: Connection of a BiSS sensor

Tables

..8 Table 1-1: Delivered function descriptions
... 14 Table 2-1: Used signals

....................... 15 Table 2-2: I/O mapping of the BiSS-Master interface
... 16 Table 2-3: Status register

............................ 19 Table 2-4: Initialisation register sensor-/MC-data
............... 20 Table 2-5: Initialisation register „register communication“

....................................... 20 Table 2-6: Initialisation register BiSS-Master
......................... 21 Table 2-7: Frequency division of the master clock

.. 22 Table 2-8: Command register
... 23 Table 3-1: Define value

6

APCI-/CPCI-1710 Definition of Application

1 DEFINITION OF APPLICATION

1.1 Intended use

The board APCI-/CPCI-1710 must be inserted in a PC with PCI PCI 5V/32-bit
slots or Compact PCI/PXI computer with COMPACT PCI 5V/32-bit slots, which
is used as electrical equipment for measurement, control and laboratory pursuant
to the norm IEC 61010-1.

1.2 Usage restrictions

The board APCI-/CPCI-1710 must not be used as safety related part for securing
emergency stop functions

The board APCI-/CPCI-1710 must not be used in potentially explosive
atmospheres.

1.3 Technical description

This manual refers to the APCI-1710 as well as to the CPCI-1710/-1711 board.
Make sure that you have received the following items:
- The CD 1 “Standard Software Drivers” with the ADDISET parameterizing

program and the required software drivers.
- The CD 2 “Technical Manuals”. This CD contains the following:

 -The technical description ADDICOUNT APCI-1710 / CPCI-1710:
 Function-programmable counter board for the PCI bus (containing
 general information on the operation of the board)
 - A function description for each function which you want to program on
 the board APCI-/CPCI-1710

- The yellow leaflet "Safety precautions"

According to the used function you will find the required assignment and
programming functions in the different manuals for each function.

 7

Definition of Application APCI-/CPCI-1710

Table 1-1: Delivered function descriptions

Function PDF file Function description
SET1710

CFG
(CD2 technical manuals) file

 German English
Incremental
counter

Inkr_zähler_d.pdf incr_counter_e.pdf Incremental counter inc_cpt.cfg

SSI SSI_d.pdf SSI_e.pdf SSI ssi.cfg
SSI monitor SSI-Monitor_d SSIMonitor_e.pfd SSI_Monitor ssi_mon.cfg
Chronos chronos_d.pdf chronos_e.pdf Chronos chronos.cfg
Counter/timer Zähler_timer_d.pdf counter_timer_e.pdf counter/timer 82x54.cfg
TOR TOR_d.pdf TOR_e.pdf TOR tor.cfg
PWM PWM_d.pdf PWM_e.pdf Pulse width modulation PWM.cfg
TTL TTL_IO_d.pdf TTL_IO_e.pdf TTL I/O ttl_io.cfg
Digital I/O dig_EA_d.pdf dig_IO_e.pdf Digital I/O dig_IO.cfg
Pulse counter Impulszähler_d.pdf pulse_counter_e.pdf Pulse counter imp_cpt.cfg
ETM ETM_d.pdf ETM_e.dpf Edge time measurement etm.cfg
BiSS-Master BISS-Master_d.pdf BISS-Master_e.pdf BiSS-Master BISS.cfg

Please note:
The board CPCI-1710/1711 is compatible with the board APCI-1710 as far as the
installation of the software is concerned. The ADDIREG and SET1710 programs
make no difference between PCI and CompactPCI boards.

The API functions of the standard software are also identical.

1.4 Function description

Besides a global description of the functions this manual contains:

- the pin assignment of the front connector
- a list of the used signals
- the I/O mapping
- a chapter about the API software functions of the standard software
- tutorials

1.5 Used abbreviations

The signals on the 50-pin SUB-D connector refer always to one function module.
Please note the used abbreviations:
- UAS: Interference signal
- CLK: Clock
- REF: Reference point logic
- ENA: Enable

C1+ is a signal for function module 1.

8

APCI-/CPCI-1710 BISS-Master

2 BISS-MASTER

2.1 BISS protocol

Please find more detailed information under www.biss-interface.com.

2.2 Technical data

2.2.1 Limit values

Operation with the BISS-Master is only possible on the boards APCI-1710-10k20
and CPCI-1710-10k20.

The following values must be kept:
Max.clock cycle: .. 5 MHz
Max. number of slaves: 1

Furthermore, the values of the BISS-Interface specifications must be kept
(see www.biss-interface.com).

2.2.2 Limits

• In this version of the BISS-Master only one channel is available, to which
a BiSS-Sensor (slave) can be connected.

• The functionality “automatic sensor data request” (“automatische
Sensordatenabfrage“), in which the sensor data is read out cyclically in a
certain period of time, is not supported.

• In the register communication max. 8-bit registers can be written or read
with one access.

 9

http://www.biss-interface.com/
http://www.biss-interface.com/

BISS-Master APCI-/CPCI-1710

2.3 Function description

2.3.1 Block diagram

Fig. 2-1: Block diagram

2.3.2 Common functions

Please find more detailed information under www.biss-interface.com.
The following chapters contain only the most significant characteristics:

2.3.3 Types of communication

With the BiSS sensor interface either data can be read out very fast or registers
can be written or read out. The switch between these both types of communication
is realised by a time condition at the beginning of each communication cycle.

Sensor mode

In the sensor mode sensor data can be read out fast without the need of
addressing.

In order not to interrupt the fast data transfer, if values shall be read out, which
change slowly (e.g. from a temperature monitoring), there is the possibility to
extend a data set of a communication with always one bit of the value that
changes slowly. Therefore, several communication cycles are necessary
(multicycle data, ‘MCD’). In order to request a new multi-cycle-data value, the
master finishes the communication cycle with a low level and not with a high
level.

10

http://www.biss-interface.com/

APCI-/CPCI-1710 BISS-Master

With the adequate initialisation of the BiSS-Master in the sensor mode, SSI
sensors can be also operated.

Register mode

In the register mode the registers can be written or read out in the several
addressable sensors. When writing on registers, the data is transferred PWM
coded, which allows a simple transfer of clock and data on the master line.

2.3.4 Relations between the functionalities

This chapter explains more detailed the relations of the several functions of the
BiSS-Master. Please find more detailed examples in chapter “TUTORIAL (see
chapter 4) and in the respecting supplied software samples. The respecting
software functions are indicated in italics at the corresponding place. The chapter
“Standard Software” contains detailed descriptions of the software functions with
all parameters and return values.

Initialisation

At the beginning all necessary initialisation must be realised.

At the initialisation of the master, the frequency of the master clock, as well as the
type of sensor (BiSS or SSI) can be set. At the initialisation of the slave, the data
length of the sensor, a possible sensor data adaptation and gray/binary conversion,
as well as the polynomial and the transfer type of a possible CRC test are set.

The initialisation of the multicycle data „i_APCI1710_BissInitMultiCycle“ and of
the register communication „i_APCI1710_BissInitRegisterCommunication“ is,
according to the required operating mode, necessary. At the initialisation of the
multicycle data, the data length of the multicycle data, a possible multicycle data
adaptation and a gray/binary conversion, as well as the polynomial and the
transfer type of a possible CRC-test are set.

During the initialisation of the register communication the start address, the access
mode (read/write), the number of bytes to be transmitted (1, 2) and the
slave-ID are set. As this version of the BiSS-Master is designed for only one
slave, the slave-ID must always be set on the value’0’. According to the set
number, 1 byte or 2 byte data are read or written through the adequate register.

After the successful initialisation of the mentioned functionalities, the
initialisation must be completed over Bit4 of the command register

 „i_APCI1710_BissWriteCommandRegister“. The completion through the
command register is necessary only once at the beginning of the application. If
during an application the register address is changed with the function
„i_APCI1710_BissInitRegisterCommunication“ , then the initialisation does not
have to be completed once again.

 11

BISS-Master APCI-/CPCI-1710

Commands

With the command register „i_APCI1710_BissWriteCommandRegister“ different
commands can be executed.

The status of the commands must be checked with Bit0 of the status register
„i_APCI1710_BissReadSatusRegister“ before the next command may be
executed. Additionally, after each command the error bits of the status register
should be read out in order to be able to react at possible errors in the correct
manner (Example: See Tutorials).

1) Automatic sensor data request
With the command AGS (Bit0) an automatic sensor data request can be realised.
However, this functionality is not available in the current version of the BiSS-
Master. Therefore Bit 0 must always have the value ‘0’.

2) Sensor data request
With the commands GETSENS1 (Bit1) or GETSENS0 (Bit2) sensor data can be
requested. The validity of the data and the status of the transfer can be read out
through the status register „i_APCI1710_BissReadSatusRegister“.

With the command GETSENS1 the sensor data is requested once and can be read
out after the successful transfer in the sensor data register
„i_APCI1710_BissReadSensorReceiveData“. In addition to the sensor data, one
bit of multicycle data is transferred. According to the length of the multicycle
data, after a certain number of sensor data requests, the valid multicycle data are
ready to be read out in the respecting register
„i_APCI1710_BissReadMultiCycleReceiveData“. The validity of the data and the
status of the transfer can be checked through the status register.

With the command GETSENS0 the sensor data are requested once, which can be
read out after the successful transfer in the sensor data register
„i_APCI1710_BissReadSensorReceiveData“. No multi cycle data is transferred
additionally.
The status of the transfers must be checked with Bit0 of the status register
„i_APCI1710_BissReadSatusRegister“before the next command may be
executed.

3) Register communication
With the command REG (Bit3) the register communication is started. Depending
on the initialisation (see „Initialisation“) 1 byte (8 bit) or 2 byte (16 bit) are read
or written. The data to write (16 bit value) must be filed in the corresponding
register before the execution of the command.
 „i_APCI1710_BissWriteRegisterSendData“. The data to be read (16 bit value)
can be read in the correpsonding register after the execution of the command.
„i_APCI1710_BissReadRegisterReceiveData“. The status of the register
communication can be read through the status register.

In the BiSS sensor, register are available that are 1 byte broad. If during
initialisation the communication is indicated with 2 byte. Then two registers can
be read or written. The data are allocated as follows:

12

APCI-/CPCI-1710 BISS-Master

• 1 byte read access:

Bit0..7 of the read value is data of the register with the indicated start
address. Bit8..15 have no meaning.

• 1 byte write access:

Bit0..7 of the value to be written, is written in the register with the
indicated start address: Bit8..15 have no meaning.

• 2 byte read access:

Bit0..7 of the read values of the data of the register with the indicated start
address. Bit 8…15 of the read value are the data from the register with the
address: (start address + 1).

• 2 byte write access:

Bit0..7 of the value to be written is written into the register with the
indicated start address. Bit8…15 of the value to be written is written into
the register with the address: (start address +1).

The status of the transfers must be checked with Bit0 of the status register
„i_APCI1710_BissReadSatusRegister“ before the next command may be
executed.

4) Initialisation
With the command INIT (Bit4) a previously executed initialisation is completed
(see initialisation). If during an application the register communication is
initialised newly („i_APCI1710_BissInitRegisterCommunication“), then the
execution of this command is not required (see Sample08)

The status of the transfers must be checked with Bit0 of the status register
„i_APCI1710_BissReadSatusRegister“, before the next command may be
executed.

5) Interrupt of the current activity
With the command BREAK (Bit7) the current activity of the BiSS-Master is
interrupted and returns into the initial state.
The status of the transfers must be checked with Bit0 of the status register
„i_APCI1710_BissReadSatusRegister“ before the next command may be
executed.

Status
With the status register „i_APCI1710_BissReadSatusRegister“different
information such as status and validity of the data can be requested.

Validity messages
With the validity messages „i_APCI1710_BissReadValidityRegister“ the validity
of the received sensor data and MultiCycle data can be checked.

 13

BISS-Master APCI-/CPCI-1710

2.4 Used signals

The function BiSS master occupies one differential input (channel C) and one
differential output (channel A) of the respecting function module of the
APCI-/CPCI-1710-10k20.

On one board you can operate max. 4 BiSS-Masters or one for each module.

Table 2-1: Used signals

SIGNALS ON THE
CONNECTOR

POLARITY FUNCTION

Input1_x Cx +/ - Diff. Digital input 1
(Data line from the slave to the master)

Output1_x Ax +/ - Diff. Digital output 1
(Clock line from the master to the slave)

x: Number of the function module.

2.5 Connector pin assignment for all modules with
BISS-Master

The figure below is a connection example: The function "BiSS-Master" is
implemented on all function modules

Fig. 2-2: Connector pin assignment of the 50-pin SUB-D connector X1

14

APCI-/CPCI-1710 BISS-Master

2.6 Connection example

A BiSS-Master is implemented on module 1 of an APCI-1710-10k20 and
controls the BISS sensor. The sensor is supplied by an external voltage source.

Fig. 2-3: Connection of a BiSS sensor

BiSS sensor

2.7 I/O mapping of the BiSS-Master interface

Table 2-2: I/O mapping of the BiSS-Master interface

 IORD IOWR
BASEx + 0 Sensor data register -
BASEx + 4 Sensor data register -
BASEx + 8 Multicycle data register -
BASEx + 12 Multicycle data register -
BASEx + 16 Register data Register data
BASEx + 40

-
Initialisation register

Sensor(Slave)-/ Multicycle-
communication

BASEx + 44 - Initialisation register
communication

BASEx + 48 - Initialisation register
BISS-Master

BASEx + 52 Status register -
BASEx + 56 Command register Command register
BASEx + 60 Module identification -

-: No function; x: Number of the function module.
The accesses are always read or written in 32-bit

Clock output
+ -

Clock input
+ -

+UB

0V

APCI-1710-10k20

Pin 2 3 6

supply

+

-

7

 15

BISS-Master APCI-/CPCI-1710

2.8 Description of the I/O functions

2.8.1 READ-REGISTER
Sensor data register (Base + 0)

In this register bit 0 – bit 31 of the sensor data is read out.

In addition to the sensor data and depending on the type of slave, error bits and
data of the CRC-test are also available in the sensor data register. The information
about such additional information can be obtained from the manufacturer of the
slaves. Examples about the processing of the actual sensor data from the sensor
data register can be seen in the delivered samples.

Sensor data register (Base + 4)

In this register bit 32 – bit 63 of the sensor data is read out.

Multicycle data register (Base + 8)

In this register bit 0 – bit 31 of the multicycle data is read out.

Multicycle data register (Base + 12)

In this register bit 32 – bit 63 of the multicycle data is read out.

Register data (Base + 16)

In this register the register data is read out. According to the setting in the
initialisation register (Base + 44) 8 bit or 16 bit data is available.

Status register (Base + 52)

Table 2-3: Status register
BIT D0 0 Sensor/register data transmission not finished

 1 Sensor/register data transmission finished

BIT D1 0 Multicycle data transmission not finished

 1 Multicycle data transmission finished

BIT D2 0 Register data transmission finished

 1 Register data transmission not finished

BIT D3 0 CRC-error at register data transmission

 1 No CRC-error at register data transmission

BIT D4 0 CRC-error in the sensor data

 1 No CRC-error in the sensor data

16

APCI-/CPCI-1710 BISS-Master

BIT D5 0 CRC-error in the multicycle data

 1 No-CRC error in the multicycle data

BIT D6 0 Watchdog error at:
 - automatic sensor data transmission
 - Register data transmission

 1 No watchdog error

BIT D7 0 Error occurred

 1 No error occurred

BIT D8 0 Readable multicycle data not valid

 1 Readable multicycle data valid

BIT D9 0 Readable sensor data not valid

 1 Readable sensor data valid

BIT
D15..D10

 Not used

BIT 16 0 Level of the data line: „low“

 1 Level of the data line „high“

BIT 17 Current register data bit at slaves with BiSS model C

BIT 18 Fixed on „1“

BIT 19 Fixed on “0”

BIT 20 Fixed on “1”

BIT 21 Fixed on “0”

BIT 22 Fixed on “1”

BIT23 Fixed on “0”

BIT D24 0 No correctly transmitted byte at register data error

 1 One correctly transmitted byte at register data error

BIT
D29..D25

 Not used

BIT D30 No function in this version of the BiSS-Master

BIT D31 0 Multicycle data timeout has not run down

 1 Multicycle data timeout has run down

Recognition register (Base + 56)
The command register can be read out. Description see „Write command
register“. The reading of the command register is not used as software function.
The reading is used only within the driver.

 17

BISS-Master APCI-/CPCI-1710

Recognition register (Base + 60)
The function an the revision are read out (read command, ASCI format)

BASE + 60 "B" "M" "1" "0"

Meaning: BiSS-Master revision 1.0

18

APCI-/CPCI-1710 BISS-Master

2.8.2 WRITE-REGISTER

Register data (Base + 16)

The register data to be written is filed in this register. Depending on the setting in
the initialisation register (Bae +44) 8 bit or 16 bit value are written.

Initialisation register Sensor-/MC-data (Base + 40)

Table 2-4: Initialisation register sensor-/MC-data

BIT
D5..D0

0 Bit length of the sensor data

BIT D6 0 No sensor data adaptation

 1 Sensor data adaptation

BIT D7 0 No gray/binary conversion for the sensor data

 1 Gray/binary conversion for the sensor data

BIT
D14..D8

 Sensor CRC polynomial

BIT D15 0 No inversion of the sensor-CRC-bit

 1 Inversion of the sensor-CRC-bits

BIT
D21..D16

 Bit length of the multicycle data

BIT D22 0 No multicycle data adaptation

 1 Multicycle data adaptation

BIT D23 0 No gray/binary conversion for the multicycle data

 1 Gray/binary conversion for the multicycle data

BIT
D30..D24

 Multicycle-CRC polynomial

BIT D31 0 No inversion of the multicycle-CRC-bits

 1 Inversion of the multicycle-CRC-bits

 19

BISS-Master APCI-/CPCI-1710

Initialisation register „register communication“ (Base + 44)

Table 2-5: Initialisation register „register communication“

BIT
D6..D0

 Register address

BIT D7 0 Registers are read at access

 1 Registers are written at access

BIT
D9..D8

 Number of bytes at write/read access
 0: one byte
 1: two bytes
 2: Not available in this version of the BiSS-Master
 3: Not available in this version of the BiSS-Master

BIT D10 Not used

BIT
D13..D11

 Slave-ID
In this version of the BiSS-Master always value: „0“

BIT D14 REGVERS
In this version of the BiSS-Master always value: „0“

BIT D15 MSEL
In this version of the BiSS-Master always value: „0“

BIT
D31..D16

 Not used

Initialisation register BiSS-Master (Base + 48)

Table 2-6: Initialisation register BiSS-Master

BIT
D3..D0

 Frequency division (see Table 2-7)

BIT
D7..D4

 Not used

BIT D8 0 BiSS-protocol model: A or B

 1 BiSS-protocol model: C

BIT D9 0 Protocol type: BiSS

 1 Protocol type: SSI

BIT
D31..D10

 Not used

20

APCI-/CPCI-1710 BISS-Master

Table 2-7: Frequency division of the master clock

VALUE Master frequency Master frequency

Sensor mode and SSI Register mode BIT D3..D0

0 16.5 MHz / 2 16.5 MHz / 64

1 16.5 MHz / 4 16.5 MHz / 128

2 16.5 MHz / 6 16.5 MHz / 192

3 16.5 MHz / 8 16.5 MHz / 256

4 16.5 MHz / 10 16.5 MHz / 320

5 16.5 MHz / 12 16.5 MHz / 384

6 16.5 MHz / 14 16.5 MHz / 448

7 16.5 MHz / 16 16.5 MHz / 512

8 16.5 MHz / 18 16.5 MHz / 576

9 16.5 MHz / 20 16.5 MHz / 640

10 16.5 MHz / 22 16.5 MHz / 704

11 16.5 MHz / 24 16.5 MHz / 768

12 16.5 MHz / 26 16.5 MHz / 832

13 16.5 MHz / 28 16.5 MHz / 896

14 16.5 MHz / 30 16.5 MHz / 960

15 16.5 MHz / 32 16.5 MHz / 1024

CAUTION!
The mentioned limit frequency of the board and the limit frequencies of
the sensors must be kept.

 21

BISS-Master APCI-/CPCI-1710

Command register (Base + 56)

Table 2-8: Command register

BIT D0 Automatic sensor data request
In this version of the BiSS-Master always set to value „0“

BIT D1 0 No sensor data enquiry

 1 Single sensor data enquiry with low-level at the end of the cycle
(request of multicycle data)

BIT D2 0 No sensor data enquiry

 1 Single sensor data enquiry with high-level at the end of the cycle
(no request of multicycle data)

BIT D3 0 No register access

 1 Execution of a register access

BIT D4 0 No sensor initialisation

 1 Sensor initialisation

BIT D6 - D5 Not used

BIT D7 0 No termination of the current activity

 1 Termination of the current activity

BIT D31..D8 Not used

22

APCI-/CPCI-1710 Standardsoftware

3 STANDARDSOFTWARE

3.1 Define values

i WICHTIG!
Please keep in mind the following style conventions:

Function: "i_APCI1710_SetBoardInformation"

Variable ui_Address

Table 3-1: Define value

Define name Decimal value Hexadecimal value
DLL_COMPILER_C 1 1

DLL_COMPILER_VB 2 2

DLL_COMPILER_PASCAL 3 3

DLL_LABVIEW 4 4

APCI1710_DISABLE 0 0

APCI1710_ENABLE 1 1

 23

Standardsoftware APCI-/CPCI-1710

3.2 BiSS initialisation

1) i_APCI1710_BissInitMaster (...)

Syntax:
<Return Wert> = i_APCI1710_BissInitMaster
 (BYTE b_BoardHandle,
 BYTE b_Module,
 BYTE b_FrequencyDivision,
 BYTE b_ModeOfOperation)

Parameter:
-Input:
 BYTE b_BoardHandle Handle of the board APCI-/CPCI-1710
 BYTE b_Module Number of the module to be configured

(0 to 3)
 BYTE b_FrequencyDivision Selection of the frequency division (0 to 15)
 BYTE b_ModeOfOperation Selection of the operation mode (0 to 3)
 Bit0: BISSMOD 0: BiSS
 1: SSI
 Bit1: SELSSI 0: BiSS model A or B
 1: BiSS model C

-Output:
 There is no output.

Task:
Configures the BiSS-Master of the selected module (b_Module).
Call this function before calling any other functions that accesses the SSI monitor.

Calling convention:
ANSI C:

int i_ReturnValue;
unsigned char b_BoardHandle;

i_ReturnValue = i_APCI1710_BissInitMaster (b_BoardHandle,
 0,
 10,

0);

Return value:
0: No error
-1: Handle parameter of the board is wrong
-2: The selected module is wrong
-3: The module is no BiSS-Master
-4: The selection of the frequency division is wrong
-5: The selection of the operation mode is wrong

24

APCI-/CPCI-1710 Standardsoftware

2) i_APCI1710_BissInitSlave (...)

Syntax:
<Return Wert> = i_APCI1710_BissInitSlave
 (BYTE b_BoardHandle,
 BYTE b_Module,
 BYTE b_SensorData,
 BYTE b_SensorCRC)

Parameter:
-Input:
 BYTE b_BoardHandle Handle of the board APCI-/CPCI-1710
 BYTE b_Module Number of the module to be configured

(0 to 3)
 BYTE b_SensorData Selection of the sensor data (0 to 255)
 Bit0-5: SDLEN 1 (bit length of the sensor

 data 0 to 63)
 Bit6: ENSENS (adaptation for the sensor

 data)
 0: Not available

 1: Available
 Bit7: GRAYS (gray/binary conversion for

the sensor data)
 0: Disabled
 1: Enabled (required for the SSI

encoder)
 BYTE b_SensorCRC Selection of the sensor-CRC (0 to 255)
 Bit0-6: SENSCRCPOLY2 (CRC-polynomial

 for testing the sensor data 0-127)
 Bit7: INVCRCS (transmission of the sensor

 CRC-bits)
 0: Not inverted
 1: Inverted

-Output:
 There is no output.

Task:
Configures the BiSS slave of the selected module (b_Module).

1 The data length must be entered less 1, i.e. for 64 data bits it must be entered 63.
2 If as CRC polynomial 000 0000b is entered, no CRC test is executed. As the last bit of a CRC
polynomial always is 1, it is not registered in the polynomial register, but added automatically in
the Master. Therefore a CRC polynomial of max 8 bit length is possible. If not the whole
polynomial length is required, then the polynomial (without the last 1) must be entered right-
justified and the leading places must be completed with 0. Example: The CRC polynomial 10
0011b is saved as 001 0001b.

 25

Standardsoftware APCI-/CPCI-1710

Calling convention:
ANSI C:

int i_ReturnValue;
unsigned char b_BoardHandle;

i_ReturnValue = i_APCI1710_BissInitSlave (b_BoardHandle,
 0,
 90,

161);

Return value:
0: No error
-1: Handle parameter of the board is wrong
-2: The selected module is wrong
-3: The module is no BiSS-Master

26

APCI-/CPCI-1710 Standardsoftware

3) i_APCI1710_BissInitMultiCycle (...)

Syntax:
<Return Wert> = i_APCI1710_BissInitSlave
 (BYTE b_BoardHandle,
 BYTE b_Module,
 BYTE b_MultiCycleData,
 BYTE b_MCDCRC)

Parameter:
-Input:
 BYTE b_BoardHandle Handle of the board APCI-/CPCI-1710
 BYTE b_Module Number of the module to be configured

(0 to 3)
 BYTE b_MultiCycleData Selection of the multicycle data (0 to 225)
 Bit0-5: MDLEN 1 1 (bit length of the

 multicycle data 0 to 63)
 Bit6: ENMCD (adaptation for multicycle

 data)
 0: Not available
 1: Available
 Bit7: GRAYM (gray/binary conversion for

the multicycle data)
 0: Disabled
 1: Enabled (required for SSI encoder)
 BYTE b_MCDCRC Selection of the sensor CRC (0 to 255)
 Bit0-6: MCDCRCPOLY2 (CRC polynomial

 for testing the multicycle data 0-127)
 Bit7: INVCRCM (transmission of the

 multicycle CRC bits)
 0: Not inverted
 1: Inverted

-Output:
 There is no output.

Task:
Configures the multicycle data transmission of the selected module (b_Module).

1 The data length must be entered less 1, i.e. for 64 data bits, it must be entered 63.
2 If as CRC polynomial 000 0000b is entered, no CRC test is executed. As the last bit of a CRC
polynomial is 1, it is not registered in the polynomial register, but added automatically in the
Master. Therefore a CRC polynomial of max 8 bit length is possible. If not the whole polynomial
length is required, then the polynomial (without the last 1) must be entered right-justified and the
leading places must be completed with 0. Example: The CRC polynomial 10 0011b is saved as
001 0001b.

 27

Standardsoftware APCI-/CPCI-1710

Calling convention:
ANSI C:

int i_ReturnValue;
unsigned char b_BoardHandle;

i_ReturnValue = i_APCI1710_BissInitMultiCycle (b_BoardHandle,
 0,
 71,

137);

Return value:
0: No error
-1: Handle parameter of the board is wrong
-2: The selected module is wrong
-3: The module is no BiSS-Master

28

APCI-/CPCI-1710 Standardsoftware

4) i_APCI1710_BissInitRegisterCommunication (...)

Syntax:
<Return Wert> = i_APCI1710_BissInitRegisterCommunication
 (BYTE b_BoardHandle,
 BYTE b_Module,
 BYTE b_StartAddress,
 BYTE b_WNR,
 BYTE b_CountOfBytes,
 BYTE b_SlaveID)

Parameter:
-Input:
 BYTE b_BoardHandle Handle of the board APCI-/CPCI-1710
 BYTE b_Module Number of the module to be configured

(0 to 3)
 BYTE b_StartAddress Selection of the start address (0 to 127)
 BYTE b_WNR Operation mode (0 to 1)
 0: Read access
 1: Write access
 BYTE b_CountOfBytes Selection of the number of bytes (0 to 1)
 0: 1 byte is read/written
 1: 2 byte are read/written
 BYTE b_SlaveID Selection of the slave-ID (0 to 7)

-Output:
 There is no output.

Task:
Initialised the register communication of the selected module (b_Module).

Calling convention:
ANSI C:

int i_ReturnValue;
unsigned char b_BoardHandle;

i_ReturnValue = i_APCI1710_BissInitRegisterCommunication
 (b_BoardHandle,
 0,
 103,

0,
0
0);

 29

Standardsoftware APCI-/CPCI-1710

Return value:
0: No error
-1: Handle parameter of the board is wrong
-2: The selected module is wrong
-3: The module is no BiSS-Master
-4: The selection of the start address is wrong
-5: The selection of the operation mode is wrong
-6: The selection of the number of bytes is wrong
-7: The selection of the slave-ID is wrong

30

APCI-/CPCI-1710 Standardsoftware

3.3 BiSS commands

1) i_APCI1710_BissWriteCommandRegister (...)

Syntax:
<Return Wert> = i_APCI1710_BissWriteCommandRegister
 (BYTE b_BoardHandle,
 BYTE b_Module,
 BYTE b_CommandRegister)

Parameter:
-Input:
 BYTE b_BoardHandle Handle of the board APCI-/CPCI-1710
 BYTE b_Module Number of the module to be configured

 (0 to 3)
 BYTE b_CommandRegister Selection of the command register (0 to 255)

 Bit0: AGS (automatic sensor data
 transmission)

 0: Disabled
 1: Enabled
 Is not available in this version of the

BiSS-Master value 0 transmitted

 Bit1: GETSENS1 (single sensor data
enquiry with low-level at the end of the cycle

 request of new multicycle data)
 0: No enquiry
 1: New enquiry
 Bit2: GETSENS0 (single sensor data

request with high-level at the end of the cycle
 no request of new multicycle data)

 0: No enquiry
 1: New enquiry
 Bit3: REG (register access)
 0: Execute no register access
 1: Execute register access
 Bit4: INIT (sensor initialisation)
 0: Execute no initialisation
 1: Execute initialisation
 Bit5: UNUSED
 Bit6: UNUSED
 Bit7: BREAK (termination of the

 current activities)
 0: No termination of the current

 activities
 1: Termination of the current

 activities

 31

Standardsoftware APCI-/CPCI-1710

-Output:
 There is no output.

Task:
Gives the BiSS-Master of the selected module (b_Module) different commands.

Calling convention:
ANSI C:

int i_ReturnValue;
unsigned char b_BoardHandle;

i_ReturnValue = i_APCI1710_BissWriteCommandRegister
 (b_BoardHandle, 0, 128);

Return value:
0: No error
-1: Handle parameter of the board is wrong
-2: The selected module is wrong
-3: The module is no BiSS-Master
-4: Timeout
-5: System error (when reading the system time)

32

APCI-/CPCI-1710 Standardsoftware

3.4 BiSS status

1) i_APCI1710_BissReadStatusRegister (...)

Syntax:
<Return Wert> = i_APCI1710_BissReadStatusRegister
 (BYTE b_BoardHandle,
 BYTE b_Module,
 PBYTE pb_StatusInformation,
 PBYTE pb_ChannelStatus,
 PBYTE pb_RegisterMessages)

Parameter:
-Input:
 BYTE b_BoardHandle Handle of the board APCI-/CPCI-1710
 BYTE b_Module Number of the module to be configured

(0 to 3)

-Output:
 PBYTE pb_StatusInformation Status message (0 to 255)
 Bit0: EOT (signing of the terminated senro

and register data transfer)
 0: Not terminated
 1: Terminated
 Bit1: MCDEND (End of the multicycle

 data transfer)
 0: Not terminated
 1: Terminated
 Bit2: REGEND (End of the register data

 transfer)
 0: Not terminated
 1: Terminated
 Bit3: nREGERR (CRC-error at register

 data transfer)
 0: Error
 1: No error
 Bit4: nSENSERR (CRC-erro at sensor data

 transfer)
 0: Error
 1: No error
 Bit5: nMCDERR (CRC-error at multicycle

 data transfer)
 0: Error
 1: No error
 Bit6: nWDERR (watchdog error at

automatic sensor data transfer register data
transfer)

 0: Error
 1: No error

 33

Standardsoftware APCI-/CPCI-1710

 Bit7: nERR (general error message)
 0: Error
 1: No error

PBYTE pb_ChannelStatus Channel status (0 to 1)
 Bit0: SL (Status o fthe data line from the

slave to the master)
 0: Low level
 1: High level

 PBYTE pb_RegisterMessages Register message (0 to 255)
 Bit0: REGBYTES1 (number of the

correctly transferred register bytes in the case
of error)

 0: All bytes transferred flawlesly
 1: Only one byte transferred

 flawlessly
 Bit1: UNUSED
 Bit2: UNUSED
 Bit3: UNUSED
 Bit4: UNUSED
 Bit5: UNUSED
 Bit6: REG (current register data bit at slave

with BiSS model C)
 (MCD-Timeout) Bit7: MCDTIMEOUT2

 0: Not run down
 1: Run down

Task:
Reads the status information of the selected module (b_Module).

Calling convention:
ANSI C:

int i_ReturnValue;
unsigned char b_BoardHandle;
unsigned char b_StatusInformation;
unsigned char b_ChannelStatus;
unsigned char b_RegisterMessages;

i_ReturnValue = i_APCI1710_ BissReadStatusRegister (b_BoardHandle,
 0,

1 In the case of flawless transmission this bit is 0, in other case the number of register bytes is
indicated that were transmitted flawlessly.
2 A new MCD can be done firstly after a MCD timeout has run down; if a MCD request is started
before, the slaves, which operate with the BISS protocol model C, evaluate this as a register data
transmission.

34

APCI-/CPCI-1710 Standardsoftware

 &b_StatusInformation,
 &b_ChannelStatus,

 &b_RegisterMessages);

Return value:
0: No error
-1: Handle parameter of the board is wong
-2: The selected module is wrong
-3: The module is no BiSS-Master

 35

Standardsoftware APCI-/CPCI-1710

2) i_APCI1710_BissReadValidityRegister (...)

Syntax:
<Return Wert> = i_APCI1710_BissReadValidityRegister
 (BYTE b_BoardHandle,
 BYTE b_Module,
 PBYTE pb_ValidityMessages)

Parameter:
-Input:
 BYTE b_BoardHandle Handle of the board APCI-/CPCI-1710
 BYTE b_Module Number of the module to be configured

(0 to 3)

-Task:
 PBYTE pb_ValidityMessages Gültigmeldung (0 bis 3)
 Bit0: MVALID (validity of the read out

 multicycle data)
 0: Not valid
 1: Valid
 Bit1: SVALID (validity of the read out

 sensor data)
 0: Not valid
 1: Valid

Task:
Reads the validity information of the selected module (b_Module).

Calling convention:
ANSI C:

int i_ReturnValue;
unsigned char b_BoardHandle;
unsigned char b_ValidityMessages;

i_ReturnValue = i_APCI1710_ BissReadValidityRegister (b_BoardHandle,
 0,
 &b_ValidityMessages);

Return value:
0: No error
-1: Handle parameter of the board is wrong
-2: The selected module is wrong
-3: The module is no BiSS-Master

36

APCI-/CPCI-1710 Standardsoftware

3.5 Read BiSS data

1) i_APCI1710_BissReadSensorReceiveData (...)

Syntax:
<Return Wert> = i_APCI1710_BissReadSensorReceiveData
 (BYTE b_BoardHandle,
 BYTE b_Module,
 PULONG pul_SensorReceiveData_low,
 PULONG pul_SensorReceiveData_high)

Parameter:
-Input:
 BYTE b_BoardHandle Handle of the board APCI-/CPCI-1710
 BYTE b_Module Number of the module to be configured

(0 to 3)

-Output:
 PULONG pb_SensorReceiveData_low Sensor data (Bit31…0)
 PULONG pb_SensorReceiveData_high Sensor data (Bit63…32)

Task:
Reads the received sensor data of the selected module (b_Module).

Calling convention:
ANSI C:

int i_ReturnValue;
unsigned char b_BoardHandle;
unsigned long b_SensorReceiveData_low;
unsigned long b_SensorReceiveData_high;

i_ReturnValue = i_APCI1710_ BissReadSensorReceiveData
 (b_BoardHandle,
 0,
 &b_SensorReceiveData_low,
 &b_SensorReceiveData_high);

Return value:
0: No error
-1: Handle parameter of the board is wrong
-2: The selected module is wrong
-3: The module is no BiSS-Master

 37

Standardsoftware APCI-/CPCI-1710

2) i_APCI1710_BissReadMultiCycleReceiveData (...)

Syntax:
<Return Wert> = i_APCI1710_BissReadMultiCycleReceiveData
 (BYTE b_BoardHandle,
 BYTE b_ModulNbr,

 PULONG pul_MultiCycleReceiveData_low,
 PULONG pul_MultiCycleReceiveData_high)

Parameter:
-Input:
 BYTE b_BoardHandle Handle of the board APCI-/CPCI-1710

BYTE b_ModulNbr Number of the module to be configured
 (0 to 3)

- Output
 There is no output.

Task:
 PULONG pb_MultiCycleReceiveData_low Multicycle data (Bit31…0)
 PULONG pb_MultiCycleReceiveData_high Multicycle data (Bit63…32)

Calling convention:
ANSI C:

int i_ReturnValue;
unsigned char b_BoardHandle;
unsigned long b_MultiCycleReceiveData_low ;
unsigned long b_MultiCycleReceiveData_high ;

i_ReturnValue = i_APCI1710_BissReadMultiCycleReceiveData
 (b_BoardHandle,
 0,

 &b_MultiCycleReceiveData_low,
 &b_MultiCycleReceiveData_high);

Return value:
0: No error
-1: Handle parameter of the board is wrong
-2: The selected module is wrong
-3: The module is no BiSS-Master

38

APCI-/CPCI-1710 Standardsoftware

3.6 BiSS – register communication

1) i_APCI1710_BissReadRegisterReceiveData (...)

Syntax:
<Return Wert> = i_APCI1710_BissReadRegisterReceiveData
 (BYTE b_BoardHandle,
 BYTE b_Module,
 PWORD pw_ReceiveData)

Parameter:
-Input:
 BYTE b_BoardHandle Handle of the board APCI-/CPCI-1710
 BYTE b_Module Number of the module to be configured

(0 to 3)

-Output:
 PWORD pw_ReceiveData Register data (bit15…0)

Task:
Reads the received register data of the selected module (b_Module).

Calling convention:
ANSI C:

int i_ReturnValue;
unsigned char b_BoardHandle;
unsigned short int w_ReceiveData;

i_ReturnValue = i_APCI1710_BissReadRegisterReceiveData

(b_BoardHandle,
 0,
 &w_ReceiveData);

Return value:
0: No error
-1: Handle parameter of the board is wrong
-2: The selected module is wrong
-3: The module is no BiSS-Master

 39

Standardsoftware APCI-/CPCI-1710

2) i_APCI1710_BissWriteRegisterSendData (...)

Syntax:
<Return Wert> = i_APCI1710_BissWriteRegisterReceiveData
 (BYTE b_BoardHandle,
 BYTE b_Module,
 WORD w_SendData)

Parameter:
-Input:
 BYTE b_BoardHandle Handle of the board APCI-/CPCI-1710
 BYTE b_Module Number of the module to be configured

(0 to 3)
 WORD w_SendData Register data (bit 15..0)

-Output:
 There is no output.

Task:
Saves the register data to be written of the selected module (b_Module).

Calling convention:
ANSI C:

int i_ReturnValue;
unsigned char b_BoardHandle;

i_ReturnValue = i_APCI1710_BissWriteRegisterReceiveData

(b_BoardHandle,
 0,
 123);

Return value:
0: No error
-1: Handle parameter of the board is wrong
-2: The selected module is wrong
-3: The module is no BiSS-Master

40

APCI-/CPCI-1710 Tutorial

4 TUTORIAL

The tutorials show the different application possibilities of the BiSS-Master in
examples. Here the application is created step by step together with the user in
order to facilitate the first use of the function module. Of course, the scope of the
presented tutorial can be extended with each BiSS-Master function that is
available.

In order to present the tutorials as brief and clear as possible, the used functions
will not be described more detailed. The contents of the technical description of
the board APCI-/CPCI-1710 and of the function description of the BiSS-Master
should be known.

The tutorials refer to the programming language C and require a successful board
installation, the loading of the function module and the connection of an adequate
sensor.

The board installation and the loading of function module are described in the
technical description of the board. A connection example of the BiSS-Master is
shown in chapter 2.6 of the function description.
The first part of the tutorial shows with an example how the most important
parameters of the initialisation must be calculated.

 41

Tutorial APCI-/CPCI-1710

4.1 Example: Calculation of important parameters

When initialising the sensor, firstly sensor-specific parameters must be converted
and then transmitted. When reading different information, these must be filtered
and masked out of the received sensor data. The following example shows the
different steps when calculating such parameters of a BiSS encoder.

4.1.1 Datasheet of the BiSS encoder

 Resolution singleturn: 13 bit

 Resolution multiturn: 12 bit

 Transmitted additional information: 2 error-bits

 Polynomial for sensor data test: 1000011b

 Size of the multicycle data: 8 bit

 Polynomeal for multicycle data test: 10011b

42

APCI-/CPCI-1710 Tutorial

4.1.2 Calculation of the parameters for initialising the
slave

1) Parameter: b_SensorData

The parameter b_SensorData is a 8 bit value that is composed out of the
following:

 Bit0-5: SDLEN (bit length of the sensor data)
 Bit6: ENSENS (adaptation for sensor data)
 Bit7: GRAYS (gray-binary – conversion for sensor data)

Bit0-5: SDLEN

 SDLEN = 13 + 12 + 2 - 1 = 26 = 011010b

Number of singleturn bits

Number of multiterm bits

Further additional information
(e.g. error bits)

The number is less 1
(see software description)

Bit6: ENSENS = 1 (adaptation for sensor data is available)

Bit7: GRAYS = 0 (gray-binary – conversion is disabled)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
b_SensorData 0 1 0 1 1 0 1 0

 43

Tutorial APCI-/CPCI-1710

2) Parameter: b_SensorCRC

The parameter b_SensorCRC is an 8 bit value, that is composed out of the
following:

 Bit0-6: SENSCRCPOLY (CRC polynomial for sensor data test)
 Bit7: INVCRCS (Type of transmission of the sensor
 CRC bits)

Bit0-6: SENSCRCPOLY

Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Polynom: 1 0 0 0 0 1 1

Shift the bits one unit to the right side (see
description of the software function)

Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

1 0 0 0 0 1

 Complete the remaining with zeros (see
 description of the software function)

Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
SENSCRCPOLY 0 1 0 0 0 0 1

Bit7: INVCRCS = 1 (carry of the sensor CRC-bits inverted)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
b_SensorCRC 1 0 1 0 0 0 0 1

44

APCI-/CPCI-1710 Tutorial

4.1.3 Calculation of the parameters for initialising the
multicycle communication

1) Parameter: b_MultiCycleData

The parameter b_MultiCycleData is a 8 bit value that is composed out of the
following:

 Bit0-5: MDLEN (bit length of the multicycle data)
 Bit6: ENMCD (adaptation for multicycle data)
 Bit7: GRAYM (gray-binary – conversion for multicycle
 data)

Bit0-5: MDLEN

MDLEN = 8 - 1 = 7 = 000111b

Number of multicycle bits

The number must be indicated less
one (see software description)

Bit6: ENMCD = 1 (adaptation for multicycle data is available)

Bit7: GRAYM = 0 (gray-binary – conversion is disabled)

 45

Tutorial APCI-/CPCI-1710

2) Parameter: b_MCDCRC

The parameter b_MCDCRC is a 8-bit value that is composed of the following:

 Bit0-6: MCDCRCPOLY (CRC-polynomial for MC-data test)
 Bit7: INVCRCM (Type of transmission of the MC-
 CRC-bits)

Bit0-6: MCDCRCPOLY

Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Polynom: 1 0 0 1 1

Shift bits one position to the right
(see description of the software function)

Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0

1 0 0 1

 Fill the remaining positions with zeros
 (see description of the software function)

Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
MCDCRCPOLY 0 0 0 1 0 0 1

Bit7: INVCRCM = 1 (MultiCycle CRC-bits inverted)

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
b_MCDCRC 1 0 0 0 1 0 0 1

46

APCI-/CPCI-1710 Tutorial

4.1.4 Calculation of the angle position from the sensor
data

If a data request has been completed successfully, the respecting sensor data can
be read out with the adequate software function
„i_APCI1710_BissReadSensorReceiveData“

The function returns two values:

 1. pul_SensorReceiveData_low

2. pul_SensorReceiveData_high

Both return values correspond to the 64 bit sensor data value and are composed as
follows.

Bit 63 Bit 0

Bit 63 Bit 32 Bit 31
Sensordaten

pul_SensorReceiveData_high pul_SensorReceiveData_low
Bit 0

From this sensor data value the sensor specific information can be read out. This
specific example shows the singleturn and multiturn information.

Bit 63 Bit 0

Bit 63 Bit27 Bit 26 Bit 15 Bit 14 Bit 2 Bit 1 Bit 0
Sensordaten

Sonstiges z.B. CRC - Bits Multiturn Singleturn Errorbits

According to the sensor data manufacturer the CRC-bits and error bits can be
transmitted or not transmitted. For further information about a CRC-test or
possible error bits please refer to the datasheet of the sensor manufacturer.

 47

Tutorial APCI-/CPCI-1710

4.2 Reading the angle position of a BiSS encoder

BiSS encoders can be distinguished into sensor mode and register mode. In the
sensor mode, the current angle position can be read out as follows.
The following description refers to the C-sample Sample04, in which the type of
programming can be seen in detail.

The used functions are described in detail in the technical description of the
manual or in the function description of the BiSS-Master.

Function diagram:

Initialisation of the board

Finish the current action

Reading the sensor data

Releasing the handle of
th e board

Start

Requesting sensor data
Sensordaten

Initialisation of the
master

Reading the status

EOT
?

No

Yes

Finishing the
initialisation

End

EOT
nERR

?

No

Yes

Reading the status

Initialisation of the slave

EOT
nERR

?

No

Yes

Reading the status

SVALID
?

No

Yes

Reading the validity
message

1

1

48

APCI-/CPCI-1710 Tutorial

4.2.1 Step 1: Initialising the board

Firstly, the board must be initialised. In order to show it more clearly, a function is
created, which calls the functions that are provided by ADDI-DATA. In the
C-samples this function “initialisation” is shown at the beginning. The following
steps are required for the initialisation:

1. Selection of the compiler:
With following functions the used compiler is indicated, in the following
example a C-compiler.
i_ReturnValue = i_APCI1710_InitCompiler (DLL_COMPILER_C);

2. Detecting the slot number:
i_ReturnValue = i_APCI1710_CheckAndGetPCISlotNumber
(b_SlotNumberArray);

3. Testing the slot number and detecting the handle of the board:
i_ReturnValue = i_APCI1710_SetBoardInformation (b_SlotNumberArray [0] ,
 pb_BoardHandle);

4.2.2 Step 2: Finishing the current activities

At the beginning any current activity of the BiSS-Master, which could be possible
at this time, is stopped:

i_ReturnValue = i_APCI1710_BissWriteCommandRegister (
 b_BoardHandle,
 b_Module,
 128);

The transmission status of commands must be checked after the execution over
the bit EOT of the status register. The check of the nERR bit of the status register
is not yet useful here as the error message could already be set by a former
transmission (see Sample04).

4.2.3 Step 3: Initialising the Master

In this step the transmission clock and the type of the transmission (BiSS or SSI)
are set.

i_ReturnValue = i_APCI1710_BissInitMaster (b_BoardHandle,
b_Module,
b_FrequencyDivision,
b_ModeOfOperation);

 49

Tutorial APCI-/CPCI-1710

4.2.4 Step 4: Initialising the slave

In this step the sensor is initialised. The composition of the single parameters is
described more detailed under „Standardsoftware“ and in the first part of the
tutorial.

i_ReturnValue = i_APCI1710_BissInitSlave (b_BoardHandle,
b_Module,
b_SensorData,
b_SensorCRC);

4.2.5 Step 5: Concluding the initialisation

In this step the initialisation is concluded with the respecting command

i_ReturnValue = i_APCI1710_BissWriteCommandRegister (
 b_BoardHandle,
 b_Module,
 16);

The transmission status of command must be check after the execution with the
Bit EOT of the status register. Additionally, the Bit nERR must be checked in
order to react to possible error (see Sample04).

The conclusion is only once at the beginning of a sample necessary in order to
ensure the readiness of the slave.

4.2.6 Step 6: Requesting the sensor data

With the following command the new sensor data is requested and the
transmission between master and slave is started.

i_ReturnValue = i_APCI1710_BissWriteCommandRegister (
 b_BoardHandle,
 b_Module,
 4);

The transmission status of the command must be checked after the execution with
the bit EOT of the status register. Additionally, the Bit nERR must be checked, in
order to react to possible errors (see Sample04).

4.2.7 Step 7: Reading validity messages

After the successful transmission the validity of the sensor data must be checked.

i_ReturnValue = i_APCI1710_BissReadValidityRegister (b_BoardHandle,
 b_Module,
 pb_ValidityMessages);

50

APCI-/CPCI-1710 Tutorial

4.2.8 Step 8: Reading the sensor data

After the successful transmission and check of the validity messages, the sensor
data received by the master can be read.

i_ReturnValue = i_APCI1710_BissReadSensorReceiveData (
b_BoardHandle,
b_Module,
pul_SensorReceiveData_l
ow,
pul_SensorReceiveData_
high);

4.2.9 Step 9: Releasing the handle of the board

Before the user program is finished, the handle of the board must be released
again with the following function:

i_ReturnValue = i_APCI1710_CloseBoardHandle (b_BoardHandle);

 51

Tutorial APCI-/CPCI-1710

4.3 Reading multicycle data of a BiSS encoder

In the following example a multicycle value is read out. The example refers to the
C-sample Sample06, in which the type of programming can be seen in detail.

At the multicycle data transfer always one bit of multicycle data is added to a
sensor data transfer. According to the length of the multicycle data a certain
number of sensor data transfers are required in order tot obtain valid multicycle
data. The first sensor data transfer must be started with the command “2”, then
with the command “4” further sensor data transfers are executed. After each
sensor data transfer the validity register is read out. If new and valid multicycle
data are available, the transfer of sensor data is stopped and the multicycle data is
read with the respecting software function.

The used functions are described detailed in the technical description of the board
or in the function description of the BiSS-Master.

52

APCI-/CPCI-1710 Tutorial

Function diagram:

Initialisation of the board

Finishing the current
action

Read
dat

ing the multicycle
a

Releasing the handle of
the board

Requesting the
sensor data

Initialisation of the
master

EOT
?

No

Yes

Reading the status

Concluding the
initialisation

EOT
nERR

?

No

Yes

Reading the status

Initialisation of the slave

EOT
nERR

?

No

Yes

Reading the status

MVALID
?

No

Yes

Reading the validity
messages

1

1

Initialisation of the
multicycle data

Requsting multicycle data

EOT
nERR

?

No

Yes

Reading the status

Start

End

 53

Tutorial APCI-/CPCI-1710

4.3.1 Step 1: Initialising the board

Firstly, the board must be initialised. In order to show this more clearly, a function
is created, which calls the functions that are provided by ADDI-DATA. In the
C-samples this function “initialisation” is shown at the beginning. The following
steps are required for the initialisation:

1. Selecting the compiler:
With the following function the used compiler is indicated, in this example
a C-compiler.
i_ReturnValue = i_APCI1710_InitCompiler (DLL_COMPILER_C);

2. Detecting the slot number:
i_ReturnValue = i_APCI1710_CheckAndGetPCISlotNumber
(b_SlotNumberArray);

3. Testing the slot number and detecting the handle of the board:
i_ReturnValue = i_APCI1710_SetBoardInformation (b_SlotNumberArray
[0] ,
pb_BoardHandle);

4.3.2 Step 2: Finishing the current activities

At the beginning an activity that is possible at the current time is
terminated.Hereto the following command is executed:

i_ReturnValue = i_APCI1710_BissWriteCommandRegister (
 b_BoardHandle,
 b_Module,
 128);

The transmission status of command must be checked after the execution with the
Bit EOT of the status register. The check of the bit nERR is here not yet useful,
because from a previous transmission the error message could be set (see
Sample06).

4.3.3 Step 3: Initialising the Master

In this step the transmission clock and the type of transmission (BiSS or SSI) are
set.

i_ReturnValue = i_APCI1710_BissInitMaster (b_BoardHandle,
b_Module,
b_FrequencyDivision,
b_ModeOfOperation);

54

APCI-/CPCI-1710 Tutorial

4.3.4 Step 4: Initialising the slave

In this step the sensor is initialised. The composition of the single parameters is
described more detaild under „standardsoftware“ and in the first part of the
tutorial.

i_ReturnValue = i_APCI1710_BissInitSlave (b_BoardHandle,
b_Module,
b_SensorData,
b_SensorCRC);

4.3.5 Step 5: Initialising the multicycle data

In this step the multicycle data transmission is initialised. The composition of the
single parameters is described more detailed under „Standardsoftware“ and in the
first part of the tutorial.

i_ReturnValue = i_APCI1710_BissInitMultiCycle (b_BoardHandle,
b_Module,
b_MultiCycleData,
b_MCDCRC);

4.3.6 Step 6: Concluding the initialisation

In this step the initialisation is concluded with the respecting command.

i_ReturnValue = i_APCI1710_BissWriteCommandRegister (
 b_BoardHandle,
 b_Module,
 16);

The transmission status of the command must be checked after the successful
execution with the Bit EOT of the status register. Additionally, the bit nERR must
be checked in order to be able to react to possible errors (see Sample06).

This conclusion of an initialisation is only once at the beginning of a sample
necessary in order to ensure the readiness of the slave.

4.3.7 Step 7: Requesting multicycle data

With the following command the new multicycle data are requested and the
transmission between master and slave is started.

i_ReturnValue = i_APCI1710_BissWriteCommandRegister (
 b_BoardHandle,
 b_Module,
 2);

 55

Tutorial APCI-/CPCI-1710

The transmission status of the command must be checked after the execution of
the bit EOT of the status register. Additionally, the bit nERR must be checked in
order to be able to react to possible errors (see Sample06).

4.3.8 Step 8: Requesting the sensor data and
 reading the validity messages

In this step sensor data are requested in a loop as long as new and valid multicycle
data are signalized by the validity messages.

i_ReturnValue = i_APCI1710_BissWriteCommandRegister (
 b_BoardHandle,
 b_Module,
 4);

The transmission status of the command must be checked after the execution with
the bit EOT of the status register. Additionally, the bit nERR must be checked in
order to be able to react to possible errors (see Sample06).

With the following function the validity of multicycle data is requested:

i_ReturnValue = i_APCI1710_BissReadValidityRegister (b_BoardHandle,
 b_Module,
 pb_ValidityMessages);

4.3.9 Step 9: Reading multicycle data

After the successful transmission and checking of the validity messages, the
multicycle data received by the master can be read.

i_ReturnValue = i_APCI1710_BissReadMultiCycleReceiveData (
b_BoardHandle,
b_Module,
pul_MultiCycleReceiveData_l
ow,
pul_MultiCycleReceiveData_
high);

4.3.10 Step 10: Releasing the handle of the board

Before the user program is finished the handle of the board must be released again
with the following function:

i_ReturnValue = i_APCI1710_CloseBoardHandle (b_BoardHandle);

56

APCI-/CPCI-1710 Tutorial

4.4 Reading register values of a BiSS encoder

In the following example a 8 bit register value is read out. The example refers to
the C-sample Sample07 in which the method of programming can be seen in
detail.

The used functions are described in detail in the technical description of the board
or in the function description of the BiSS-Master.

 57

Tutorial APCI-/CPCI-1710

Function diagram:

Initialisation of the board

Finishing the current action

Registerdaten einlesen

Releasing the handle of the board

Requesting register data

Initialisation of the master

EOT
nERR

?

No

Yes

Reading the status

Initialisation of the register
communication

EOT
?

No

Yes

Reading the status

Concluding the initialisation

EOT
nERR

?

No

Yes

Reading the status

Start

End

58

APCI-/CPCI-1710 Tutorial

Step 1: Initialising the board

Firstly, the board must be initialised. In order to show this more clearly, a function
is created, which calls the functions that are provided by ADDI-DATA. In the
C-samples this function “initialisation” is shown at the beginning. The following
steps are required for the initialisation:

1. Selecting the compiler:
With the following function the used compiler is indicated, in this example a
C-compiler.
i_ReturnValue = i_APCI1710_InitCompiler (DLL_COMPILER_C);

2. Detecting the slot number:
i_ReturnValue = i_APCI1710_CheckAndGetPCISlotNumber
(b_SlotNumberArray);

3. Testing the slot number and detecting the handle of the board:
i_ReturnValue = i_APCI1710_SetBoardInformation (b_SlotNumberArray [0] ,
 pb_BoardHandle);

4.4.1 Step 2: Finishing the current activities

At the beginning an activity of the BiSS-Master that would be possible at the
current time is terminated. Hereto the following command is executed:

i_ReturnValue = i_APCI1710_BissWriteCommandRegister (
 b_BoardHandle,
 b_Module,
 128);

The transmission status of the command must be checked after the execution with
the bit EOT of the status register. The check of the bit nERR of the status register
is at this time not yet useful, as a former transmission could have set the error
message (see Sample07).

4.4.2 Step 3: Initialising the Master

In this step the transmission clock and the type of transmission (BiSS or SSI) are
set.

i_ReturnValue = i_APCI1710_BissInitMaster (b_BoardHandle,
 b_Module,
 b_FrequencyDivision,
 b_ModeOfOperation);

 59

Tutorial APCI-/CPCI-1710

4.4.3 Step 4: Concluding the initialisation

In this step the initialisation is concluded with the respecting command.

i_ReturnValue = i_APCI1710_BissWriteCommandRegister (
 b_BoardHandle,
 b_Module,
 16);

The transmission status of the command must be checked after the execution with
the bit EOT of the status register. Additionally, the bit nERR must be checked in
order to be able to react to possible errors (see Sample07).

The conclusion of an initialisation is only required once at the beginning of a
sample in order to ensure the readiness of the slave.

4.4.4 Step 5: Initialising the register
 communication

i_ReturnValue = i_APCI1710_BissInitRegisterCommunication (
 b_BoardHandle,
 b_Module,
 b_StartAddress,
 b_WNR,
 b_CountOfBytes,
 b_SlaveID);

The value „0“ must be transferred to the parameter “b_WNR” for a reading access
(for a writing access the value “1“).
„b_SlaveID“ must have the value „0“ as to this version of the BiSS-Master only
one slave can be connected. If one register shall be read, then “0” must be
transferred to „b_CountOf Bytes“. If two registers shall be read, then a “1“ must
be transferred. If two registers shall be read, then firstly the register of the
transferring start address is read and then the register with the address (start
address + 1)

4.4.5 Step 6: Requesting the register data

With the following command a new register value is requested and the
transmission between master and slave is started.

i_ReturnValue = i_APCI1710_BissWriteCommandRegister (
 b_BoardHandle,
 b_Module,
 8);

The transmission status of the command must be checked after the execution with
the bit EOT of the status register. Additionally, the bit nERR must be checked in
order to be able to react to possible errors (see Sample07).

60

APCI-/CPCI-1710 Tutorial

4.4.6 Step 7: Reading register data

After the successful transmission the register data received by the master can be
read.

i_ReturnValue = i_APCI1710_BiSSReadRegisterReceiveData (b_BoardHandle,
b_Module,
pw_ReceiveDat
a);

4.4.7 Step 8: Releasing the handle of the board

Before the user program will be terminated, the handle of the board must be
released again with the following function:

i_ReturnValue = i_APCI1710_CloseBoardHandle (b_BoardHandle);

 61

Tutorial APCI-/CPCI-1710

4.5 Writing register values of a BiSS encoder

In the following example a 8 bit register value is written. The example refers to
the C-sample Samle09, in which the type of programming is shown in detail.

The used functions are described in detail in the technical description of the board
or in the function description of the BiSS-Master.

62

APCI-/CPCI-1710 Tutorial

Function diagram:

Initialisation of the board

Finishing the current
actions

Filing register data to be
written

Releasing the handle of
the board

Starting the register
communication

Initialisation of the
master

EOT
nERR

?

No

Reading the status

Initialisation of the
register communication

EOT
?

No

Yes

Reading the status

Concluding the
initialisation

EOT
nERR

?

No

Yes

Reading the status

Start

End

 63

Tutorial APCI-/CPCI-1710

4.5.1 Step 1: Initialisation of the board

Firstly, the board must be initialised. In order to show this more clearly, a function
is generated that calls the funcctions supplied by ADDI-DATA. In the C-samples
this function „initialisation“ is shown at the beginning. The following steps are
required for the initialisation:

1. Selecting the compiler:
With the following functions the used compiler is indicated, in this example a
C-compiler.
i_ReturnValue = i_APCI1710_InitCompiler (DLL_COMPILER_C);

2. Detecting the slot number:
i_ReturnValue = i_APCI1710_CheckAndGetPCISlotNumber
(b_SlotNumberArray);

3. Testing the slot number and detecting the handle of the board:
i_ReturnValue = i_APCI1710_SetBoardInformation (b_SlotNumberArray [0],
 pb_BoardHandle);

4.5.2 Step 2: Finishing the current activities

At the beginning an activity of the BiSS-Master that would be possible at the
current time is terminated. Hereto the following command is executed:

i_ReturnValue = i_APCI1710_BissWriteCommandRegister (
 b_BoardHandle,
 b_Module,
 128);

The transmission status of the command must be checked after the execution with
the bit EOT of the status register. The checking of the bit nERR of the status
register is not yet useful at this time because an error message could have been set
by a former transmission (see Sample09).

4.5.3 Step 3: Initialisation of the master

In this step the transmission clock and the type of transmission are set (BiSS or
SSI).

i_ReturnValue = i_APCI1710_BissInitMaster (b_BoardHandle,
b_Module,

64

APCI-/CPCI-1710 Tutorial

b_FrequencyDivision,
b_ModeOfOperation);

4.5.4 Step 4: Concluding the initialisation

In this step the initialisation is concluded with the respectin command.

i_ReturnValue = i_APCI1710_BissWriteCommandRegister (
 b_BoardHandle,
 b_Module,
 16);

The transmission status of the command must be checked after the execution with
the bit EOT of the status register. Additionally, the bit nERR must be checked in
order to be able to react to possible errors (see Sample09).

The conclusion of an initialisation is only necessary once at the beginning of a
sample in order to ensure the readiness of the slave.

4.5.5 Step 5: Initialisation of the register
 communication

i_ReturnValue = i_APCI1710_BissInitRegisterCommunication (
 b_BoardHandle,
 b_Module,
 b_StartAddress,
 b_WNR,
 b_CountOfBytes,
 b_SlaveID);

The value „1“ must be transferred to the parameter “b_WNR” at the writing access
(for reading access the value „0“).
„b_SlaveID“ must have the value „0“, as to this version of the BiSS master only
one slave can be connected. If one register shall be written, then for „b_CountOf
Bytes“ a „0“ must be transferred. If two registers shall be written, then a „1“ must
be transferred. If two registers are written, then firstly the register of the
transferring start address is written and then the register with the address (start
address +1).

4.5.6 Step 6: Filing register data

Before the actual communication between master and slave, the register data to be
transferred, must be filed in the master with the following function:

i_ReturnValue = i_APCI1710_BissWriteRegisterSendData (b_BoardHandle,
b_Module,
w_SendData);

 65

Tutorial APCI-/CPCI-1710

4.5.7 Step 7: Starting the register communication

With the following command the transmission between master and slave is
started.

i_ReturnValue = i_APCI1710_BissWriteCommandRegister (
 b_BoardHandle,
 b_Module,
 8);

The transmission status of the command must be checked after the execution with
the bit EOT of the status register. Additionally, the bit nERR must be checked in
order to be able to react to possible errors (see Sample09).

4.5.8 Step 8: Releasing the handle of the board

Before the user program is finished, the handle of the board must be released
again with the following function:

i_ReturnValue = i_APCI1710_CloseBoardHandle (b_BoardHandle);

66

	1 DEFINITION OF APPLICATION
	1.1 Intended use
	1.2 Usage restrictions
	1.3 Technical description
	1.4 Function description
	1.5 Used abbreviations
	2 BISS-MASTER
	2.1 BISS protocol
	2.2 Technical data
	2.2.1 Limit values
	2.2.2 Limits

	2.3 Function description
	2.3.1 Block diagram
	2.3.2 Common functions
	2.3.3 Types of communication
	Sensor mode
	Register mode

	2.3.4 Relations between the functionalities
	Initialisation
	Commands
	1) Automatic sensor data request
	2) Sensor data request
	3) Register communication
	4) Initialisation
	5) Interrupt of the current activity

	Status
	Validity messages

	2.4 Used signals
	2.5 Connector pin assignment for all modules with BISS-Master
	2.6 Connection example
	2.7 I/O mapping of the BiSS-Master interface
	2.8 Description of the I/O functions
	2.8.1 READ-REGISTER
	2.8.2 WRITE-REGISTER

	3 STANDARDSOFTWARE
	3.1 Define values
	3.2 BiSS initialisation
	1) i_APCI1710_BissInitMaster (...)
	2) i_APCI1710_BissInitSlave (...)
	3) i_APCI1710_BissInitMultiCycle (...)
	4) i_APCI1710_BissInitRegisterCommunication (...)

	3.3 BiSS commands
	1) i_APCI1710_BissWriteCommandRegister (...)

	3.4 BiSS status
	1) i_APCI1710_BissReadStatusRegister (...)
	2) i_APCI1710_BissReadValidityRegister (...)

	3.5 Read BiSS data
	1) i_APCI1710_BissReadSensorReceiveData (...)
	2) i_APCI1710_BissReadMultiCycleReceiveData (...)

	3.6 BiSS – register communication
	1) i_APCI1710_BissReadRegisterReceiveData (...)
	2) i_APCI1710_BissWriteRegisterSendData (...)

	4 TUTORIAL
	4.1 Example: Calculation of important parameters
	4.1.1 Datasheet of the BiSS encoder
	4.1.2 Calculation of the parameters for initialising the slave
	4.1.3 Calculation of the parameters for initialising the multicycle communication
	4.1.4 Calculation of the angle position from the sensor data

	4.2 Reading the angle position of a BiSS encoder
	4.2.1 Step 1: Initialising the board
	4.2.2 Step 2: Finishing the current activities
	4.2.3 Step 3: Initialising the Master
	4.2.4 Step 4: Initialising the slave
	4.2.5 Step 5: Concluding the initialisation
	4.2.6 Step 6: Requesting the sensor data
	4.2.7 Step 7: Reading validity messages
	4.2.8 Step 8: Reading the sensor data
	4.2.9 Step 9: Releasing the handle of the board

	4.3 Reading multicycle data of a BiSS encoder
	4.3.1 Step 1: Initialising the board
	4.3.2 Step 2: Finishing the current activities
	4.3.3 Step 3: Initialising the Master
	4.3.4 Step 4: Initialising the slave
	4.3.5 Step 5: Initialising the multicycle data
	4.3.6 Step 6: Concluding the initialisation
	4.3.7 Step 7: Requesting multicycle data
	4.3.8 Step 8: Requesting the sensor data and reading the validity messages
	4.3.9 Step 9: Reading multicycle data
	4.3.10 Step 10: Releasing the handle of the board

	4.4 Reading register values of a BiSS encoder
	 Step 1: Initialising the board
	4.4.1 Step 2: Finishing the current activities
	4.4.2 Step 3: Initialising the Master
	4.4.3 Step 4: Concluding the initialisation
	4.4.4 Step 5: Initialising the register communication
	4.4.5 Step 6: Requesting the register data
	4.4.6 Step 7: Reading register data
	4.4.7 Step 8: Releasing the handle of the board

	4.5 Writing register values of a BiSS encoder
	4.5.1 Step 1: Initialisation of the board
	4.5.2 Step 2: Finishing the current activities
	4.5.3 Step 3: Initialisation of the master
	4.5.4 Step 4: Concluding the initialisation
	4.5.5 Step 5: Initialisation of the register communication
	4.5.6 Step 6: Filing register data
	4.5.7 Step 7: Starting the register communication
	4.5.8 Step 8: Releasing the handle of the board

	General manual: APCI-1710
	General manual: CPCI-1710

