Acquitek Data Acquisition Products

Software Development Kit

User Manual Sept 2006

Information in this document is subject to change without notice. © Copyright 2004, Acquitek, SAS. All rights reserved.

Acquitek is a trademark of Acquitek, SAS. Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks and names or their products. Acquitek, disclaims any proprietary interest in trademarks and trade names other than its own.

Acquitek makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. Acquitek shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance, or use of this manual.

Acquitek, SAS. 1 bis rue Marcel Paul 91300 Massy, France

TABLE OF CONTENTS

Function Reference	6
XDA_Ain_Check	7
XDA_Ain_ConvertToVolts	8
XDA_Ain_Deinterleave	9
XDA_Ain_GetParm	10
XDA_Ain_MB_Check	12
XDA_Ain_MB_Copy	13
XDA_Ain_MB_Proc	14
XDA_Ain_ReadRaw	15
XDA_Ain_ReadVolts	16
XDA_Ain_SetBuffer	17
XDA_Ain_SetClock	18
XDA_Ain_SetParm	19
XDA_Ain_SetPII	22
XDA_Ain_SetScanRate	23
XDA_Ain_SetSequence	24
XDA_Ain_SetTrigger	25
XDA_Ain_Start	27
XDA_Ain_Stop	28
XDA_Ain_Wait	29
XDA_Aout_Check	30
XDA_Aout_ConvertToRaw	31
XDA_Aout_GetParm	32
XDA_Aout_Preload	33
XDA_Aout_Reload_Proc	34
XDA_Aout_SetBuffer	35
XDA_Aout_SetClock	36
XDA_Aout_SetParm	37
XDA_Aout_SetSequence	

XDA_Aout_SetTrigger	
XDA_Aout_Start	41
XDA_Aout_Stop	
XDA_Aout_Update	43
XDA_Aout_Wait	
XDA_Aout_WriteRaw	45
XDA_Aout_WriteVolts	46
XDA_Board_Cleanup	47
XDA_Board_GetInfo	
XDA_Board_GetParm	
XDA_Board_Init	54
XDA_Board_SetParmErreu	r ! Signet non défini.
XDA_CT_Config	
XDA_CT_Gate	
XDA_CT_GetParm	60
XDA_CT_Read	61
XDA_CT_SetParm	62
XDA_Din_Check	63
XDA_Din_Config	64
XDA_Din_Read	65
XDA_Din_SetBuffer	
XDA_Din_SetClock	67
XDA_Din_SetSequence	
XDA_Din_SetupTrigger	69
XDA_Din_Start	70
XDA_Din_Stop	71
XDA_Dout_Check	72
XDA_Dout_Config	73
XDA_Dout_SetBuffer	74
XDA_Dout_SetClock	75
XDA_Dout_SetSequence	76
XDA_Dout_Start	77
XDA_Dout_Stop	
XDA_Dout_Write	

80
97
102
104
110

	aincheck		
	ain-mb		
	ain-raw		
	aintrig	118	
	aout	119	
	aout-buf	120	
	aout-buf2	121	
	aout-raw		
	din	123	
	din-buf		
	dio		
	dio-line		
	dout-buf	127	
	getinfo		
	temp	129	
Micr	osoft® Visual C++™ Programming Information		.130
Pr	rogramming Notes		.130
Sa	ample Programs		.130
	ain-buf		
	aincheck		
	dinbuf	133	
	dinline		
	dioport		
Acqu	uitek Data Acquisition ActiveX Control		.136
-	- Overview		
	Property Pages		
	Notes		
	g Acquitek Data Acquisition SDK Signal Processing Features		.141
Ble	ock FFT		.141
	Introduction		
	Usage		
	Benchmarks		

Function Reference

Every XDADAQ function has the following format:

status = functionName(parameter 1, parameter 2, ... parameter n)

where $n \geq 0. \,\,$ Each function returns the status in the form of an error code.

Status	Description
Zero	Executed successfully
Greater than zero	Returned a warning
Less than zero	Critical Error occurred

Please refer to the **Function Return Code Section** for a more detailed description of every possible return value.

XDA_Ain_Check

Prototype

- C: i32 XDA_Ain_Check(i32 device, i32 *running, i32 *count)
- VB: XDA_Ain_Check (ByVal device As Long, running As Long, count As Long) As Long

Description

Checks the status of a buffered analog input operation.

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
running	This variable will be assigned a value of zero if the operation is finished,
	nonzero if the operation is still running.
count	This variable will be assigned a value equal to the number of samples
	recovered so far.

XDA_Ain_ConvertToVolts

Prototype

- C: i32 XDA_Ain_ConvertToVolts(i32 device, i32 chan, i32 count, void *raw, f64 *volts)
- VB: XDA_Ain_ConvertToVolts (ByVal device As Long, ByVal chan As Long, ByVal count As Long, raw As Any, volts As Double) As Long

Description

Converts an array of raw input values to an array of voltages. This function uses the specified channel's current parameters in performing the conversion. To convert a single value, pass count = 1 and a pointer to the raw value to convert. In VB, pass a variable containing the raw value to be converted.

device	Device number of the input device as specified in Acquitek Control Center. This is used in determining the voltage range to use for the conversion. Valid device numbers range from 1 to 63.
chan	Zero-based analog input channel from which the data was read. This is also used in determining the voltage range to use for the conversion. Valid values vary based on device type.
count	Number of values to convert.
raw	An array containing the raw values to be converted. This should be of the type appropriate to the data returned by the board (for CH/CM, this is i16 or u16). In Visual Basic, pass the first element of the array.
volts	The memory location where the new array of voltages will be placed. In Visual Basic, pass the first element of the array.

XDA_Ain_Deinterleave

Prototype

C: i32 XDA_Ain_Deinterleave(i32 device, i32 numChans, i32 count, void *buffer)

VB: XDA_Ain_Deinterleave (ByVal device As Long, ByVal numChans As Long, ByVal count As Long, buffer As Any) As Long

Description

Groups an array of raw input values recovered from a buffered analog input by channel. When data is stored in a buffer during a multiple-channel analog input operation, it is stored in the order that it is captured. For example, if two channels were read, this function puts data from the first channel into the first half of the buffer and data from the second channel into the second half of the buffer.

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
numChans	Number of channels from which the data was gathered.
count	Total number of samples in the buffer.
buffer	Pointer to a buffer containing input values. In Visual Basic, pass the first
	element of the array.

XDA_Ain_GetParm

Prototype

C: i32 XDA_Ain_GetParm(i32 device, i32 chan, i32 index, f64 *value)

VB: XDA_Ain_GetParm (ByVal device As Long, ByVal chan As Long, ByVal index As Long, value As Double) As Long

Description

Gets the current value of the specified analog input parameter.

Parameters

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
chan	Analog input channel to which the parameter pertains.
index	Input parameter to check. See below.
value	This variable will be assigned the current value of the specified parameter.

Analog Input Parameters

XDA_AIN_PARM_POLARITY

Polarity. This will be XDA_BIPOLAR or XDA_UNIPOLAR.

XDA_AIN_PARM_RANGE

Maximum value of voltage range. If the channel's polarity is XDA_BIPOLAR, the minimum voltage will be -1 * this value. If the channel's polarity is XDA_UNIPOLAR, the minimum voltage will be 0.

XDA_AIN_PARM_COUPLING

See XDA_Ain_SetParm() for a description.

XDA_AIN_PARM_MODE

See XDA_Ain_SetParm() for a description.

XDA_AIN_PARM_MULTIBUFFER

Number of buffers for a multi-buffered input on the specified input channel. The default is 0 (disabled). This is a global setting so chan should be passed as 0.

XDA_AIN_PARM_TRIGGER_OFFSET

Gets offset (in total samples) from the start of an analog input buffer to the beginning of the captured data. Since the offset is in total samples, if this is a multichannel capture, the returned value should be divided by the number of channels captured. If trigger is disabled, this will return 0.

XDA_AIN_PARM_TRIGGER_NOISEREJECT

Enables (value=1) or disables (value=0, default) noise rejection for the analog input trigger.

XDA_AIN_PARM_FFT_BLOCK_MODE

Enables (value=1) or disables (value=0, default) block FFT mode.

XDA_AIN_PARM_FFT_SIZE

Sets the number of points for FFT. Valid values are powers of 2 from 16 to 4096. Default is 1024.

XDA_AIN_PARM_FFT_WINDOW_TYPE

Sets the window type for the FFT. Valid values are: FFT_WINDOW_TYPE_RECTANGLE FFT_WINDOW_TYPE_BLACKMAN FFT_WINDOW_TYPE_HAMMING FFT_WINDOW_TYPE_HANNING FFT_WINDOW_TYPE_BARTLETT FFT_WINDOW_TYPE_WELCH

Default is FFT_WINDOW_TYPE_RECTANGLE.

XDA_AIN_PARM_STAR_CTRLR_OUTPUT

Enables PXI Star Trigger lines to be triggered when the input trigger on the PXI Star Trigger Controller board is triggered. Only valid on PXI devices when they are in the PXI Star Trigger Controller slot (Slot 2). Bits are numbered 0 - 12 so valid values are from 0x0000 to 0x1FFF. Default is 0. This is a global setting so chan should be passed as 0.

XDA_AIN_PARM_BURST_SIZE

See XDA_Ain_SetParm() for a description.

XDA_AIN_PARM_TRIGGER_DELAY

See XDA_Ain_SetParm() for a description.

XDA_AIN_PARM_PLL_LOCKED

Returns 1 if PLL error has been less than PLL lockedThreshold for xx consecutive PLL input pulses, returns 0 otherwise.

XDA_AIN_PARM_PLL_UNLOCKED_COUNT

Unlocked count increments on every PLL input pulse on which PLL_LOCKED == 0. Unlocked count is only cleared upon reading. Therefore, unlocked count can be periodically checked during sampling to determine if the PLL has lost lock, independent of the current locked state.

XDA_AIN_PARM_PLL_ERR_MEAN

The PLL error is accumulated on every PLL input pulse. Upon reading this parameter, the mean of the PLL error is computed and the accumulator is cleared. The reported error is fractional where one pulse period is equal to one.

XDA_AIN_PARM_PLL_ERR_RMS

The PLL squared error is accumulated on every PLL input pulse. Upon reading this parameter, the square root of the mean of the PLL squared error is computed and the accumulator is cleared. The reported error is fractional where one pulse period is equal to one.

XDA_Ain_MB_Check

Prototype

- C: i32 XDA_Ain_MB_Check(i32 device, i32 *status, i32 *running)
- VB: XDA_Ain_MB_Check (ByVal device As Long, status As Long, running As Long) As Long

Description

Checks the status of a multi-buffered analog input operation. Multi-buffering must be enabled by using XDA_Ain_SetParm with XDA_AIN_PARM_MULTIBUFFER before the input is started with XDA_Ain_Start.

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
status	This variable will be assigned a value of zero if the current partial buffer is not
	ready, nonzero if it is ready.
running	This variable will be assigned a value of zero if the operation is finished,
	nonzero if the operation is still running.

XDA_Ain_MB_Copy

Prototype

C: i32 XDA_Ain_MB_Copy(i32 device, i32 *count, void *buffer)

VB: XDA_Ain_MB_Copy (ByVal device As Long, count As Long, buffer As Any) As Long

Description

In a multi-buffered analog input operation, copies the current partial buffer into the memory location specified by buffer. Multi-buffering must be enabled by using XDA_Ain_SetParm with XDA_AIN_PARM_MULTIBUFFER before the input is started with XDA_Ain_Start.

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
count	This variable will be assigned a value corresponding to the number of samples
	that are transferred.
buffer	Memory location at which the partial buffer will be placed. In Visual Basic, pass the first element of the array. This should be of the type appropriate to the data returned by the board (for CH/CM, this is a 16-bit integer).

XDA_Ain_MB_Proc

Prototype

C: i32 XDA_Ain_MB_Proc(i32 device, i32 *count, void (*mbProc)(i32 count, void *currentSampPtr))

VB: not applicable

Description

In a multi-buffered analog input operation, calls a callback function which operates on the current partial buffer. Multi-buffering must be enabled by using XDA_Ain_SetParm with XDA_AIN_PARM_MULTIBUFFER before the input is started with XDA_Ain_Start.

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
count	This variable will be assigned a value corresponding to the number of samples
	that are available.
mbProc	Void function which is called when a buffer is available for processing. The
	function referenced by the mbProc function pointer must take input parameters
	matching those specified in the XDA_Ain_MB_Proc function declaration.

XDA_Ain_ReadRaw

Prototype

- C: i32 XDA_Ain_ReadRaw(i32 device, i32 chan, i32 *raw)
- VB: XDA_Ain_ReadRaw (ByVal device As Long, ByVal chan As Long, raw As Long) As Long

Description

Reads a raw integral value from the specified channel. Input range is set with XDA_Ain_SetParm and XDA_AIN_PARM_RANGE.

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
chan	Zero-based analog input channel from which the data will be read. Valid
	values vary based on device type.
raw	This variable will be assigned the value read from the device.

XDA_Ain_ReadVolts

Prototype

- C: i32 XDA_Ain_ReadVolts(i32 device, i32 chan, f64 *volts)
- VB: XDA_Ain_ReadVolts (ByVal device As Long, ByVal chan As Long, volts As Double) As Long

Description

Reads the voltage from the specified channel. Input range is set with XDA_Ain_SetParm and XDA_AIN_PARM_RANGE.

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
chan	Zero-based analog input channel from which the data will be read. Valid
	values vary based on device type.
volts	This variable will be assigned the voltage read from the device.
	values vary based on device type.

XDA_Ain_SetBuffer

Prototype

- C: i32 XDA_Ain_SetBuffer(i32 device, i32 count, void *buffer)
- VB: XDA_Ain_SetBuffer (ByVal device As Long, ByVal count As Long, buffer() As Any) As Long

Description

Locks a buffer and sets it up for DMA transfer in the next buffered analog input operation. To unlock the buffer, either call this function with count = 0 or lock a different buffer.

device	Device number of the input device as specified in Acquitek Control Center. Valid device numbers range from 1 to 63.
count	Total number of samples that will be collected (also, the number of elements in the buffer). Set this to zero to unlock the buffer.
buffer	A pointer to the buffer where values will be stored. This should be of the type appropriate to the data returned by the board (for CH/CM, this is a 16-bit integer). In Visual Basic, pass the name of the array.

XDA_Ain_SetClock

Prototype

- C: i32 XDA_Ain_SetClock(i32 device, f64 rate, f64 *actual)
- VB: XDA_Ain_SetClock (ByVal device As Long, ByVal rate As Double, actual As Double) As Long

Description

Sets the clock rate for a buffered analog input operation. This is used to determine the time between two consecutive samples. If the device can simultaneously sample all of the channels specified by XDA_Ain_SetSequence, this determines the time between samples on the same channel. If the device cannot simultaneously sample all of the specified channels, this determines the time between two consecutive samples, which will be on two different channels. In this case, XDA_Ain_SetScanRate is used to determine the time between samples on the same channel.

Full speed operation may not be possible with small buffer sizes. Buffer sizes with larger multiples of 4 KB, up to 128 KB, may be required to achieve uninterrupted transfers of multiple channels at high speeds.

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
rate	Desired clock rate.
actual	This variable will be assigned the actual clock rate.

XDA_Ain_SetParm

Prototype

C: i32 XDA_Ain_SetParm(i32 device, i32 chan, i32 index, f64 value)

VB: XDA_Ain_SetParm (ByVal device As Long, ByVal chan As Long, ByVal index As Long, ByVal value As Double) As Long

Description

Sets an analog input parameter.

Parameters

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
chan	Analog input channel to which the parameter pertains.
index	Input parameter to set. See below.
value	Value to assign to the parameter.

Analog Input Parameters

XDA_AIN_PARM_POLARITY

Sets polarity. Set this to XDA_BIPOLAR or XDA_UNIPOLAR.

XDA_AIN_PARM_RANGE

Sets maximum value of voltage range. If the channel's polarity is XDA_BIPOLAR, the minimum voltage will be -1 * this value. If the channel's polarity is XDA_UNIPOLAR, the minimum voltage will be 0.

XDA_AIN_PARM_COUPLING

Sets coupling. Set this to XDA_AC, XDA_DC, or XDA_DC_TERMINATED.

Some boards do not support XDA_AC or XDA_DC_TERMINATED modes, and an error will be returned if the user attempts to set these.

The value of the termination impedance in XDA_DC_TERMINATED mode can be determined by logical AND of the Ain_features member of the BoardInfo structure returned by a call to XDA_Board_GetInfo with either XDA_AIN_FEATURE_50OHM or XDA_AIN_FEATURE_75OHM.

See the user manual for your board for an explanation of the input coupling available on your board, and for the specified input impedance in XDA_DC mode.

XDA_AIN_PARM_MODE

Sets mode for the channel. Set this to XDA_DIFFERENTIAL, XDA_SINGLE_ENDED, or XDA_PSEUDO_DIFF. See the user manual for your board for a description of these analog input modes.

XDA_AIN_PARM_MULTIBUFFER

Sets number of buffers for a multi-buffered input on the specified input channel. The default is 0 (disabled). This is currently limited to two buffers. This is a global setting so chan should be passed as 0.

XDA_AIN_PARM_TRIGGER_NOISEREJECT

Enables (value=1) or disables (value=0, default) noise rejection for the analog input trigger.

XDA_AIN_PARM_FFT_BLOCK_MODE

Enables (value=1) or disables (value=0, default) block FFT mode.

XDA_AIN_PARM_FFT_SIZE

Sets the number of points for FFT. Valid values are powers of 2 from 16 to 4096. Default is 1024.

XDA_AIN_PARM_FFT_WINDOW_TYPE

Sets the window type for the FFT. Valid values are:

FFT_WINDOW_TYPE_RECTANGLE FFT_WINDOW_TYPE_BLACKMAN FFT_WINDOW_TYPE_HAMMING FFT_WINDOW_TYPE_HANNING FFT_WINDOW_TYPE_BARTLETT FFT_WINDOW_TYPE_WELCH

Default is FFT_WINDOW_TYPE_RECTANGLE.

XDA_AIN_PARM_STAR_CTRLR_OUTPUT

Enables PXI Star Trigger lines to be triggered when the input trigger on the PXI Star Trigger Controller board is triggered. Only valid on PXI devices when they are in the PXI Star Trigger Controller slot (Slot 2). Bits are numbered 0 - 12. Valid values are 0 to 0x1FFF. Default is 0. The function will fail with XDA_ERR_PXI_NOT_ENABLED if the specified lines aren't enabled for output in Acquitek Control Center. This is a global setting so chan should be passed as 0.

XDA_AIN_PARM_SW_TRIGGER

Initiates a software trigger for XDA_AIN_TRIGGER_SOFTWARE. This is only supported on PXI boards. This is a global setting so chan should be passed as 0.

XDA_AIN_PARM_BURST_SIZE

Applicable to a triggered input capture. When set to 0 (default), XDA_Ain_Start() captures the number of samples specified in its count parameter. When set to a non-zero number, XDA_Ain_Start() captures for this number of sample clocks following a trigger, then waits for the next trigger. This repeats until the number of samples specified in the XDA_Ain_Start() count parameter are captured. The burst size should be chosen as a function of sample rate so that the minimum time between triggers is at least 10 microseconds. Note that XDA_AIN_BURST_SIZE is specified in sample clocks, so for multichannel capture, the total number of samples capture per burst will be

numberOfChannels*XDA_AIN_PARM_BURST_SIZE. Must be a multiple of 64 and less than 1,000,000. Cannot be using simultaneously with pre-triggering. This is a global setting so chan should be passed as 0. Not available on CM/XM

XDA_AIN_PARM_TRIGGER_DELAY

Applicable to a triggered input capture. Samples are not captured until the number of sample clocks equal to the value specified by XDA_AIN_PARM_TRIGGER_DELAY have elapsed. Default value is 0. Negative values indicate pretrigger. Must be between -1,000,000 and 1,000,000. Positive values of trigger delay are not available on the CM/XM. Negative values of trigger delay are available on the XM. This is a global setting so chan should be passed as 0. This parameter must be set prior to calling XDA_Ain_SetTrigger() for proper functionality. If set to a large value, XDA_Board_SetParm may need to be called with XDA BOARD PARM AIN MEMORY to allocate more memory to input.

XDA_AIN_PARM_EXT_CLK_DIVISOR

Sets up the register for an external input clock. The external clock needs to be at least 1MHz. The clock needs to be 2 * desired sample rate * chanCount. This parameter needs to be set at 2 * chanCount. This is currently only implemented on the CH.

XDA_Ain_SetPll

Prototype

- C: i32 XDA_Ain_SetPll (i32 device, i32 mode, i32 sampPerPulse, f64 bw, f64 zeta, f64 lockThreshold)
- VB: XDA_Ain_SetPll (ByVal device As Long, ByVal mode As Long, ByVal sampPerPulse As Long, ByVal bw As Double, ByVal zeta As Double, ByVal lockThreshold As Double) As Long

Description

Starts or stops analog sample clock synchronization to pulses input on Gate0.

Parameters

- device Device number of the input device as specified in Acquitek Control Center. Valid device numbers range from 1 to 63.
- mode Synchronous, asynchronous or disable. This value can be either XDA_SYNC or XDA_ASYNC or XDA_PLL_DISABLE. If this is set to XDA_ASYNC, the PLL locking will be performed in the background and other operations can be performed. If it is set to XDA_SYNC, the function will return when the PLL has locked or when a timeout, specified by XDA_Board_SetParm() and XDA_BOARD_PARM_TIMEOUT, is reached. If it is set to XDA_PLL_DISABLE the PLL is disabled and the remaining parameters ignored.
- sampPerPulse PLL locks to pulses input via Gate0. The PLL will generate a sampling clock which captures sampPerPulse samples on each channel on each input pulse.
- bw PLL bandwidth, in cycles/sec (i.e. Hertz)

zeta PLL damping factor

lockThreshold When PLL error is less than this fractional part of the PLL input pulse period, the PLL is considered locked.

Notes:

Counter/Timer 0 cannot be used simultaneously with PLL mode.

Call XDA_Ain_SetClock() with the maximum value of the sampling clock (i.e. samplesPerPulsePerChannel * maxPulsesPerSecond * numberOfChannels.) prior to calling XDA_Ain_SetPLL().

If disabling PLL, call XDA_Ain_SetClock() again to reset the sampling clock to a known value.

XDA_Ain_SetScanRate

Prototype

- C: i32 XDA_Ain_SetScanRate(i32 device, f64 rate, f64 *actual)
- VB: XDA_Ain_SetScanRate (ByVal device As Long, ByVal rate As Double, actual As Double) As Long

Description

Sets the scan rate for a buffered analog input operation. If the device cannot sample all of the specified channels simultaneously, this will be the rate used to determine the time between samples of the same channel. If this is set to zero, the first channel in the sequence will be sampled one clock (determined by XDA_Ain_SetClock) after the last channel in the sequence. If the device does not support scanning, this must be set to zero, otherwise, this function will return XDA_ERR_RATE.

Note: this function is not yet implemented and must be set to zero.

device	Device number of the input device as specified in Acquitek Control Center. Valid device numbers range from 1 to 63.
rate	Desired rate at which to scan the input. This must be a factor of the clock rate set with XDA_Ain_SetClock and at most the clock rate divided by the number
	of channels in the sequence. If this is zero, the board will capture at the rate set
	by XDA_Ain_SetClock.
actual	This variable will be assigned the actual rate at which the device will scan. If it
	is zero, the variable will not be assigned a value.

XDA_Ain_SetSequence

Prototype

- C: i32 XDA_Ain_SetSequence(i32 device, i32 count, i32 *channels, f64 *ranges)
- VB: XDA_Ain_SetSequence (ByVal device As Long, ByVal count As Long, channels As Long, ranges As Double) As Long

Description

Sets the channel sequence for a buffered analog input operation.

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
count	The number of channels to scan.
channels	An array of zero-based analog input channels to use in the buffered analog
	input. In Visual Basic, pass the first element of the array.
ranges	An array of ranges that will correspond to the channels. In Visual Basic, pass
	the first element of the array.

XDA_Ain_SetTrigger

Prototype

C: i32 XDA_Ain_SetTrigger(i32 device, i32 chan, f64 trig_volts, i32 flags)

VB: XDA_Ain_SetTrigger (ByVal device As Long, ByVal chan As Long, ByVal trig_volts As Double, ByVal flags As Long) As Long

Description

Sets a trigger for analog input. When XDA_Ain_Start is called after this, capture will begin when the trigger is generated. Offset from the beginning of the buffer to the captured data can be found using XDA_Ain_GetParm with XDA_AIN_PARM_TRIGGER_OFFSET.

Parameters

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
chan	Zero-based analog input channel to use for trigger. Valid values vary based on
	device type. This is ignored for external, digital, and PXI star triggers and
	should be passed as 0.
trig volts	Voltage to trigger analog input. When the input voltage on the specified
	channel reaches this voltage, the trigger will be generated. This is ignored for

digital and PXI star triggers and should be passed as 0.

flags Specifies options for the trigger (see below).

XDA_TRIGGER_FALLING

trigger is generated when analog signal goes from above specified voltage to below specified voltage.

XDA_TRIGGER_RISING

trigger is generated when analog signal goes from below specified voltage to above specified voltage.

XDA_TRIGGER_EXTERNAL

use external trigger. Must be TTL level rising edge signal on CM/XM. use A/D SeqSt pin on CM/XM. Pretriggering not available with this trigger on CM/XM

XDA_TRIGGER_SOFTWARE

use software initiated trigger. Only supported on PXI boards.

XDA_TRIGGER_PXI_STAR

use PXI Star Trigger. Only supported on PXI boards.

XDA_TRIGGER_DIGITAL

use digital trigger. See XDA_Din_SetupTrigger for details. Not available on CM/XM

XDA_TRIGGER_NONE disable trigger.

Note:

XDA_TRIGGER_RISING and XDA_TRIGGER_FALLING can be or'ed with the other flags. By default it is or'ed with XDA_TRIGGER_FALLING.

XDA_Ain_Start

Prototype

- C: i32 XDA_Ain_Start(i32 device, i32 modeFlags, i32 count)
- VB: XDA_Ain_Start (ByVal device As Long, ByVal modeFlags As Long, ByVal count As Long) As Long

Description

Starts a buffered analog input operation using parameters specified by XDA_Ain_SetBuffer, XDA_Ain_SetParm, XDA_Ain_SetClock, XDA_Ain_SetScanRate, and XDA_Ain_SetSequence. This may not be used simultaneously with XDA_Din_Start.

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
modeFlags	Synchronous or asynchronous. This value can be either XDA_SYNC or
	XDA_ASYNC. If this is set to XDA_ASYNC, the buffered input will be
	performed in the background and other operations can be performed. If it is set
	to XDA_SYNC, the function will return when the scan is complete or when a
	timeout, specified by XDA_Board_SetParm and
	XDA_BOARD_PARM_TIMEOUT, is reached.
count	Total number of samples to collect. (2 bytes per sample for 12- or 16-bit
	boards.) This must be a multiple of 4096 bytes (for CH/CM, this would be a
	multiple of 2048 samples).
	···· L ····· L ·····

XDA_Ain_Stop

Prototype

C: i32 XDA_Ain_Stop(i32 device)

VB: XDA_Ain_Stop (ByVal device As Long) As Long

Description

Stops the current buffered analog input operation.

Parameters

device

Device number of the input device as specified in Acquitek Control Center. Valid device numbers range from 1 to 63.

XDA_Ain_Wait

Prototype

C: i32 XDA_Ain_Wait(i32 device, i32 (*cbfunc)(i32 count, void * buffer)) VB: NA

Description

Block until either the "buffer full" event or a timeout event occurs. The timeout is set by XDA_BOARD_PARM_TIMEOUT. If a callback is specified, it will be invoked upon receipt of the half-buffer full event, and the return value will be interpreted as a 'iterate' or 'exit' flag. A positive non-zero value will cause this routine to continue collecting data (and invoking the callback on each half-buffer event); a negative or zero value will cause this routine to terminate data collection and return control to the caller. If the callback is NULL, control will be returned to the caller when either event occurs.

Parameters

device Device number of the input device as specified in Acquitek Control Center. Valid device numbers range from 1 to 63.

cbfunc A function which is called when a buffer is available for processing. The function referenced by the cbfunc function pointer must take input parameters matching those specified in the XDA_Ain_Wait function declaration. It should return a positive value to continue capturing; or negative or zero to get returned to the main program.

XDA_Aout_Check

Prototype

- C: i32 XDA_Aout_Check(i32 device, i32 *running, i32 *rsvd)
- VB: XDA_Aout_Check (ByVal device As Long, running As Long, rsvd As Long) As Long

Description

Checks the status of an analog output operation.

device	Device number as specified in Acquitek Control Center. Valid device numbers
	range from 1 to 63.
running	This variable will be assigned a value of zero if the operation is finished,
	nonzero if the operation is still running.
rsvd	Reserved variable. Set to zero.

XDA_Aout_ConvertToRaw

Prototype

C: i32 XDA_Aout_ConvertToRaw(i32 device, i32 chan, i32 count, f64 *volts, void *raw)

ACQUITEK

VB: XDA_Aout_ConvertToRaw (ByVal device As Long, ByVal chan As Long, ByVal count As Long, volts As Double, raw As Any) As Long

Description

Converts an array of voltages into an array of raw output values. This function uses the specified channel's current parameters in performing the conversion. To convert a single value, pass count = 1 and a pointer to the voltage to convert. In VB, pass a variable containing the voltage.

device	Device number of the output device as specified in Acquitek Control Center. This is used in determining the voltage range to use for the conversion. Valid
	device numbers range from 1 to 63.
chan	Zero-based analog output channel on which the data will be written. This is
	also used in determining the voltage range to use for the conversion. Valid values vary based on device type.
count	Number of values to convert.
volts	An array containing the voltages to be converted. In Visual Basic, pass the first element of the array.
raw	The memory location where the new array of raw output values will be placed. This should be of the type appropriate to the data to be output by the board (for CH/CM, this is a 16-bit integer). In Visual Basic, pass the first element of the
	array.

XDA_Aout_GetParm

Prototype

C: i32 XDA_Aout_GetParm(i32 device, i32 chan, i32 index, f64 *value)

VB: XDA_Aout_GetParm (ByVal device As Long, ByVal chan As Long, ByVal index As Long, value As Double) As Long

Description

Gets the current value of the specified analog output parameter.

Parameters

device	Device number of the output device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
chan	Analog output channel to which the parameter pertains.
index	Output parameter to check. See "Parameters."
value	This variable will be assigned the current value of the specified parameter.

Analog Output Parameters

XDA_AOUT_PARM_POLARITY

Polarity. This will be XDA_BIPOLAR or XDA_UNIPOLAR.

XDA_AOUT_PARM_RANGE

Maximum value of voltage range. If the channel's polarity is XDA_BIPOLAR, the minimum voltage will be -1 * this value. If the channel's polarity is XDA_UNIPOLAR, the minimum voltage will be 0.

XDA_AOUT_PARM_COUPLING

Coupling. This will be XDA_AC, XDA_DC, or XDA_DC_TERMINATED.

XDA_AOUT_PARM_UPDATEMODE

Update mode for the output channel. If this is set to 0 (immediate, which is the default), the voltage being output by the channel will be updated immediately after a new value is written to the channel. If it is set to 1 (delayed), The voltage being output will not be updated until XDA_Aout_Update is called.

XDA_Aout_Preload

Prototype

C: i32 XDA_Aout_Preload(i32 device, i32 reserved) VB: NA

Description

Preloads the waveform into the onboard memory. This is normally done with XDA_Aout_Start is executed. XDA_Aout_SetBuffer and XDA_Aout_ReloadProc must be called before this function

device	Device number of the output device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
reserved	This is currently reserved parameter and will be ignored.

XDA_Aout_Reload_Proc

Prototype

C: i32 XDA_Aout_Reload_Proc(i32 device, u32 (*func)(i32 size, void * buf));

VB: NA

Description

Sets the function that will be called when the (half) buffer is empty and ready for refilling. The function passed as func needs to have the same parameters as the declaration of u32 (*func)(i32 size, void * buf). If the function does not return the size as passed to it, this indicates the end of the buffer and output will be stopped after the completion of the current buffer.

device	Device number of the output device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
func	Function that will reload the buffer when it is empty. Should return size
	passed to it. Otherwise indicates end of the multibuffer.

XDA_Aout_SetBuffer

Prototype

- C: i32 XDA_Aout_SetBuffer(i32 device, i32 count, void *buffer)
- VB: XDA_Aout_SetBuffer (ByVal device As Long, ByVal count As Long, buffer() As Any) As Long

Description

Locks a buffer and sets it up for DMA transfer in the next buffered analog output operation. To unlock the buffer, either call this function with count = 0 or lock a different buffer.

device	Device number of the output device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
count	Total number of values that will be output (also, the number of elements that
	are in the buffer). Set this to zero to unlock the buffer.
buffer	Buffer to use for output. The range for the values in this buffer will vary based
	on the resolution of the device and its current polarity setting. This should be
	of the type appropriate to the data returned by the board (for CH/CM, this is a
	16-bit integer). In Visual Basic, pass the name of the array.

XDA_Aout_SetClock

Prototype

- C: i32 XDA_Aout_SetClock(i32 device, f64 rate, f64 *actual)
- VB: XDA_Aout_SetClock (ByVal device As Long, ByVal rate As Double, actual As Double) As Long

Description

Sets the clock rate for buffered analog output. This is used to determine the time between two consecutive writes. If the device can simultaneously write to all of the channels specified by XDA_Aout_SetSequence, this determines the time between writes on the same channel. If the device cannot simultaneously write to all of the specified channels, this determines the time between two consecutive writes, which will be on two different channels.

Full speed operation may not be possible with small buffer sizes. Buffer sizes with larger multiples of 4 KB, up to 128 KB, may be required to achieve uninterrupted transfers of multiple channels at high speeds.

device	Device number of the output device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
rate	Desired clock rate.
actual	This variable will be assigned the actual clock rate.

XDA_Aout_SetParm

Prototype

C: i32 XDA_Aout_SetParm(i32 device, i32 chan, i32 index, f64 value)

VB: XDA_Aout_SetParm (ByVal device As Long, ByVal chan As Long, ByVal index As Long, ByVal value As Double) As Long

Description

Sets an analog output parameter.

Parameters

device	Device number of the output device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
chan	Analog output channel to which the parameter pertains.
index	Output parameter to set. See below.
value	Value to assign to the parameter.

Analog Output Parameters

XDA_AOUT_PARM_POLARITY

Sets polarity. Set this to XDA_BIPOLAR or XDA_UNIPOLAR.

XDA_AOUT_PARM_RANGE

Sets maximum value of voltage range. If the channel's polarity is XDA_BIPOLAR, the minimum voltage will be -1 * this value. If the channel's polarity is XDA_UNIPOLAR, the minimum voltage will be 0.

XDA_AOUT_PARM_COUPLING

Sets coupling. Set this to XDA_AC, XDA_DC, or XDA_DC_TERMINATED.

XDA_AOUT_PARM_UPDATEMODE

Sets update mode for the output channel. If this is set to 0 (immediate, which is the default), the voltage being output by the channel will be updated immediately after a new value is written to the channel. If it is set to 1 (delayed), The voltage being output will not be updated until XDA_Aout_Update is called.

XDA_AOUT_PARM_BURST_SIZE

Sets the number of samples output on each trigger. Set to 0 (default) to output entire buffer on each trigger. This is a global setting so set chan to 0. This must be multiple of 32 and greater then 256. If trigger occur before the full BURST_SIZE it outputted, it is ignored.

XDA_AOUT_PARM_TRIGGER_COUNT

Sets the number of times to wait for output trigger. Set to 0 (default) for infinite. This is a global setting so set chan to 0.

XDA_AOUT_PARM_MULTIBUFFER

Sets number of buffers for a multi-buffered output on a specific output channel. This by default is 0 (disable). It is currently limited to two buffers. This is a global setting so chan should be passed as 0.

XDA_AOUT_PARM_ECHO_DELAY

Sets the delay for the echo mode in samples. Set to 0 (disabled) by default. Minimum value is 320 samples. Maximum is limited to size of the onboard memory. This is a global setting so chan should be passed as 0.

XDA_Aout_SetSequence

Prototype

- C: i32 XDA_Aout_SetSequence(i32 device, i32 count, i32 *channels)
- VB: XDA_Aout_SetSequence (ByVal device As Long, ByVal count As Long, channels As Long) As Long

Description

Sets the sequence of channels to use for buffered analog output.

device	Device number of the output device as specified in Acquitek Control Center.	
	Valid device numbers range from 1 to 63.	
count	Number of channels that will be used in the buffered output operation.	
channels	An array of analog output channels to use in the buffered output operation. In	
	Visual Basic, pass the first element of the array.	

XDA_Aout_SetTrigger

Prototype

- C: i32 XDA_Aout_SetTrigger(i32 device, i32 chan, f64 trig_volts, i32 flags)
- VB: XDA_Aout_SetTrigger (ByVal device As Long, ByVal chan As Long, ByVal trig_volts As Double, ByVal flags As Long) As Long

Description

Sets a trigger for analog output. When XDA_Aout_Start is called after this, output will begin when the trigger is generated. This is only supported on CH and XH series boards.

Parameters

deviceDevice number as specified in Acquitek Control Center. Valid device numbers
range from 1 to 63.chanZero-based analog input channel to use for trigger. Valid values vary based on
device type. This is ignored for digital and PXI star triggers and should be
passed as 0.trig_voltsVoltage to trigger analog input. When the input voltage on the specified
channel reaches this voltage, the trigger will be generated. This is ignored for
digital and PXI star triggers and should be passed as 0.flagsSpecifies options for the trigger (see below).

XDA_TRIGGER_FALLING

trigger is generated when analog signal goes from above specified voltage to below specified voltage.

XDA_TRIGGER_RISING

trigger is generated when analog signal goes from below specified voltage to above specified voltage.

XDA_TRIGGER_EXTERNAL use external trigger.

XDA_TRIGGER_PXI_STAR use PXI Star Trigger. Only supported on PXI boards.

XDA_TRIGGER_DIGITAL

use digital trigger. See XDA_Din_SetupTrigger for details.

XDA_TRIGGER_NONE disable trigger.

XDA_Aout_Start

Prototype

- C: i32 XDA_Aout_Start(i32 device, i32 count, i32 iterations)
- VB: XDA_Aout_Start (ByVal device As Long, ByVal count As Long, ByVal iterations As Long) As Long

Description

Starts a buffered analog output operation using parameters specified by XDA_Aout_SetBuffer, XDA_Aout_SetParm, XDA_Aout_SetClock, and XDA_Aout_SetSequence. This may not be used simultaneously with XDA_Dout_Start. The waveform will be output the number of times specified by iterations. If iterations is 0, the waveform will loop until stopped.

Device number of the output device as specified in Acquitek Control Center.
Valid device numbers range from 1 to 63.
Total number of samples in the buffer. (2 bytes per sample for 12- or 16-bit
boards.) This must be a multiple of 64 bytes (for CH/CM, this would be a
multiple of 32 samples).
Number of times to output the buffer or 0 for continuous output.

XDA_Aout_Stop

Prototype

C: i32 XDA_Aout_Stop(i32 device)

VB: XDA_Aout_Stop (ByVal device As Long) As Long

Description

Stops the current buffered analog output operation.

Parameters

device

Device number of the output device as specified in Acquitek Control Center. Valid device numbers range from 1 to 63.

XDA_Aout_Update

Prototype

C: i32 XDA_Aout_Update(i32 device)

VB: XDA_Aout_Update (ByVal device As Long) As Long

Description

Updates the voltages being output by the device. If the device is set for immediate update, this is not necessary.

Parameters

device

Device number of the output device as specified in Acquitek Control Center. Valid device numbers range from 1 to 63.

XDA_Aout_Wait

Prototype

C: i32 XDA_Aout_Wait(i32 device, i32 timeout)

VB: NA

Description

Block the program until the output stream is finished or there is a timeout.

device	Device number of the output device as specified in Acquitek Control Center. Valid device numbers range from 1 to 63.	
timeout	Sets timeout for analog output stream. Use -1 to wait indefinitely.	

XDA_Aout_WriteRaw

Prototype

- C: i32 XDA_Aout_WriteRaw(i32 device, i32 chan, i32 raw)
- VB: XDA_Aout_WriteRaw (ByVal device As Long, ByVal chan As Long, ByVal raw As Long) As Long

Description

Writes a raw value to an analog output. Output range is set with XDA_Aout_SetParm and XDA_AOUT_PARM_RANGE. If UPDATEMODE is set to zero (immediate; the default), this will immediately change the voltage being output. Otherwise, the device will wait until XDA Aout Update is called.

device	Device number of the output device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
chan	Zero-based analog output channel on which the data will be written. Valid
	values vary based on device type.
raw	Value to write to the specified channel.

XDA_Aout_WriteVolts

Prototype

- C: i32 XDA_Aout_WriteVolts(i32 device, i32 chan, f64 volts)
- VB: XDA_Aout_WriteVolts (ByVal device As Long, ByVal chan As Long, ByVal volts As Double) As Long

Description

Writes a voltage to an analog output. Output range is set with XDA_Aout_SetParm and XDA_AOUT_PARM_RANGE. If UPDATEMODE is set to zero (immediate; the default), this will immediately change the voltage being output. Otherwise, the device will wait until XDA Aout Update is called.

device	Device number of the output device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
chan	Zero-based analog output channel on which the data will be written. Valid
	values vary based on device type.
volts	Voltage to be write to the specified channel.

XDA_Board_Cleanup

Prototype

C: i32 XDA_Board_Cleanup(i32 device, i32 rsvd)

VB: XDA_Board_Cleanup (ByVal device As Long, ByVal rsvd As Long) As Long

Description

Closes access to device resources. This function should always be called before a program exits.

device	Device number of the device as specified in Acquitek Control Center. Valid
	device numbers range from 1 to 63.
rsvd	Reserved variable. Set this to zero.

XDA_Board_GetInfo

Prototype

- C: i32 XDA_Board_GetInfo(i32 device, BoardInfo *bi, i32 size)
- VB: XDA_Board_GetInfo (ByVal device As Long, bi As BoardInfo, ByVal size As Long) As Long

Description

Gets information about the specified device such as description, serial number, and specifications. (See below.)

Parameters

device	Device number of the device as specified in Acquitek Control Center. Valid	
	device numbers range from 1 to 63.	
bi	This will hold the board information.	
size	Size of the BoardInfo structure. In C or C++, use sizeof(BoardInfo). In Visual	
	Basic, use Len(BI) where BI is a variable of type BoardInfo.	

BoardInfo Structure

Douranno Structure		
Board_name	Name of the specified device.	
Board_serialNumber	Serial number of the specified device.	
Board_ID	ID of the specified device.	
Board features	Contains bit flags (see "Board Feature Flags" below)	
_	describing features of the device.	
Board dio count	Number of reversible digital I/O ports on the specified	
	device.	
Board family	Board family. FAMILY CH includes CH and XH series	
_ ,	boards. FAMILY CM includes CM and XM series boards.	
Board PXIgeographicAddress	PXI geographic address (slot number).	
Board rsvd	Reserved.	
Ain count	Number of analog inputs on the specified device.	
Ain bits	Resolution of the device's A/D converter.	
Ain memory	Onboard memory (in bytes). Ain features Contains	
	bit flags (see "Analog Input Feature Flags" below)	
	describing analog input features of the device.	
Ain min	Minimum analog input sample rate of the A/D converter(s).	
Ain max	Maximum analog input sample rate of the A/D converter(s).	
Ain ranges	Analog input voltage ranges of the specified device.	
Ain rsvd	Reserved.	
Aout count	Number of analog outputs on the specified device.	
Aout bits	Resolution of the device's D/A converter.	
Aout memory	Onboard memory (in bytes).	

Aout_features	Contains bit flags (see "Analog Output Feature Flags"
	below) describing analog output features of the device.
Aout min	Minimum analog output sample rate of the D/A
_	converter(s).
Aout max	Maximum analog output sample rate of the D/A
—	converter(s).
Aout ranges	Analog output voltage ranges of the specified device.
Aout rsvd	Reserved.
Din count	Number of digital input ports (including reversible I/O
2 • • • • • •	ports).
Din bits	Number of bits per digital input port.
Din memory	Onboard memory (in bytes).
Din features	Contains bit flags (see "Digital Input Feature Flags" below)
	describing digital input features of the device.
Din_min	Minimum digital input sample rate of the A/D converter(s).
Din max	Maximum digital input sample rate of the A/D converter(s).
Din_ranges	Logic levels for digital input.
Din rsvd	Reserved.
Dout count	Number of digital output ports (including reversible I/O
Dout_count	ports).
Dout bits	Number of bits per digital output port.
Dout memory	Onboard memory (in bytes).
Dout features	Contains bit flags (see "Digital Output Feature Flags"
_	below) describing digital output features of the device.
Dout min	Minimum digital output sample rate of the D/A converter(s).
Dout max	Maximum digital output sample rate of the D/A
—	converter(s).
Dout ranges	Logic levels for digital output.
Dout rsvd	Reserved.
CT count	Number of counter/timers.
CT bits	Numbers of bits for each counter/timer.
rsvd	Reserved.

Board Feature Flags These are stored in Board_features, in the BoardInfo structure.

the device's serial number can be read
using the API
the device has an onboard temperature
sensor
the device is a PXI board

Analog Input Feature Flags These are stored in Ain_features, in the BoardInfo structure.

XDA_AIN_FEATURE_BIPOLAR XDA_AIN_FEATURE_UNIPOLAR XDA_AIN_FEATURE_AC

XDA_AIN_FEATURE_DC

XDA_AIN_FEATURE_DC_TERMINATED

XDA_AIN_FEATURE_500HM

XDA_AIN_FEATURE_750HM

XDA_AIN_FEATURE_1HZCLOCK

XDA_AIN_FEATURE_SIMULTANEOUS

XDA_AIN_FEATURE_SCANNED

XDA_AIN_FEATURE_SINGLE_ENDED XDA_AIN_FEATURE_DIFFERENTIAL XDA_AIN_FEATURE_PSEUDO_DIFF

the device supports bipolar input the device supports unipolar input the device supports AC (Hi-Z) coupling for input the device supports DC (Hi-Z) coupling for input the device supports DC terminated (50- or 75-ohm) coupling for input the device supports 50-ohm terminated coupling for input the device supports 75-ohm terminated coupling for input the device's analog input clock has a resolution of 1 Hz the device supports multiple-channel simultaneous analog input the device supports multiple-channel scanned analog input the device supports single-ended input the device supports differential input the device supports pseudo-differential input

Analog Output Feature Flags

These are stored in Aout_features, in the BoardInfo structure.

XDA_AOUT_FEATURE_BIPOLAR	the device supports bipolar output
XDA_AOUT_FEATURE_UNIPOLAR	the device supports unipolar output
XDA_AOUT_FEATURE_AC	the device supports AC (Lo-Z) coupling for output
XDA_AOUT_FEATURE_DC	the device supports DC (Lo-Z) coupling for output
XDA AOUT FEATURE DC TERMINATED	the device supports DC terminated (50- or
	75-ohm) coupling for output
XDA AOUT FEATURE 500HM	the device supports 50-ohm terminated
	coupling for output
XDA AOUT FEATURE 750HM	the device supports 75-ohm terminated
	coupling for output
XDA AOUT FEATURE 1HZCLOCK	the device's analog output clock has a
	resolution of 1 Hz
XDA AOUT FEATURE RANGE	the device supports multiple voltage ranges
	for output
XDA AOUT FEATURE FILTER	the device has an onboard reconstruction
	filter for analog output

Digital Input Feature Flags These are stored in Din_features, in the BoardInfo structure.

XDA_DIN_FEATURE_STREAM	the device supports streaming digital input
XDA_DIN_FEATURE_PORTCFG	the device's inputs are configurable by port
XDA_DIN_FEATURE_LINECFG	the device's inputs are configurable by line

Digital Output Feature Flags These are stored in Dout_features, in the BoardInfo structure.

XDA_DOUT_FEATURE_STREAM	the device supports streaming digital output
XDA_DOUT_FEATURE_PORTCFG	the device's outputs are configurable by
XDA_DOUT_FEATURE_LINECFG	port the device's outputs are configurable by line

XDA_Board_GetParm

Prototype

- C: i32 XDA_Board_GetParm(i32 device, i32 index, f64 *value)
- VB: XDA_Board_GetParm (ByVal device As Long, ByVal index As Long, value As Double) As Long

Description

Gets the current value of the specified board parameter.

Parameters

device	Device number of the board as specified in Acquitek Control Center. Valid
	device numbers range from 1 to 63.
index	Board parameter to check. See below.
value	This variable will be assigned the current value of the specified parameter.

Board Parameters

XDA_BOARD_PARM_AIN_MEMORY

Gets current value of on board memory allocated to analog input. See XDA_Board_SetParm for details.

XDA_BOARD_PARM_AOUT_MEMORY

Gets current value of on board memory allocated to analog output. See XDA Board SetParm for details.

XDA_BOARD_PARM_AUX_BNC

Current setting for CH/XH auxiliary BNC connector. See XDA_Board_SetParm for details.

XDA_BOARD_PARM_INT_SYNC_MASTER

Current setting for CH/XH master mode. See XDA_Board_SetParm for details.

XDA_BOARD_PARM_INT_SYNC_SLAVE

Current setting for CH/XH slave mode. See XDA_Board_SetParm for details.

XDA_BOARD_PARM_DLL_VERSION

Gets version number of currently installed DLL.

XDA_BOARD_PARM_DLL_BUILD

Gets build number of currently installed DLL.

XDA_BOARD_PARM_DSP_MEMORY

Gets current value of on board memory allocated to DSP functions. See XDA Board SetParm for details.

XDA_BOARD_PARM_EXTERNAL_CLOCK

On CH/XH, this parm functions identically to XDA_BOARD_PARM_AUX_BNC. On CM/XM, it enables external clock for input or output. See XDA_Board_SetParm for details.

XDA_BOARD_PARM_TEMPERATURE

Current temperature of the board in degrees Celsius.

XDA_BOARD_PARM_TIMEOUT

Timeout for the device for synchronous functions so that control will eventually be returned to the application if a problem occurs. The default is -1 (no timeout).

XDA_Board_Init

Prototype

C: i32 XDA_Board_Init(i32 device, i32 rsvd)

VB: XDA_Board_Init (ByVal device As Long, ByVal rsvd As Long) As Long

Description

Locates the device and initializes the onboard hardware to default conditions.

Parameters

deviceDevice number of the device as specified in Acquitek Control Center. Valid
device numbers range from 1 to 63.rsvdReserved variable. Set this to zero.

XDA_Board_SetParm

Prototype

C: i32 XDA_Board_SetParm(i32 device, i32 index, f64 value)

VB: XDA_Board_SetParm (ByVal device As Long, ByVal index As Long, ByVal value As Double) As Long

Description

Sets a board parameter.

Parameters

device	Device number of the board as specified in Exacq Control Center. Valid device
	numbers range from 1 to 63.
index	Board parameter to set. See below.
value	Value to assign to the parameter.

Board Parameters

XDA_BOARD_PARM_AIN_MEMORY

The board has a large amount of on board RAM. The total amount of usable memory is available in the Ain_memory member of the BoardInfo structure returned via a call to XDA_Board_GetInfo(). By default, most of the memory is allocated to the output, with additional memory allocated to the input and for DSP functionality, such as FFTs. In many applications, particularly when capturing data at very high speed, when capturing with multiple boards such that the PCI throughput is exceeded by the aggregate capture rate, or when running multichannel FFTs, more on board memory should be allocated to input or DSP. To avoid a XDA_ERR_MEMORY_SIZE error, first reduce the Aout memory before increasing the allocation to Ain or DSP.

XDA_BOARD_PARM_AOUT_MEMORY

See description under XDA BOARD PARM AIN MEMORY

XDA_BOARD_PARM_AUX_BNC

Sets function of the CH/XH auxiliary BNC connector. Valid values are:

0 = Input - External trigger. This is the default.

1 = Output - Ain internal clock

2 = Output - Aout internal clock

0x100 = Input - receive Ain external clock

0x200 = Input - receive Aout external clock

0x400 = Input clock is sinewave (0 V threshold); otherwise TTL is assumed

XDA_BOARD_PARM_INT_SYNC_MASTER

Valid only on CH boards. In internal sync mode, a master board can drive Ain sample clock and trigger to slave boards via the digital I/O header and a ribbon connector

internal to the PC. This leaves the Aux BNC free for external trigger on the master. Do not set XDA_BOARD_PARM_AUX_BNC to anything other than external trigger mode when using internal sync master mode. On CH, valid values are:

XDA_BOARD_SYNC_DISABLE = disable internal sync master mode XDA_BOARD_SYNC_AIN = enable internal ain sync master mode XDA_BOARD_SYNC_AOUT = enable internal aout sync master mode

XDA_BOARD_PARM_INT_SYNC_SLAVE

Valid only on CH boards. In internal sync mode, a master board can drive Ain sample clock and trigger to slave boards via the digital I/O header and a ribbon connector internal to the PC. Aux BNC can not be used for any purpose on a board configured in internal sync slave mode.

On CH, valid values are:

XDA_BOARD_SYNC_DISABLE = disable internal sync master mode XDA_BOARD_SYNC_AIN = enable internal ain sync master mode XDA_BOARD_SYNC_AOUT = enable internal aout sync master mode

XDA_BOARD_PARM_DSP_MEMORY

See description under XDA_BOARD_PARM_AIN_MEMORY

XDA_BOARD_PARM_EXTERNAL_CLOCK

On CH/XH, this parm functions identically to XDA_BOARD_PARM_AUX_BNC. On CM/XM, valid values are:

0 = Unused (input). This is the default.

0x100 = Input - receive Ain external clock

0x200 = Input - receive Aout external clock

XDA_BOARD_PARM_EXTERNAL_MUX

Switches B-125x external multiplexer attached to CH series boards or XH series boards with digital I/O. On XH boards, you must enable the Right Local Bus outputs on lines 0 and 1 or the function will fail with XDA_ERR_PXI_NOT_ENABLED. You can control up to 8 boxes by passing in channel flags + box_id * 256. Pass in the following bit flags to turn channels on/off:

0 = all channels off

- 1 =channel 1 on
- 2 =channel 2 on
- 4 =channel 3 on
- 8 =channel 4 on
- 15 = all 4 channels on

XDA_BOARD_PARM_TIMEOUT

Sets a timeout for the device for synchronous functions so that control will eventually be returned to the application if a problem occurs.

XDA_CT_Config

Prototype

C: i32 XDA_CT_Config(i32 device, i32 ct_num, i32 count, i32 mode, i32 flags)

VB: XDA_CT_Config (ByVal device As Long, ByVal ct_num As Long, ByVal count As Long, ByVal mode As Long, ByVal flags as Long) As Long

Description

Configures settings for a specified counter.

Parameters

device	Device number of the device as specified in Acquitek Control Center. Valid
	device numbers range from 1 to 63.
ct_num	Zero-based counter/timer to configure. Valid values vary based on device type.
count	period from the beginning of one count to the beginning of the next count.
mode	counter mode (see below).

XDA_CT_MODE_ONE_SHOT

On 2nd clock after rising edge of gate, output switches low, counter is loaded with count, and counter begins decrementing on each rising edge of clock. Output stays low until count reaches zero, then goes high until next rising edge of gate. Counting continues if gate goes low, and counter is set to count upon a rising edge of gate, even if it hasn't reached zero.

XDA_CT_MODE_PULSE

While gate is high, counter decrements. Upon reaching zero, output goes low for one clock period. Then the counter is reloaded with count and output goes high and the cycle repeats.

XDA_CT_MODE_SQUARE

While gate is high, counter decrements. Upon reaching 1/2 count, output goes low. When the counter reaches zero, the counter is reloaded with count and output goes high and the cycle repeats. Note: odd count values will have a duty cycle which is non-symmetric by one clock cycle.

XDA_CT_MODE_STROBE

On rising edge of gate, counter is loaded with count+1 and counter begins decrementing on each rising edge of clock. When counter reaches zero, output switches low for one clock cycle, then high. Counting continues if gate goes low, and counter is set to count upon a rising edge of gate, even if it hasn't reached zero.

XDA_CT_MODE_COUNT

This mode is only available on CH and XH boards. On every rising edge of gate, the count value decrements. When counter reaches zero, it is reset to count and the output goes low for one clock cycle.

XDA_CT_MODE_HI

The output set high until the mode is changed. Count has no effect.

flags sets counter/timer options.

XDA_CT_FLAG_GATE_SW

use software gate mode. Gate is controlled by XDA_CT_Gate.

- *XDA_CT_FLAG_GATE_HW* use hardware gate mode. Gate is controlled by external pin.
- *XDA_CT_FLAG_CLOCK_INTERNAL* use internal clock.
- *XDA_CT_FLAG_CLOCK_EXTERNAL* use external clock.
- *XDA_CT_FLAG_OUT_INVERT* invert counter/timer output pin state.

XDA_CT_Gate

Prototype

- C: i32 XDA_CT_Gate(i32 device, i32 ct_num, i32 value)
- VB: XDA_CT_Gate (ByVal device As Long, ByVal ct_num As Long, ByVal value As Long) As Long

Description

Switches a software counter/timer gate between digital logic high and digital logic low.

device	Device number of the device as specified in Acquitek Control Center. Valid
	device numbers range from 1 to 63.
ct_num	Zero-based counter/timer gate to switch. Valid values vary based on device
	type.
value	set this to 1 for digital logic high, 0 for digital logic low.

XDA_CT_GetParm

Prototype

- C: i32 XDA_CT_GetParm(i32 device, i32 ct_num, i32 index, f64 *value)
- VB: XDA_CT_GetParm (ByVal device As Long, ByVal ct_num As Long, ByVal index As Long, value As Double) As Long

Description

Gets the current value of the specified counter/timer parameter.

Parameters

device	Device number of the device as specified in Acquitek Control Center. Valid
	device numbers range from 1 to 63.
ct_num	Zero-based counter/timer number. Valid values vary based on device type.
index	Counter/timer parameter to check. See below.
value	This variable will be assigned the current value of the specified parameter.

Counter/Timer Parameters

XDA_CT_PARM_OUT_ENABLE

Enables/disables counter/timer output on digital I/O pins 8 and 9 for CH Series boards.

XDA_CT_PARM_CLOCK_MULTIPLIER

The value of how much faster the counter clock runs then the clock associated with the counter. To get an expected result, multiple this value by a desired count when setting XDA_CT_Config, or divide the clock by this value when setting it.

XDA_CT_Read

Prototype

- C: i32 XDA_CT_Read(i32 device, i32 ct_num, i32* count)
- VB: XDA_CT_Read (ByVal device As Long, ByVal ct_num As Long, count As Long) As Long

Description

Reads the count of a counter/timer without changing its value.

device	Device number of the device as specified in Acquitek Control Center. Valid
	device numbers range from 1 to 63.
ct_num	Zero-based counter/timer to read. Valid values vary based on device type.
count	This variable will be assigned the current count of the counter/timer.

XDA_CT_SetParm

Prototype

C: i32 XDA_CT_SetParm(i32 device, i32 ct_num, i32 index, f64 value)

VB: XDA_CT_SetParm (ByVal device As Long, ByVal ct_num As Long, ByVal index As Long, ByVal value As Double) As Long

Description

Sets a counter/timer parameter.

Parameters

device	Device number of the device as specified in Acquitek Control Center. Valid
	device numbers range from 1 to 63.
ct_num	Zero-based counter/timer to configure. Valid values vary based on device type.
index	Counter/timer parameter to set. See below.
value	Value to assign to the parameter.

Counter/Timer Parameters

XDA_CT_PARM_OUT_ENABLE

Enables/disables counter/timer output on digital I/O pins 8 and 9 for CH Series boards.

XDA_Din_Check

Prototype

- C: i32 XDA_Din_Check(i32 device, i32 *running, i32 *count)
- VB: XDA_Din_Check (ByVal device As Long, running As Long, count As Long) As Long

Description

Checks the status of a buffered digital input operation.

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
running	This variable will be assigned a value of zero if the operation is finished,
	nonzero if the operation is still running.
count	This variable will be assigned a value equal to the number of samples
	recovered so far.

XDA_Din_Config

Prototype

- C: i32 XDA_Din_Config(i32 device, i32 port, i32 line, i32 mode)
- VB: XDA_Din_Config (ByVal device As Long, ByVal port As Long, ByVal line As Long, ByVal mode As Long) As Long

Description

Set the direction of a reversible digital input/output port to input. The line must be set to XDA ALL LINES, otherwise this function will return XDA ERR LINE NUMBER.

device	Device number of the device as specified in Acquitek Control Center. Valid
	device numbers range from 1 to 63.
port	Digital port for which to set the direction.
line	Digital line for which to set the direction. Set this to XDA_ALL_LINES to
	configure the port.
mode	Reserved variable. Set this to zero.

XDA_Din_Read

Prototype

- C: i32 XDA_Din_Read(i32 device, i32 port, i32 line, i32 *state)
- VB: XDA_Din_Read (ByVal device As Long, ByVal port As Long, ByVal line As Long, state As Long) As Long

Description

Reads from a digital input line or port.

device	Device number of the input device as specified in Acquitek Control Center. Valid device numbers range from 1 to 63.
port	Zero-based digital port from which to read the value. The range for this value depends on the number of digital inputs on the device.
line	Zero-based line from which to read the value. To read the whole port, set this value to XDA ALL LINES.
state	This variable will be assigned a binary value corresponding to the current state of the digital input. If line is set to XDA_ALL_LINES, this will be an X-bit integer where X is the number of lines in the port. Otherwise, it will be 1 for on or 0 for off.

XDA_Din_SetBuffer

Prototype

- C: i32 XDA_Din_SetBuffer(i32 device, i32 count, void *buffer)
- VB: XDA_Din_SetBuffer (ByVal device As Long, ByVal count As Long, buffer() As Any) As Long

Description

Locks a buffer and sets it up for DMA transfer in the next buffered digital input operation. To unlock the buffer, either call this function with count = 0 or lock a different buffer.

device	Device number of the input device as specified in Acquitek Control Center. Valid device numbers range from 1 to 63.
count	Total number of samples that will be collected (also, the number of elements in the buffer). Set this to zero to unlock the buffer.
buffer	A pointer to the buffer where values will be stored. This should be of the type appropriate to the data returned by the board. In Visual Basic, pass the name of the array.

XDA_Din_SetClock

Prototype

- C: i32 XDA_Din_SetClock(i32 device, f64 rate, f64 *actual)
- VB: XDA_Din_SetClock (ByVal device As Long, ByVal rate As Double, actual As Double) As Long

Description

Sets the clock rate for buffered digital input.

Full speed operation may not be possible with small buffer sizes. Buffer sizes with larger multiples of 4 KB, up to 128 KB, may be required to achieve uninterrupted transfers of multiple channels at high speeds.

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
rate	Desired rate for the buffered input operation, in Hz. The range for this value
	depends on the capabilities of the device.
actual	This variable will be assigned the actual rate that will be used for the buffered
	input operation.

XDA_Din_SetSequence

Prototype

- C: i32 XDA_Din_SetSequence(i32 device, i32 count, i32 *ports)
- VB: XDA_Din_SetSequence (ByVal device As Long, ByVal count As Long, ports As Long) As Long

Description

Sets the sequence of ports to use for buffered digital input. If any of the ports is set for output, it will reflect the current output state of the port.

Currently, 2 ports must be specified. On boards with 2 digital I/O ports, it must be 0 and 1. If the board has 4 digital I/O ports, it can be 0 and 1 or 2 and 3. If you're not interested in the data from one of the ports, it can be configured as an output.

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
count	Number of ports to scan in the buffered input operation.
ports	An array of port numbers to scan. In Visual Basic, pass the first element of the
	array.

XDA_Din_SetupTrigger

Prototype

- C: i32 XDA_Din_SetupTrigger(i32 device, i32 port, i32 mask, i32 pattern, i32 flags)
- VB: XDA_Din_SetupTrigger (ByVal device As Long, ByVal port As Long, ByVal mask As Long, ByVal pattern as Long, ByVal flags as Long) As Long

Description

Sets the parameters for a digital trigger. This trigger is then enabled using XDA_Aout_SetTrigger. In most cases, the specified port should be set up as an input using XDA Din Config.

device	Device number as specified in Acquitek Control Center. Valid device numbers range from 1 to 63.
port	Port number to configure
mask	Enabled bits for trigger
pattern	For pattern trigger, this is the value to trigger on.
	For edge trigger, each bit controls rising (bit=1) or falling (bit=0).
flags	Defines type of trigger. Valid values are:
	XDA_DIN_FLAG_TRIGGER_PATTERN
	XDA_DIN_FLAG_TRIGGER_EDGE

XDA_Din_Start

Prototype

- C: i32 XDA_Din_Start(i32 device, i32 modeFlags, i32 count)
- VB: XDA_Din_Start (ByVal device As Long, ByVal modeFlags As Long, ByVal count As Long) As Long

Description

Starts a buffered digital input operation. This may not be used simultaneously with XDA_Ain_Start.

device	Device number of the input device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
modeFlags	Synchronous or asynchronous. This value can be either XDA_SYNC or
_	XDA_ASYNC. If this is set to XDA_ASYNC, the buffered input will be
	performed in the background and other operations can be performed. If it is set
	to XDA_SYNC, the function will return when the scan is complete.
count	Total number of samples to collect. This must be a multiple of 4096 bytes (i.e.
	4096 samples on an 8-bit port).

XDA_Din_Stop

Prototype

C: i32 XDA_Din_Stop(i32 device)

VB: XDA_Din_Stop (ByVal device As Long) As Long

Description

Stops the current buffered digital input operation.

Parameters

device

Device number of the input device as specified in Acquitek Control Center. Valid device numbers range from 1 to 63.

XDA_Dout_Check

Prototype

- C: i32 XDA_Dout_Check(i32 device, i32 *running, i32 *rsvd)
- VB: XDA_Dout_Check (ByVal device As Long, running As Long, rsvd As Long) As Long

Description

Checks the status of a digital output operation.

device	Device number as specified in Acquitek Control Center. Valid device numbers
	range from 1 to 63.
running	This variable will be assigned a value of zero if the operation is finished,
	nonzero if the operation is still running.
rsvd	Reserved variable. Set to zero.

XDA_Dout_Config

Prototype

- C: i32 XDA_Dout_Config(i32 device, i32 port, i32 line, i32 mode)
- VB: XDA_Dout_Config (ByVal device As Long, ByVal port As Long, ByVal line As Long, ByVal mode As Long) As Long

Description

Set the direction of a reversible digital input/output port to output. The line must be set to XDA_ALL_LINES, otherwise this function will return XDA_ERR_LINE_NUMBER.

device	Device number of the device as specified in Acquitek Control Center. Valid
	device numbers range from 1 to 63.
port	Digital port for which to set the direction.
line	Digital line for which to set the direction. Set this to XDA_ALL_LINES to
	configure the port.
mode	Reserved variable. Set this to zero.

XDA_Dout_SetBuffer

Prototype

- C: i32 XDA_Dout_SetBuffer(i32 device, i32 count, void *buffer)
- VB: XDA_Dout_SetBuffer Alias (ByVal device As Long, ByVal count As Long, buffer() As Any) As Long

Description

Locks a buffer and sets it up for DMA transfer in the next buffered digital output operation. To unlock the buffer, either call this function with count = 0 or lock a different buffer.

device	Device number of the output device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
count	Total number of values that will be output (also, the number of elements that
	are in the buffer). Set this to zero to unlock the buffer.
buffer	Buffer to use for output. This should be of the type appropriate to the data
	returned by the board. In Visual Basic, pass the name of the array.

XDA_Dout_SetClock

Prototype

- C: i32 XDA_Dout_SetClock(i32 device, f64 rate, f64 *actual)
- VB: XDA_Dout_SetClock (ByVal device As Long, ByVal rate As Double, actual As Double) As Long

Description

Sets the clock rate for buffered digital output.

Full speed operation may not be possible with small buffer sizes. Buffer sizes with larger multiples of 4 KB, up to 128 KB, may be required to achieve uninterrupted transfers of multiple channels at high speeds.

device	Device number of the output device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
rate	Desired rate for the buffered output operation, in Hz. The range for this value
	depends on the capabilities of the device.
actual	This variable will be assigned the actual rate that will be used for the buffered
	output operation.

XDA_Dout_SetSequence

Prototype

- C: i32 XDA_Dout_SetSequence(i32 device, i32 count, i32 *ports)
- VB: XDA_Dout_SetSequence (ByVal device As Long, ByVal count As Long, ports As Long) As Long

Description

Sets the sequence of ports to use for buffered digital output. If one of these ports is set for input, it will not be changed by the buffered output operation.

Currently, 2 ports must be specified. On boards with 2 digital I/O ports, it must be 0 and 1. If the board has 4 digital I/O ports, it can be 0 and 1 or 2 and 3. If you're not interested in the data from one of the ports, it can be configured as an input.

device	Device number of the output device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
count	Number of ports that will be used in the buffered output operation.
ports	An array of digital output ports to use in the buffered output operation. In
	Visual Basic, pass the first element of the array.

XDA_Dout_Start

Prototype

- C: i32 XDA_Dout_Start(i32 device, i32 count, i32 iterations)
- VB: XDA_Dout_Start (ByVal device As Long, ByVal count As Long, ByVal iterations As Long) As Long

Description

Starts a buffered digital output operation. This may not be used simultaneously with XDA_Aout_Start. The waveform will be output the number of times specified by iterations. If iterations is 0, the waveform will loop until stopped.

device	Device number of the output device as specified in Acquitek Control Center.
	Valid device numbers range from 1 to 63.
count	Total number of samples in the buffer. This must be a multiple of 64 bytes (i.e.
	64 samples on an 8-pit port).
iterations	Number of times to output the buffer or 0 for continuous output.

XDA_Dout_Stop

Prototype

C: i32 XDA_Dout_Stop(i32 device)

VB: XDA_Dout_Stop (ByVal device As Long) As Long

Description

Stops the current buffered digital output operation.

Parameters

device

Device number of the output device as specified in Acquitek Control Center. Valid device numbers range from 1 to 63.

XDA_Dout_Write

Prototype

- C: i32 XDA_Dout_Write(i32 device, i32 port, i32 line, i32 state)
- VB: XDA_Dout_Write (ByVal device As Long, ByVal port As Long, ByVal line As Long, ByVal state As Long) As Long

Description

Writes a value to a digital output line or port.

device	Device number of the output device as specified in Acquitek Control Center. Valid device numbers range from 1 to 63.
port	Zero-based digital port on which to write the value. The range for this value depends on the number of digital outputs on the device.
line	Zero-based line on which to write the value. To write to the whole port, set this value to XDA ALL LINES.
state	Binary value corresponding to the state at which to set the digital output. If line is set to XDA_ALL_LINES, this will be an X-bit integer where X is the number of lines in the port. Otherwise, it will be 1 for on or 0 for off.

C Programming Information

Programming Notes

Some information to note about using the Acquitek Data Acquisition SDK with the C programming language:

- XDADAQ.H should be included by any file that uses the Acquitek API. This file defines the necessary structs and constants and provides prototypes for Acquitek DA functions. This file is in the C:\Program Files\Acquitek\include directory.
- XDADAQ.lib contains the API functions. It should be linked with any program compiled by a Microsoft compiler that uses the Acquitek API. This file is in the C:\Program Files\Acquitek\lib directory.
- XDADAQ-Borland.lib should be linked with any program compiled by a Borland compiler that uses the Acquitek API.
- All Acquitek API functions use the WINAPI calling convention.
- The errCheck function included in the C samples is used to check for errors. Some helper functions are included in makewave.c and plot.c. In order to use these functions, helpers.h must be included and the proper file must be linked.

Sample Programs

Beginning on the next page, descriptions of sample C programs are listed, along with the functions they demonstrate and notes for how to connect wires to best demonstrate each sample.

ain.c:

Reads the voltage from an analog input one time.

Demonstrates: XDA_Ain_ReadVolts XDA_Board_Cleanup

Wiring Notes: Connect voltage source to input channel

Usage: ain [-?] [-d#] [-i#] -? : prints usage -d# : device number -i# : input channel

Default: ain -d1 -i0

ain-buf.c:

Test the streaming analog input. Deinterleave and average the data after it is collected.

Demonstrates:

XDA_Ain_SetBuffer XDA_Ain_SetClock XDA_Ain_SetScanRate XDA_Ain_SetSequence XDA_Ain_Start XDA_ASYNC XDA_Ain_Check XDA_Ain_Deinterleave XDA_Ain_ConvertToVolts XDA_Board_Cleanup

Wiring Notes: Connect a voltage source to the input channel

Usage:

ain-buf [-?] [-d#] [-s#] [-c#] [-r#] [-f*] -? : prints usage -d# : device number -s# : number of samples -c# : number of channels(1 to 4) -r# : clock rate for sampling -f* : file name to output data

Default: ain-buf -d1 -s2048 -c1 -r100000

ain-mb.c:

Sets up a multi-buffered input to read voltages. Prints the average input on each half-buffer or stores them to a file.

Demonstrates:

Wiring Notes:

Connect voltage source to input channel

Usage:

ain-mb [-?] [-d#] [-s#] [-i#] [-r#] [-f*] -? : prints usage -d# : device number -s# : number of samples -i# : input channel -r# : clock rate for sampling -f* : file name to output data

Default: ain-mb -d1 -s4096 -i1 -r100000

ain-raw.c:

Reads raw data from an input channel using different voltage ranges. The ranges tested will vary based on board specifications.

Demonstrates:

Wiring Notes:

Connect a voltage source to the input channel

Usage:

ain-raw [-?] [-d#] [-i#]
-? : prints usage
-d# : device number
-i# : input channel

Default: ain-raw -d1 -i0

ain-trig.c:

Test the streaming analog input with trigger. Starts capturing data after input voltage raising above threshold voltage. Deinterleave and average the data after it is collected.

Demonstrates:

XDA_Ain_SetBuffer XDA_Ain_SetTrigger XDA_TRIGGER_RISING XDA_Ain_SetClock XDA_Ain_SetScanRate XDA_Ain_SetSequence XDA_Ain_Start XDA_ASYNC XDA_Ain_Check XDA_Ain_Deinterleave XDA_Ain_ConvertToVolts XDA_Board_Cleanup

Wiring Notes:

Connect a voltage source to the input channel.

Usage:

ain-trig [-?] [-d#] [-s#] [-c#] [-t#] [-p#] [-r#] [-f*]
-? : prints usage
-d# : device number
-s# : number of samples
-c# : number of channels(1 to 4)
-p# : pre or post trigger delay
-r# : clock rate for sampling
-f* : file name to output data

Default: ain-trig -d1 -s524288 -t2.5 -c1 -p0 -r100000

aio.c:

Tests analog I/O by writing different voltages to the output and then reading the voltages (many times) from the input.

Demonstrates:

XDA_Aout_WriteVolts XDA_Ain_ReadVolts

Wiring Notes:

Connect the analog output channel specified to the analog input channel specified

Usage:

aio [-?] [-d#] [-r#] [-i#] [-o#] [# # #...] -? : prints usage -d# : device number -r# : number of read times -i# : input channel -o# : output channel # # #... : voltages to output

Default: aio -d1 -r100 -i0 -o0 0 1 2 3 4 5

aio-ibuf.c:

Outputs various voltages and read them in with an Input Buffer using the same board.

Demonstrates:

XDA_Ain_SetBuffer XDA_Ain_SetClock XDA_Ain_SetScanRate XDA_Ain_SetSequence XDA_Aout_WriteVolts XDA_Ain_Start XDA_ASYNC XDA_Ain_Check XDA_Ain_ConvertToVolts XDA_Board_Cleanup

Wiring Notes:

Connect the corresponding input/output channels together. i.e. Ain 0 to Aout 0.

Usage:

aio-ibuf [-?] [-d#] [-s#] [-c#] [-r#] [# # #...] -? : prints usage -d# : device number -s# : number of samples -c# : channel, both input and output -r# : clock rate for sampling # # #... : values to output

Default: aio-ibuf -d1 -s2048 -c1 -r100000 0 1 2 3 4

aio-obuf.c:

Outputs a sin wave and reads in a number of voltages

Demonstrates:

XDA_Aout_ConvertToRaw XDA_Aout_SetClock XDA_Aout_SetBuffer XDA_Aout_SetSequence XDA_Aout_Start XDA_Ain_ReadVolts XDA_Aout_Check XDA_Aout_Check XDA_Aout_Stop XDA_Aout_SetBuffer XDA_Board_Cleanup

Wiring Notes:

Connect the corresponding input/output channels together. i.e. Ain 0 to Aout 0.

Usage:

aio-obuf [-?] [-d#] [-o#] [-r#] [-c#] [-i#] -? : prints usage -d# : device number -o# : output channel -r# : clock rate -c# : count of points -i# : number of iterations

Default: aio-obuf -d1 -o0 -r250000 -c1024 -i1

aout.c:

Writes voltages to output channel one after the other

Demonstrates: XDA_Aout_WriteVolts XDA_Board_Cleanup

Wiring Notes: Connect output channel to volt meter

Usage:

aout [-?] [-d#] [-o#] [# # #...]
-? : prints usage
-d# : device number
-o# : output channel
#... : voltages to output

Default: aout -d1 -o0 0.0 1.0 2.0 3.0 4.0

aout-buf.c:

Outputs a sin wave on one of the analog output channels

Demonstrates:

XDA_Aout_ConvertToRaw XDA_Aout_SetClock XDA_Aout_SetBuffer XDA_Aout_SetSequence XDA_Aout_Start XDA_Aout_Stop XDA_Board_Cleanup

Wiring Notes:

Connect a scope to the output channel to see the sin wave

Usage:

aout-buf [-?] [-d#] [-o#] [-r#] [-c#] [-i#] -? : prints usage -d# : device number -o# : output channel -r# : clock rate -c# : count of points -i# : number of iterations

Default: aout-buf -d1 -o0 -r250000 -c1024 -i1

aout-mb.c:

Sets up and output in multibuffer mode.

Demonstrates:

Wiring Notes:

Connect scope to output channel

Usage:

aout-mb [-d <device>] [-o <channel>] [-r <rate>] [-i <input file>] [-b <buffer size>]

Default:

aout-mb -d 1 -o 0 -r 13.5e6

aout-raw:

Test output using raw values rather than voltages.

Demonstrates: XDA_Aout_WriteRaw XDA_Board_Cleanup

Wiring Notes:

Connect output channel to a volt meter

Usage:

aout-raw [-?] [-d#] [-o#] [# # #...] -? : prints usage -d# : device number -o# : output channel # # #... : raw data to output

Default: aout-raw -d1 -o0 0 8000 16000 24000 32000

aout-trig.c:

Outputs a sin wave every time the zeroth bit is triggered (raised on port 0)

Demonstrates:

Wiring Notes:

Connect scope to output channel and switch/button to bit zero of digital port 0

Usage:

aout-trig [-?] [-d#] [-o#] [-r#] [-c#] [-i#] -? : prints usage -d# : device number -o# : output channel -r# : clock rate -c# : count of points -i# : number of iterations

Default: aout-trig -d1 -o0 -r250000 -c1024 -i1

brd-sync.c:

The Master uses the digital I/O ports to clock and trigger the Slave boards. Up to 8 boards have been tested in this configuration. Board 1 is always the master.

Demonstrates:

XDA Board SetParm XDA BOARD PARM AOUT MEMORY XDA BOARD PARM DSP MEMORY XDA BOARD PARM AIN MEMORY XDA BOARD PARM INT SYNC MASTER XDA BOARD PARM INT SYNC SLAVE XDA_Ain_SetBuffer XDA Ain SetClock XDA Ain SetSequence XDA Ain GetParm XDA AIN PARM EXT CLK DIVISOR XDA_AIN_PARM_TRIGGER_OFFSET XDA Dout Config XDA ALL LINES XDA Ain SetParm XDA_AIN_PARM_TRIGGER_DELAY XDA_AIN_PARM_EXT_CLK_DIVISOR XDA Ain SetTrigger XDA TRIGGER RISING XDA TRIGGER EXTERNAL XDA TRIGGER DIGITAL XDA Din Config XDA ALL LINES XDA_DIN_MODE_TERMINATED XDA_Din_SetupTrigger XDA DIN FLAG TRIGGER EDGE XDA Ain Start XDA ASYNC XDA Ain Check XDA_Ain Stop XDA Board Cleanup

Wiring Notes:

Connect the master board to the slave boards via the digital I/O header with a ribbon connector. Trigger the master with an external trigger. Connect voltage sources to all the analog inputs.

Usage: brd-sync [-?] [-n#] [-c#] [-r#] [-s#] [-t#] [-f*] -? : prints usage -n# : number of devices -c# : number of channels -r# : clock rate -s# : sample size per channel -t# : pretrigger sample size -f* : output file name

Default: brd-sync -n2 -c2 -r10000 -t100 -s4096

ct.c:

Demostrates a software gated counter in the mode of the users choice. Note: If using an external clock, must execute XDA_CT_Config before

Demonstrates:

XDA Board GetInfo FAMILY CH XDA Dout Config XDA CT SetParm XDA CT PARM OUT ENABLE XDA CT PARM CLOCK MULTIPLIER XDA Ain SetClock XDA Aout SetClock XDA CT Config XDA CT MODE HI XDA CT MODE ONE SHOT XDA CT MODE PULSE XDA CT MODE SOUARE XDA CT MODE STROBE XDA CT MODE COUNT XDA CT FLAG GATE SW XDA CT FLAG OUT INVERT XDA CT Gate

ADA_C1_Oale

Wiring Notes:

Connect an LED or scope to the counter output pin (see manual for pin numbers)

Usage:

ct [-?] [-d#] [-c#] [-r#] [-n#] -? : prints usage -d# : device number -c# : counter number -r# : clock rate -n# : number to count from -m# : mode of counter - see SDK for more details 0 : HI 1 : ONE_SHOT 2 : PULSE 3 : SQUARE 4 : STROBE 5 : COUNT

Default: ct -d1 -c0 -r10000 -n10000 -m3

din.c:

Figures out how many digital inputs on the device and then checks the state of the whole port, then the individual bits. Ports are pulled high by default

Demonstrates:

XDA_Board_GetInfo XDA_Din_Config XDA_ALL_LINES XDA_Din_Read XDA_ALL_LINES XDA_Board_Cleanup

Wiring Notes:

Connect digital signal to any digital port of the board

Usage:

din [-?] [-d#]
-? : prints usage
-d# : device number

Default: din -d1

din-buf.c:

Test the streaming digital input. Can be output to a file if specified.

Demonstrates:

Wiring Notes: Connect digital signal to input port 0 (8 bits).

Usage:

din-buf [-?] [-d#] [-s#][-r#] [-f*]
-? : prints usage
-d# : device number
-s# : number of samples
-r# : clock rate for sampling
-f* : file name to output data

Default: din-buf -d1 -s2048 -r100000

dio.c:

Tests digial I/O by writing different values to the output and then reading them from the input.

Demonstrates:

XDA_Din_Config XDA_Dout_Config XDA_Din_Read XDA_Dout_Write XDA_Board_Cleanup

Wiring Notes:

Connect the pins from the input port to the corresponding pins of the output port.

Usage:

dio [-?] [-d#] [-o#] [-i#] [-pXX] -? : prints usage -d# : device number -o# : output port -i# : input port -pXX : hex pattern to output

Default: dio -d1 -o0 -i1 -paa

dout.c:

Turns all (or inputed pattern) digital out lines of the output port, then off. Then cycles through turning each line on and off.

Demonstrates:

Wiring Notes: Connect digial output port to LEDs or other indicator

Usage:

dout [-?] [-d#] [-o#] [-pXX] -? : prints usage -d# : device number -o# : output channel -pXX : hex pattern to output

Default: dout -d1 -o0 -p0

dout-buf.c:

Test the streaming digital output. Pattern can either be from a binary file or a command line argument.

Demonstrates:

XDA_Dout_Config XDA_Din_Config XDA_Dout_SetClock XDA_Dout_SetSequence XDA_Dout_SetBuffer XDA_Dout_Start XDA_Dout_Stop XDA_Board_Cleanup

Wiring Notes:

Connect LED or Logic analyiser to Port 0 (8 bits) or Port 0/1 (16 bits)

Usage:

dout-buf [-?] [-d#] [-c#] [-b#] [-l] [-f*] (xxxx) -? : prints usage -d# : device number -c# : clock speed (in Hz) -b# : number of bits (8, 16) -l : looping -f* : file for pattern (given pattern ignored) (xxxx) : pattern (must have if no filename)

Default: dout-buf -d1 -c1000 -b8 (xxxx)

echo_mode.c:

Sets up multibuffer capture and echo mode.

Demonstrates:

XDA Ain SetParm XDA AIN PARM MULTIBUFFER XDA Ain SetBuffer XDA Ain SetSequence XDA Ain SetClock XDA Aout SetParm XDA AOUT PARM ECHO DELAY XDA_Aout_SetClock XDA Aout SetSequence XDA Aout SetBuffer XDA Dout Config XDA Dout Write XDA Din SetupTrigger XDA Aout SetTrigger XDA Ain SetTrigger XDA_Ain_Start XDA_Aout_Start XDA Dout Write XDA_Aout Stop XDA Ain Stop XDA Board Cleanup

Wiring Notes:

Connect signal you want to echo on chan0, and scope to output chan0

Usage:

echo_mode [-d <device>] [-s <delay>] [-o <channel>] [-r <rate>]

Default:

echo mode -d 1 -s 1000 -o 1 -r 10e6

fft.c:

Start a one or two channel buffered analog input with FFT.

Demonstrates:

Wiring Notes:

Connect a voltage source to the input channel

Usage:

fft [-?] [-d#] [-c#] [-n#] [-r#] [-f*]
-? : prints usage
-d# : device number
-c# : number of channels (1 or 2)
-n# : number of fft points(16 to 4096 (2^#))
-r# : clock rate for sampling
-f* : file name to output data

Default: fft -d1 -c1 -n1024 -r250000 -ffft.dat

info.c:

Gets the board info from the device

Demonstrates:

Wiring Notes:

None

Usage:

info [-?] [-d#]
-? : prints usage
-d# : device number

Default: info -d1

mul-brd.c:

Captures streaming analog input from 2 boards at the same time. If sample size, clock rate and number of channels are high enough, it will exceed the limits of the PCI throughput.

Demonstrates:

XDA_Ain_SetBuffer XDA_Ain_SetClock XDA_Ain_SetSequence XDA_Board_SetParm XDA_BOARD_PARM_AOUT_MEMORY XDA_BOARD_PARM_DSP_MEMORY XDA_BOARD_PARM_AIN_MEMORY XDA_Ain_Start XDA_ASYNC XDA_Ain_Check XDA_Board_Cleanup

Wiring Notes:

Connect voltage sources to the analog inputs of the boards.

Usage:

mul-brd [-?] [-c#] [-r#] [-s#] -? : prints usage -c# : number of channels -r# : clock rate -s# : sample size per channel

Default: mul-brd -c1 -r10000 -s4096

mux.c:

Switch inputs on a B-125x external multplexer box connected to a CH series board.

Demonstrates: XDA_Board_SetParm XDA_BOARD_PARM_EXTERNAL_MUX

Wiring Notes: None

Usage:

mux [-?] [-d#] [-i#] [-b#] -? : prints usage -d# : device number -i# : input number -b# : box id number

Default: mux -d1 -i0 -b0

pll.c:

Enables PLL on Acquitek CM board, and starts a multibuffered capture with synchronized clock.

Demonstrates:

XDA Ain SetParm XDA AIN PARM MULTIBUFFER XDA AIN PARM POLARITY XDA BIPOLAR XDA Ain SetBuffer XDA Ain SetClock XDA Ain SetSequence XDA Ain SetPll XDA Ain SetTrigger XDA TRIGGER EXTERNAL XDA TRIGGER RISING XDA Ain Start XDA Ain GetParm XDA Ain MB Check XDA Ain MB Copy XDA_Ain_Stop XDA_Board SetParm XDA BOARD PARM TIMEOUT XDA Board Cleanup

Wiring Notes:

Connect shaft encoder output (or similar source to which the sampling should lock) to Ctrl 0 Gate. Connect once per revolution signal (or similar reference) to A/D SeqSt.

Usage:

pll [-?] [-d#] [-c#] [-s#] [-r#] [-t#] [-b#] [-z#] [-l#] -? : prints usage -d# : device number -c# : number of channel -s# : samples per pulse -r# : clock rate -t# : run time (in sec) -b# : bandwidth (in rad/s) -z# : damping coefficient -l# : lock threshold

Default: pll -d1 -c2 -s256 -r1000 -t30 -b10 -z1 -l0.1

pxi.c:

Board in PXI Star Trigger Controller slot triggers on a software trigger, and forward the trigger out on the star trigger lines. Other (up to 8 boards, 4 channels each) PXI board are configured to trigger via the star trigger input.

Demonstrates:

XDA Board SetParm XDA BOARD PARM AOUT MEMORY XDA BOARD PARM DSP MEMORY XDA BOARD PARM AIN MEMORY XDA BOARD PARM TIMEOUT XDA Ain SetSequence XDA Ain SetClock XDA Ain SetBuffer XDA Ain SetParm XDA AIN PARM STAR CTRLR OUTPUT XDA AIN PARM_SW_TRIGGER XDA Ain SetTrigger XDA AIN TRIGGER SOFTWARE XDA AIN TRIGGER PXI STAR XDA AIN TRIGGER RISING XDA Ain Start XDA ASYNC XDA Ain Check XDA Ain Stop XDA Ain ConvertToVolts XDA Board Cleanup

Wiring Notes:

Connect voltages to the analog inputs of all the boards. Device 1 must be in the Star Trigger Controller slot of PXI chassis and PXI Slot must be set to 2 in Acquitek Control Center

Usage:

pxi [-?] [-n#] [-c#] [-r#] [-s#] [-f*] -? : prints usage -n# : number of devices -c# : number of channels -r# : clock rate -s# : sample size -f* : output file name

Default: pxi -n2 -c1 -r10000 -s4096

temp.c:

Gets the temperature of the device

Demonstrates: XDA_Board_GetParm XDA_BOARD_PARM_TEMPERATURE XDA_Board_Cleanup

Wiring Notes: None

Usage: temp [-?] [-d#] -? : prints usage -d# : device number

Default: temp -d1

Microsoft® Visual Basic® Programming Information

Programming Notes

Some information to note about using the Acquitek Data Acquisition SDK with Visual Basic:

- XDADAQ.bas contains prototypes of Acquitek DA API functions and should be added to Visual Basic projects that use the API.
- XDADAQ.dll contains the API functions and must be in the current directory or path of any system running a Visual Basic program that uses the Acquitek DA API.
- Some functions take arrays as arguments. Some of these will require the first element of the array to be passed; others will require the array name. See the corresponding pages of this document for more information.
- When a program calls a SetBuffer function in Visual Basic, XDADAQ.bas calls a corresponding SetBufferSA function. These functions use SAFEARRAY to ensure the proper handling of arrays. These functions will return XDA_ERR_SA_LOCK if SafeArrayLock or SafeArrayUnlock returns an error.
- Visual Basic does not utilize unsigned data types. In unipolar mode on 16-bit boards (such as the CM Series), raw D/A or A/D values should be stored in a variable of the Integer data type. Values greater than 32767 will be stored as negative numbers. They can be converted to voltages as usual, with XDA_Ain_ConvertToVolts. To find the correct raw value, copy the value from the Integer to a variable of the Long data type, then add 65536 to negative values.
- The ErrCheck sub procedure included in the Visual Basic samples is used to check for errors.

Sample Programs

Beginning on the next page, descriptions of sample Visual Basic programs are listed, along with the functions they demonstrate and notes for how to connect wires to best demonstrate each sample.

ain

Description

Writes a series of voltages to an analog output specified by the user and then reads them from an analog input (also specified by the user).

Demonstrates:

XDA_Aout_WriteVolts XDA_Ain_ReadVolts

Wiring Notes:

Connect the specified analog output to the specified analog input. By default, this sample uses device 1, output channel 0, and input channel 0.

Description

Writes a series of voltages to an analog output specified by the user and then reads them from an analog input (also specified by the user) using buffered input.

Demonstrates:

XDA_Ain_SetSequence XDA_Ain_SetClock XDA_Ain_SetScanRate XDA_Ain_SetBuffer XDA_Aout_WriteVolts XDA_Ain_Start XDA_Ain_Check XDA_Ain_ConvertToVolts

Wiring Notes:

Connect the specified analog output to the specified analog input. By default, this sample uses device 1, output channel 0, and input channel 0.

Description

Writes a positive voltage to one channel (specified in the file) and a voltage of zero to another channel. Samples two input channels (specified in the file) using a buffered input.

Demonstrates:

XDA_Aout_WriteVolts XDA_Ain_SetBuffer XDA_Ain_SetSequence XDA_Ain_SetClock XDA_Ain_SetScanRate XDA_Ain_Start XDA_Ain_Check XDA_Ain_ConvertToVolts

Wiring Notes:

To see best results, connect analog output channels 0 and 1 to analog input channels 0 and 1, respectively. Channels not connected will show a voltage of (near) zero. This sample will most likely use device 1.

Description

Conducts a single-channel buffered analog input of a channel specified in the file and displays some of the results.

Demonstrates:

XDA_Ain_SetBuffer XDA_Ain_SetSequence XDA_Ain_SetClock XDA_Ain_SetScanRate XDA_Ain_Start XDA_Ain_Check XDA_Ain_ConvertToVolts

Wiring Notes:

To see best results, connect an analog source to the analog input channel specified in the file. This sample will most likely use device 1, input channel 0.

aincheck

Description

Reads the input voltage from a channel (specified by the user).

Demonstrates:

 $XDA_Ain_ReadVolts$

Wiring Notes:

To see best results, connect an analog source to the analog input channel specified by the user. By default, this sample uses device 1, input channel 0.

ain-mb

Description

Conducts a multi-buffered analog input on one channel (specified in the file) and displays average voltage for each partial buffer.

Demonstrates:

XDA_Ain_SetParm XDA_Ain_SetBuffer XDA_Ain_SetSequence XDA_Ain_SetClock XDA_Ain_SetScanRate XDA_Ain_Start XDA_Ain_MB_Check XDA_Ain_MB_Copy XDA_Ain_ConvertToVolts XDA_Ain_Stop

Wiring Notes:

To see best results, connect an analog source to the analog input channel specified in the file. This sample will most likely use device 1, input channel 0.

ain-raw

Description

Writes a voltage to an analog output channel (specified by the user) and then reads the raw A/D values from an analog input (specified by the user) at different ranges. The ranges tested will vary based on board specifications.

Demonstrates:

XDA_Aout_WriteVolts XDA_Board_GetInfo XDA_Ain_SetParm XDA_Ain_ReadRaw

Wiring Notes:

Connect the specified analog output to the specified analog input. This sample will most likely use device 1, output channel 0, and input channel 0.

aintrig

Description

Conducts a two-channel buffered output on analog output channels 0 and 1 of a device specified by the user of values between 0.4V and 3.2V. Sets up a trigger on input channel 0 and then conducts a triggered, buffered analog input operation.

Demonstrates:

XDA_Aout_ConvertToRaw XDA_Aout_SetClock XDA_Aout_SetBuffer XDA_Aout_SetSequence XDA_Ain_SetBuffer XDA_Ain_SetClock XDA_Ain_SetClock XDA_Ain_SetTrigger XDA_Board_SetParm XDA_Aout_Start XDA_Ain_Start XDA_Aout_Stop XDA_Ain_GetParm

Wiring Notes:

Connect analog output channels 0 and 1 to analog input channels 0 and 1, respectively. This sample will most likely use device 1.

aout

Description

Writes a series of voltages to an analog output channel (specified by the user), sleeping one second between each write.

Demonstrates:

XDA_Aout_WriteVolts

Wiring Notes:

To see best results, measure the voltage from the analog output channel specified by the user. By default, this sample uses device 1, output channel 0.

aout-buf

Description

Starts a buffered analog output of voltages between 0.4V and 3.2V on an analog output channel specified by the user. Stops when the user clicks "Stop".

Demonstrates:

XDA_Aout_ConvertToRaw XDA_Aout_SetClock XDA_Aout_SetBuffer XDA_Aout_Start XDA_Aout_Stop

Wiring Notes:

To see best results, measure the voltage from the analog output channel specified by the user. By default, this sample uses device 1, output channel 0.

aout-buf2

Description

Conducts a two-channel buffered output on analog output channels 0 and 1 of a device specified by the user of values between 0.4V and 3.2V. At a specified interval, reads the input values from analog input channels 0 and 1 of another device specified by the user. Stops after it has read the channels a specified number of times.

Demonstrates:

XDA_Aout_ConvertToRaw XDA_Aout_SetClock XDA_Aout_SetBuffer XDA_Aout_SetSequence XDA_Aout_Start XDA_Aout_Stop XDA_Ain_ReadVolts

Wiring Notes:

Connect analog output channels 0 and 1 to analog input channels 0 and 1, respectively. This sample will most likely use device 1.

aout-raw

Description

Writes raw D/A values to an analog output channel specified by the user. Waits a specified amount of time between each write.

Demonstrates:

XDA_Aout_WriteRaw

Wiring Notes:

To see best results, measure the voltage from the analog output channel specified by the user. By default, this sample uses device 1, output channel 0.

din

Description

Figures out how many digital inputs the device (specified in the file) has, then reads the state of all the lines of a port (specified by the user).

Demonstrates:

XDA_Board_GetInfo XDA_Din_Config XDA_Din_Read

Wiring Notes:

To see best results, connect a digital signal to the digital input port specified by the user. This sample will most likely use device 1.

din-buf

Description

Conducts a buffered digital input on a port (specified by the user) and writes values to a different port (specified by the user). Values from 0 to 255 are written at a certain interval.

Demonstrates:

XDA_Dout_Config XDA_Din_Config XDA_Dout_Write XDA_Din_SetClock XDA_Din_SetBuffer XDA_Din_SetSequence XDA_Din_Start XDA_Din_Stop XDA_Dout_Write

Wiring Notes:

Connect lines 0-7 on the digital port specified for output to lines 0-7 on the digital port specified for input. By default, this sample uses device 1, port 0 for input and device 1, port 1 for output.

dio

Description

Writes a binary value (specified by the user) to a digital output port (specified in the file) port and then reads from another specified port (specified in the file).

Demonstrates:

XDA_Dout_Config XDA_Din_Config XDA_Dout_Write XDA_Din_Read

Wiring Notes:

Connect lines 0-7 on the digital port specified for output to lines 0-7 on the digital port specified for input. This sample will most likely use device 1, port 0 for output and device 1, port 1 for input.

dio-line

Description

Provides checkboxes for the user to turn digital output lines for a port (specified in the file) on or off. Shows the status of digital input lines on a different port (specified in the file).

Demonstrates:

XDA_Dout_Config XDA_Din_Config XDA_Dout_Write XDA_Din_Read

Wiring Notes:

Connect lines 0-7 on the digital port specified for output to lines 0-7 on the digital port specified for input. By default, this sample uses device 1 and may not work properly if no device is connected and associated with that number. If using device 1 is not possible, change the device number in dio-line.frm.

dout-buf

Description

Conducts a buffered digital output on a port (specified in the file) with binary values between 0 and 255 (0x00 and 0xff). Reads an input port (specified in the file) at an interval specified in the file.

Demonstrates:

XDA_Dout_Config XDA_Din_Config XDA_Dout_SetClock XDA_Dout_SetBuffer XDA_Dout_SetSequence XDA_Dout_Start XDA_Dout_Stop XDA_Din_Read

Wiring Notes:

Connect lines 0-7 on the digital port specified for output to lines 0-7 on the digital port specified for input. By default, this sample uses device 1, port 0 for input and device 1, port 1 for output.

getinfo

Description

Gets information about a device (specified in the file) using the XDA_Board_GetInfo function. Displays it in a form.

Demonstrates:

XDA_Board_GetInfo

Wiring Notes:

By default, this sample uses device 1 and may not work properly if no device is connected and associated with that number. If using device 1 is not possible, change the device number in getinfo.frm.

temp

Description

Gets the current board temperature of a device (specified in the file) and updates it at an interval specified in the file.

Demonstrates:

XDA_Board_GetParm

Wiring Notes:

By default, this sample uses device 1 and may not work properly if no device is connected and associated with that number. If using device 1 is not possible, change the device number in temp.frm.

Microsoft® Visual C++TM **Programming Information**

Programming Notes

Some information to note about using the Acquitek Data Acquisition SDK with Visual C++:

- XDADAQ.H should be included by any file that uses the Acquitek DA API. This file defines the necessary structs and constants and provides prototypes for Acquitek DA functions. This file is in the C:\Program Files\Acquitek\include directory.
- XDADAQ.lib contains the API functions should be linked with any program that uses the Acquitek DA API. This file is in the C:\Program Files \Acquitek\lib directory.
- All Acquitek DA API functions use the WINAPI calling convention.
- The errCheck function included in the Visual C++ samples is used to check for errors.

Sample Programs

Beginning on the next page, descriptions of sample Visual C++ programs are listed, along with the functions they demonstrate and notes for how to connect wires to best demonstrate each sample.

Description

Tests streaming input of one or two channels. Writes a constant voltage to a channel and then writes different voltages to another channel. Afterward, reads one or both of the analog input channels and shows average voltages. Note that voltages written to channel 0 will be read from input channel 0, etc.

Demonstrates:

XDA_Aout_WriteVolts XDA_Ain_SetBuffer XDA_Ain_SetClock XDA_Ain_SetScanRate XDA_Ain_SetSequence XDA_Ain_Start XDA_Ain_Check XDA_Ain_Deinterleave XDA_Ain_ConvertToVolts

Wiring Notes:

To see best results, connect analog output channels 0 and 1 to analog input channels 0 and 1, respectively. Channels not connected will show a voltage of (near) zero. This sample will most likely use device 1.

aincheck

Description

Reads an analog input channel and displays the voltage and raw A/D value.

Demonstrates:

XDA_Ain_ReadRaw XDA_Ain_ConvertToVolts

Wiring Notes:

To see best results, connect an analog source to the analog input channel specified in the file. This sample will most likely use device 1, input channel 0.

dinbuf

Description

Sets up and runs a buffered digital input on the device/port defined in dinbufDlg.cpp and outputs the results to the edit box in the dialog.

Demonstrates:

XDA_Din_Config XDA_Din_SetClock XDA_Din_SetSequence XDA_Din_SetBuffer XDA_Din_Start XDA_Din_Check

Wiring Notes:

To see best results, connect a digital signal to the digital input port specified in the file. This sample will most likely use device 1, port 0 for input.

dinline

Description

Reads the state of digital input lines on two ports. Includes a button to re-check the state.

Demonstrates:

XDA_Din_Config XDA_Din_Read

Wiring Notes:

To see best results, connect a digital signal to the digital input port specified in the file. This sample will most likely use device 1, ports 0 and 1 for input.

dioport

Description

Demonstrates digital input and output by writing a value (most likely an 8-bit integer) to a digital output port and then reading the value from a digital input port. After this, the state of each digital input line on the input port is shown.

Demonstrates:

XDA_Din_Config XDA_Dout_Config XDA_Dout_Write XDA_Din_Read

Wiring Notes:

Connect lines 0-7 on the digital port specified for output (in dioportDlg.cpp) to lines 0-7 on the digital port specified for input (in dioportDlg.cpp). This sample will most likely use device 1, port 0 for output and device 1, port 1 for input.

Acquitek Data Acquisition ActiveX Control

Overview

The Acquitek Data Acquisition SDK enables full access to Acquitek Technologies hardware from within any environment that provides a mechanism for calling dynamic link libraries (DLLs). Some developers, however, may prefer working with Microsoft ActiveX controls rather than calling the driver DLL API directly. The Acquitek Data Acquisition ActiveX Control (XDADAX) wraps the SDK API and provides the same power through familiar methods and properties.

XDADAX supplies a method for each interface exported by the driver DLL. The parameters and return values are identical. The method names have been changed slightly to conform to ActiveX method naming requirements. To determine the corresponding XDADAX method name given a driver interface name, simply delete the XDA_ prefix and remove all underscores within the name. For instance, XDA_Ain_SetClock() becomes AinSetClock(). Due to these similarities, no attempt will be made here to document usage and parameters for each XDADAX method. Please refer to the Acquitek Data Acquisition SDK manual for detailed information.

ActiveX makes it possible to simplify application programming in many cases. Rather than calling all of the methods necessary to set input type, sampling rates, and other hardware setup parameters, those details can be specified at design time using XDADAX property pages. Of course, all of those parameters can still be supplied as parameters to the various methods if the values are not known at design time.

Property Pages

ExacqDAX Control Properties		×
Board Ain Aout CT Dir	n Dout Extended	
Device Number 1	Conversion Gain 1 Range 0 Offset 0 Spacing 1	
Timeout [1]	Cancel Apply Help	

The Board properties tab is used to set board level properties at design time. Set the Device Number property to the logical device number as specified in Acquitek Control Center. If the 'Init using design values' checkbox is cleared, none of the properties specified on the XDADAX property pages will be programmed into the hardware when an application using the control is executed. This will allow the application to initialize more quickly, but will also necessitate calling all of the appropriate control methods to set up the hardware. Each of the other properties corresponds to a XDA_Board_SetParm parameter documented in the Acquitek Data Acquisition SDK Manual.

ExacqDAX Cor	trol Properties			×
Board Ain	Aout CT Dir	n Dout	Extended	
			·	
Range	5.0	Clock	100000	
Polarity	Bipolar 💌		0	
Coupling	DC	Scan	0	
Mode	PseudoDiff 💌		None	
		Trigger	NoiseReject	
	UK	Cancel	Apply Help	

The Ain properties tab is used to set analog input properties at design time. The settings are applied to all analog input channels on the device. If the application requires differing configuration among the channels, the appropriate Ain methods should be called at run time. Each of the properties corresponds to an XDA_Ain parameter documented in the Acquitek Data Acquisition SDK Manual.

ExacqDAX Con	trol Properties			×
Board Ain	Aout CT Din	Dout	Extended	1
Range	5.0	Clock	100000]
Polarity	Bipolar 💌	Update	Delayed	
Coupling	DC			
	OK I	Cancel	Apply	Help

The Aout properties tab is used to set analog output properties at design time. The settings are applied to all analog input channels on the device. If the application requires differing configuration among the channels, the appropriate Aout methods should be called at run time. Each of the properties corresponds to an XDA_Aout parameter documented in the Acquitek Data Acquisition SDK Manual.

ExacqDAX Contr	ol Properties X
Board Ain	Aout CT Din Dout Extended
Mode [Gate C Software C Hardware Clock Clock Internal C External
	OK Cancel Apply Help

The CT properties tab is used to set counter/timer properties at design time. The settings are applied to all counter/timers on the device. If the application requires differing configuration among the CTs, the appropriate CT methods should be called at run time. Each of the properties corresponds to a XDA_CT parameter documented in the Acquitek Data Acquisition SDK Manual.

ExacqDAX Control Properties	×
Board Ain Aout CT Din Dout Extended	1
Clock 100000	
Port 1 Input C Output C Output C Output	
Port 3 C Input C Output C Input O Output	
OK Cancel Apply Help	

The Din properties tab is used to set digital input properties at design time. The sampling frequency and IO direction for each port can be specified.

ExacqDAX Control Properties	×
Board Ain Aout CT Din Dout Extended	
Clock 100000	
Use Din property page to configure port direction	
OK Cancel Apply Help	

The Dout properties tab is used to set digital output properties at design time. The output clock frequency can be specified, but the port direction is taken from the Din property page.

Notes

XDADAX is installed and registered when third party drivers are selected for installation using the Acquitek Data Acquisition Setup installer. The control requires installation of the Acquitek Data Acquisition WDM driver and DLL. These files are also installed by default when the Setup installer is run. Additionally, Acquitek Control Center must be used to assign a logical device number before the hardware can be accessed by XDADAX.

To register XDADAX manually, open a command prompt and type: regsvr32 [AcquitekInstallDirectory]\thirdparty\XDADAX\XDADAX.ocx

Using Acquitek Data Acquisition SDK Signal Processing Features

Most Acquitek Technologies data acquisition boards are based upon a powerful digital signal processor (DSP). This DSP is programmed at the driver level to control the real time data acquisition functionality of the board, and is also available for general-purpose signal processing on the acquired data. Any signal processing performed on the DSP frees the host computer for higher level tasks such as graphical display, networked communications, etc. The Acquitek Data Acquisition SDK (XDADAQ SDK) provides a mechanism to utilize the general-purpose signal processing functions implemented in the DSP. The list of signal processing functions will continue to grow with future XDADAQ SDK releases

Block FFT

Introduction

The Discrete Fourier Transform (DFT) is defined by the following equation.

$$X(k) = \sum_{n=0}^{N-1} x(n) * \exp(-j2\pi kn/N), \ k = [0, N-1]$$
(1)

It is useful for a variety of applications, such as determining the frequency content of a noisy signal. This is known as spectrum analysis or power spectrum estimation. It is only a power spectrum *estimate* because the input data sequence is finite in length. A typical spectrum analysis application attempts to measure the power in the signal at each frequency. As can be seen from equation 1, X(k) is the value of the DFT at the normalized frequency k over the range $[0,2\pi)$. This maps into actual frequency by the equation

$$f = k*Fs/N \tag{2}$$

where: Fs is the sampling frequency

X(k) is, in general, a complex number. To estimate the power at frequency k, the magnitude squared of X(k) must be computed and scaled by the sequence length:

$$P(k) = (1/N)^* |X(k)|^2 = (1/N)^* [Re\{X(k)\}^2 + Im\{X(k)\}^2]$$
(3)

where: $Re{x}$ denotes the real part of the complex number x, and

Im $\{x\}$ denotes the imaginary part of the complex number x.

This results in an estimate of the frequency spectrum called the "periodogram", which is the simplest method of estimating the spectrum from a finite set of data. The factor (1/N) equates the energy in the time domain with the power in the frequency domain by Parseval's Theorem:

N-1 N-1

$$\sum_{n=0}^{N-1} |x(n)|^2 = 1/N * \sum_{k=0}^{N-1} |X(k)|^2$$
 (4)

Normalizing (4) by the sequence length yields mean-square power:

$$x_{ms} = 1/N * \sum_{n=0}^{N-1} |x(n)|^2 = 1/N^2 * \sum_{k=0}^{N-1} |X(k)|^2$$
(5)

One of the problems with the basic periodogram results from the discontinuity at the beginning and end of the data sequence. The discontinuity leads to a phenomenon known as "spectral leakage", in which energy from one frequency appears in the periodogram at other frequencies. This effect can be drastically reduced by the use of window functions. The acquired data is scaled by the window function prior to computing the periodogram, and the result is called a "windowed periodogram". Examples of the window functions implemented in the XDADAQ SDK are shown in figure 1. Two observations to be made from this figure are: 1) Using a rectangular window is equivalent to working with an unmodified finite length data sequence; 2) The shape of all other window functions is an attempt to minimize the discontinuity at the beginning and end of the data sequence.

Figure 1 - Window Functions Implemented in XDADAQ SDK

Evaluation of the effectiveness of a given window function is usually done in the frequency domain. The two most common metrics are main lobe width and sideband height. The frequency responses of the window functions depicted in Figure 1 are given below in Figure 2. Note that the frequency response of 32 point windows is shown for viewing ease, but the relative characteristics of the windows are unchanged for any given length. Mathematics tells us that because the data sequence is multiplied by the window in the time domain, the ideal data frequency spectrum is convolved by the window frequency response in the frequency domain. This convolution will distort the ideal spectrum. The narrower the window's frequency domain main lobe, the better the window's resolution or ability to distinguish closely spaced frequencies. The lower the sidebands, the smaller the effects from noise or interference outside the band of interest.

As can be seen from Figure 2, the rectangular window has the narrowest main lobe, but also the highest sidelobes. The sidelobes are the cause of the "spectral leakage" mentioned above in the discussion of the periodogram (unwindowed) spectrum estimator. The Hanning window is a reasonable compromise between main lobe width and out of band rejection. It is the window used by the Acquitek Bench spectrum analyzer.

Figure 2 - Frequency Response of XDADAQ SDK Window Functions

Finally, in looking at Figure 1, it is apparent that scaling by the window function will reduce the power in the acquired signal. Therefore, the resultant windowed periodogram must be scaled in order to obtain a calibrated power spectrum estimate. The scale factor is computed as follows:

$$U = N / \sum_{n=0}^{N-1} [w(n)]2$$
(6)

where: N is the window length, and

w(n) is the window coefficient at point n.

ЪТ 1

	N=16	N=32	N=64	N=128	N=256	N=512	N=1024	N=2048	N=4096
Bartlett	3.2143	3.1000	3.0484	3.0238	3.0118	3.0059	3.0029	3.0015	3.0007
Blackman	3.5019	3.3889	3.3351	3.3088	3.2959	3.2894	3.2862	3.2846	3.2838
Hamming	2.6812	2.5962	2.5556	2.5358	2.5261	2.5212	2.5188	2.5176	2.5170
Hanning	2.5098	2.5859	2.6256	2.6460	2.6563	2.6615	2.6641	2.6654	2.6660
Rectangle	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
Welch	2.0000	1.9355	1.9048	1.8898	1.8824	1.8787	1.8768	1.8759	1.8755

The scale factors for several windows are computed in Table 1.

Table 1 – Windowed Periodogram Scale Factors

This is a very brief treatment on the usage of the FFT on an Acquitek Technologies data acquisition board. Please refer to a digital signal processing text for additional details on the DFT, computation of the FFT, power spectrum estimation, and windowing. One such text is "Introduction to Digital Signal Processing" by Proakis and Manolakis and published by MacMillan Publishing Company.

Usage

On applicable Acquitek Technologies data acquisition boards (CM, CH, XM, XH series boards), the DFT of the acquired signal can be computed by the on-board DSP. The DSP uses a Fast Fourier Transform (FFT) algorithm to compute the DFT of a signal. By nature, the FFT algorithm operates on a data size which is a power of 2. Presently, the XDADAQ SDK allows FFTs on blocks of data ranging in size from 16 to 4096 samples (2^4 to 2^{12}). Requesting FFT sizes outside of this range or which are not a power of 2 will result in an error.

Block FFT mode usage is similar to normal time-domain data capture using the XDADAQ SDK. In both modes, the following commands are used to set up and start the capture. See the documentation on each individual function for details on the calling parameters.

XDA_Ain_SetSequence() – Sets up number of channels and voltage range of channels XDA_Ain_SetClock() – Sets sampling clock XDA_Ain_SetBuffer() – Configures buffer for scatter-gather transfers XDA_Ain_Start() – Starts data capture

For Block FFT mode, there are a few additional setup steps and subtleties to note. First, the parameters shown below must be set prior to the call to XDA_Ain_Start() in order for Block FFT mode to function as desired:

XDA_Ain_SetParm(device, 0, XDA_AIN_PARM_FFT_BLOCK_MODE, 1); XDA_Ain_SetParm(device, 0, XDA_AIN_PARM_FFT_SIZE, N); XDA_Ain_SetParm(device, 0, XDA_AIN_PARM_FFT_WINDOW_TYPE, / FFT_WINDOW_TYPE_HANNING);

XDA_Ain_Start(device, XDA_SYNC, N);

See the documentation on the XDA_Ain_SetParm() function for a list of the currently defined FFT window types.

Next, the size of the data returned from the FFT calculation must be considered. There are two differences from time-domain capture. The FFT returns 32 bit floating point numbers, designated the f32 type. This maximizes the dynamic range of the resulting transform data. Also, for an N point real input FFT, N complex points are returned as N floating point pairs (i.e. 2N f32 values are returned for an N point FFT). The following pseudocode illustrates this point. For a time-domain capture, the following code would be appropriate for capture of N samples:

...
i16 *captureBuffer; // i16 is a 16 bit integer data type
...
captureBuffer = (i16*)malloc(N*sizeof(i16));
XDA_Ain_SetBuffer(dev, N, captureBuffer);
...
XDA_Ain_Start(dev, XDA_SYNC, N);
...

In dual channel mode, the N samples would be split between both channels, resulting in a capture of N/2 samples from each channel. For a Block FFT capture, the code is somewhat different:

f32 *fftData; // f32 is a 32 bit float ... XDA_Ain_SetParm(device, 0 , XDA_AIN_PARM_FFT_SIZE, N); fftData = (f32*)malloc(2*N*numberOfChan*sizeof(f32)); XDA_Ain_SetBuffer(dev, 2*N*numberOfChan*sizeof(f32)/sizeof(i16), fftData); ... XDA_Ain_Start(dev, XDA_SYNC,N*numberOfChan); ...

For single channel operation, the code above will cause an N-point FFT to be computed. In dual channel mode, the code above will also cause an N-point FFT to be computed for each channel; therefore, twice as much data space is required.

The underlying math of the FFT is based upon a complex time domain input signal. In both single and dual channel mode, the XDADAQ SDK assumes that the input data on each channel is entirely real and the imaginary part is all zeros for both channels. Therefore, the FFT result is known to be symmetric about the Nyquist frequency Fs/2. As a result, for performance optimization, the second half of the data (frequencies Fs/2 ... Fs) may not contain valid return data. Only the non-redundant portion of the FFT data buffer (the first N/2+1 complex frequency bins from frequencies 0 ... Fs/2) is guaranteed to contain valid data.

The format of the returned FFT data buffer after a single channel 1024 point FFT is as follows.

f32 fftData[1024*2]; // *2 is because returned data is complex

fftData[0]	// $Re{X(0)}$, where X(n) is DFT of input data sequence
fftData[1]	// Im $\{X(0)\}$, always zero for real-valued input sequence
fftData[2]	$// \operatorname{Re} \{ X(1) \}$
fftData[3]	// Im{X(1)}

fftData[1022] // Re{X(511)} fftData[1023] // Im{X(511)} fftData[1024] // Re{X(512)} fftData[1025] // Im{X(512)}, always zero for real-valued input sequence fftData[1026] // Invalid ... fftData[2047] // Invalid

The format of the returned FFT data buffer after a dual channel 1024 point FFT is as follows.

#define NUMC f32 fftData[102	CHAN 2 24*2* NUMCHAN];	// *2 is because returned data is complex
fftData[0] fftData[1] fftData[2] fftData[3]	<pre>// Re{X(0)}, where X(n) is DF // Im{X(0)}, always zero for re // Re{X(1)} // Im{X(1)}</pre>	· ·
 fftData[1022] fftData[1023] fftData[1024] fftData[1025] fftData[1026]	// Re{X(512)}	real-valued input sequence
 fftData[2047] fftData[2048] fftData[2049] fftData[2050] fftData[2051]	$//\operatorname{Re}\{Y(1)\}$	T of Ch1 input data sequence
 fftData[3070] fftData[3071] fftData[3072] fftData[3073] fftData[3074] 		real-valued input sequence
fftData[4095]	// Invalid	

For an FFT of more than two channels, the format of the returned data is an extension of the dual channel case.

Finally, a note on amplitude scaling of the FFT data for spectrum analysis. As discussed in equations (3) through (6) in the previous section, the FFT magnitude squared can be scaled by the FFT length and the window function scale factor in order to yield a calibrated power spectrum estimate. A final scaling depending upon the voltage range at which the signal was captured must also be performed to achieve calibrated results.

An example best illustrates the point. Consider the case where we input a sine wave with amplitude 3V and frequency 10kHz. We capture a single channel on the +/-5V scale at a 100kHz sampling frequency, and perform a 1024 point FFT using the Hanning window. First, determine the FFT frequency point of interest. Rearranging equation (2) yields:

$$k = N * f / Fs$$

(7)

where: f = 10 kHz (input frequency), Fs = 100 kHz (sampling frequency), N = 1024 (points in FFT)

Thus, k = 102

Next, find the power spectrum estimate at that frequency:

$$P(k) = U/N^{2} * |X(k)|^{2} = U/N^{2} * (fftData[2*k]^{2} + fftData[2*k+1]^{2})$$
(8)

where: k = 102 (from above),

N = 1024 (points in FFT),

U = 2.6641 (from Table 1 for Hanning window of length N=1024), X(k) is the FFT result

Thus, P(102) = 2.541e-6 * (fftData[204]² + fftData[205]²)

Finally, find the voltage range normalization factor. It will be assumed that the FFT input is captured on a bipolar range. The A/D converter output (i.e the FFT time domain input) is given by:

$$x(n) = 2^{(B-1)} / V_{max} * v_{in}(n\Delta t)$$
 (9)

where: B = number of A/D bits

 V_{max} = maximum positive input voltage for the selected range

Since the FFT is a linear operation,

$$X(k) = 2^{(B-1)} / V_{max} * V_{in} (k)$$
(10)

On a CH, B=12, so the scaling factor on the $\pm -5V$ range is $2^{11}/5 = 409.6$.

Now, we're nearing the end. The desired result is RMS voltage at a given frequency.

$$V'_{rms}(k) = (V_{max}/2^{(B-1)}) * sqrt(P(k))$$

= $(V_{max}/2^{(B-1)}) * (1/N) * sqrt(U * (fftData[2*k]2 + fftData[2*k+1]2))$
= 3.89e-6 * sqrt(fftData[2*k]² + fftData[2*k+1]²) from the example above.

Now for a little housekeeping - since this is a real signal, the frequency content is symmetric about DC (0 Hz). The above equation only looked at the positive frequency component, and thus contains only half the actual signal power. Also, due to spectral spreading by the window function main lobe, the power in adjacent frequency points must be summed to yield an accurate result. These corrections can be implemented as follows:

 $V_{rms}(k) = sqrt(2*[(V'_{rms}[k-1])^2 + (V'rms[k])^2 + (V'_{rms}[k+1])^2])$

Benchmarks

With XDADAQ SDK Version 1.1 software, the DSP computes a single channel, 1024 point FFT in approximately 750us. This number scales nearly linearly with FFT length, so a 512 point single channel FFT takes approximately 375us, and a 2048 point FFT takes 1500us. The FFT computation time also scales linearly with the number of channels, so a two channel, 1024 point FFT is computed in approximately 1500us.

The window function is computed only once when the window type and/or FFT length are specified. It can take a not insignificant amount of time depending upon the type and length. A 1024 point Hanning window takes 1380us to compute, while a Blackman window takes longer due to the two cosine terms, and a rectangular window takes almost no time. Since the window is only computed once, this computation time is not critical. The time required to scale the input data sequence by the window is included in the FFT computation time benchmarks.

Value	Constant Name	Description
0	XDA_SUCCESS	The function executed successfully.
-1	XDA_ERR_UNSPECIFIED	An unspecified error has occurred.
-9000	XDA_ERR_DEVICE_NUMBER	An invalid device number was specified.
-9001	XDA_ERR_CHANNEL_NUMBE R	An invalid channel number was specified.
-9002	XDA_ERR_PORT_NUMBER	An invalid port number was specified.
-9003	XDA_ERR_LINE_NUMBER	An invalid line number was specified.
-9004	XDA_ERR_DIRECTION	An invalid direction value was specified.
-9005	XDA_ERR_INIT	An error occurred during device initialization.
-9006	XDA_ERR_CONFIG_CHANGED	Hardware configuration has changed. Run Acquitek Control Center.
-9007	XDA_ERR_VALUE	An invalid value was specified. This could result from a reserved variable being set to a nonzero value.
-9008	XDA_ERR_MEMORY_FULL	Memory was full, so allocation failed.
-9009	XDA_ERR_UNSUPPORTED	The specified device is not supported by this AcquitekDA version.
-9010	XDA_ERR_RATE	An invalid rate was specified.
-9011	XDA_ERR_RANGE	An invalid range was specified.
-9012	XDA_ERR_INDEX	An invalid index number was specified.
-9013	XDA_ERR_DEVICE_BUSY	The device is in use by another program.
-9014	XDA_ERR_OVERFLOW	An on-board buffer overflow has occurred.
-9015	XDA_ERR_MB_DISABLED	Multi-buffering has been disabled.
-9016	XDA_ERR_COUNT	An invalid count was specified.
-9017	XDA_ERR_NULL_POINTER	A null pointer was passed to the function.
-9018	XDA_ERR_ALIGNMENT	A pointer passed to the function was not aligned on a 32-bit boundary.
-9019	XDA_ERR_MEMORY_LOCK	Memory lock for DMA transfer failed.
-9020	XDA_ERR_SEQUENCE_ORDER	An invalid sequence order was specified.

-9021	XDA ERR MODE	An invalid mode was specified.
-9022	XDA_ERR_TIMEOUT	The device timed out.
-9023	XDA_ERR_OVERWRITE	A host buffer for multi-buffer mode was overwritten. Decrease the amount of processing time spent in XDA_Ain_MB_Proc() or after XDA_Ain_MB_Copy().
-9024	XDA_ERR_CT_NUMBER	An invalid counter/timer number was specified.
-9025	XDA_ERR_SA_LOCK	SafeArrayLock or SafeArrayUnlock returned an error. This is returned by XDA_Ain_SetBuffer, XDA_Aout_SetBuffer, XDA_Din_SetBuffer, and XDA_Dout_SetBuffer.
-9026	XDA_ERR_FLAGS	An invalid flags value was specified.
-9027	XDA_ERR_PXI_NOT_ENABLED	The function cannot complete successfully because outputs are not enabled for the necessary lines. You can enable them in Acquitek Control Center.
-9028	XDA_ERR_MEMORY_BUSY	On board memory allocation can not be changed while input or output is active.
-9029	XDA_ERR_MEMORY_SIZE	On board memory allocation size is incorrect.
-9030	XDA_ERR_PCI_THROUGHPUT	In normal capture mode, the PCI bus throughput cannot empty the on-board RAM FIFOs quickly enough, and the FIFO filled. Increasing the RAM FIFO using the XDA_BOARD_PARM_AIN_MEMORY parameter may help. In FFT mode, the DSP cannot keep up with the input sample rate, and input data FIFO filled. Lower the sample rate to enable the DSP to keep up.
-9999	XDA_ERR_UNIMPLEMENTED	The function is not implemented.

Technical Support

Acquitek is committed to providing exceptional technical and engineering support. When you need help with your Acquitek Data Acquisition product, please have the following information available:

- A complete description of the problem, including any error messages or instructions on re-creating the error.
- Your computer configuration, including brand, processor, speed, memory, and other hardware installed.
- Description of any connections to the Acquitek Data Acquisition product.
- Operating System Environment (Windows, Linux, etc).
- Information on the compiler you are using, if applicable.
- Sample code, if applicable.

Technical support can be contacted as follows:

Acquitek, SAS.

1 bis rue Marcel Paul 91300 Massy France Phone: +33 1 60 13 52 73 Fax: +33 1 60 13 03 68 e-mail: <u>support@acquitek.com</u> Web: <u>http://www.acquitek.com</u>

Technical Support HoursMonday – Friday:Saturday, Sunday & Holidays:Closed